1
|
Zhou DW, Conte MM, Curley WH, Spencer-Salmon CA, Chatelle C, Rosenthal ES, Bodien YG, Victor JD, Schiff ND, Brown EN, Edlow BL. Alpha coherence is a network signature of cognitive recovery from disorders of consciousness. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.08.24314953. [PMID: 39417105 PMCID: PMC11482980 DOI: 10.1101/2024.10.08.24314953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Alpha (8-12 Hz) frequency band oscillations are among the most informative features in electroencephalographic (EEG) assessment of patients with disorders of consciousness (DoC). Because interareal alpha synchrony is thought to facilitate long-range communication in healthy brains, coherence measures of resting-state alpha oscillations may provide insights into a patient's capacity for higher-order cognition beyond channel-wise estimates of alpha power. In multi-channel EEG, global coherence methods may be used to augment standard spectral analysis methods by both estimating the strength and identifying the structure of coherent oscillatory networks. We performed global coherence analysis in 95 separate clinical EEG recordings (28 healthy controls and 33 patients with acute or chronic DoC, 25 of whom returned for follow-up) collected between two academic medical centers. We found that posterior alpha coherence is associated with recovery of higher-level cognition. We developed a measure of network organization, based on the distance between eigenvectors of the alpha cross-spectral matrix, that detects recovery of posterior alpha networks. In patients who have emerged from a minimally conscious state, we showed that coherence-based alpha networks are reconfigured prior to restoration of alpha power to resemble those seen in healthy controls. This alpha network measure performs well in classifying recovery from DoC (AUC = 0.78) compared to common representations of functional connectivity using the weighted phase lag index (AUC = 0.50 - 0.57). Lastly, we observed that activity within these alpha networks is suppressed during positive responses to task-based EEG command-following paradigms, supporting the potential utility of this biomarker to detect covert cognition. Our findings suggest that restored alpha networks may represent a sensitive early signature of cognitive recovery in patients with DoC. Therefore, network detection methods may augment the utility of EEG assessments for DoC.
Collapse
Affiliation(s)
- David W Zhou
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Mary M Conte
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - William H Curley
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille A Spencer-Salmon
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Camille Chatelle
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Eric S Rosenthal
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurocritical Care and Emergency Neurology, Massachusetts General Hospital, Boston, MA
- Epilepsy Service and Division of Clinical Neurophysiology, Massachusetts General Hospital, Boston, MA
| | - Yelena G Bodien
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, MA, USA
| | - Jonathan D Victor
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Nicholas D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
- Department of Neurology, New York Presbyterian Hospital, New York, NY, USA
| | - Emery N Brown
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Picower Institute of Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard Medical School/Massachusetts Institute of Technology, Cambridge, MA, USA
- Institute of Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
2
|
Cho H, Benjaber M, Alexis Gkogkidis C, Buchheit M, Ruiz-Rodriguez JF, Grannan BL, Weaver KE, Ko AL, Cramer SC, Ojemann JG, Denison T, Herron JA. Development and Evaluation of a Real-Time Phase-Triggered Stimulation Algorithm for the CorTec Brain Interchange. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3625-3635. [PMID: 39264785 PMCID: PMC11485249 DOI: 10.1109/tnsre.2024.3459801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
With the development and characterization of biomarkers that may reflect neural network state as well as a patient's clinical deficits, there is growing interest in more complex stimulation designs. While current implantable neuromodulation systems offer pathways to expand the design and application of adaptive stimulation paradigms, technological drawbacks of these systems limit adaptive neuromodulation exploration. In this paper, we discuss the implementation of a phase-triggered stimulation paradigm using a research platform composed of an investigational system known as the CorTec Brain Interchange (CorTec GmbH, Freiburg, Germany), and an open-source software tool known as OMNI-BIC. We then evaluate the stimulation paradigm's performance in both benchtop and in vivo human demonstrations. Our findings indicate that the Brain Interchange and OMNI-BIC platform is capable of reliable administration of phase-triggered stimulation and has the potential to help expand investigation within the adaptive neuromodulation design space.
Collapse
|
3
|
Widge AS. Closing the loop in psychiatric deep brain stimulation: physiology, psychometrics, and plasticity. Neuropsychopharmacology 2024; 49:138-149. [PMID: 37415081 PMCID: PMC10700701 DOI: 10.1038/s41386-023-01643-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
Deep brain stimulation (DBS) is an invasive approach to precise modulation of psychiatrically relevant circuits. Although it has impressive results in open-label psychiatric trials, DBS has also struggled to scale to and pass through multi-center randomized trials. This contrasts with Parkinson disease, where DBS is an established therapy treating thousands of patients annually. The core difference between these clinical applications is the difficulty of proving target engagement, and of leveraging the wide range of possible settings (parameters) that can be programmed in a given patient's DBS. In Parkinson's, patients' symptoms change rapidly and visibly when the stimulator is tuned to the correct parameters. In psychiatry, those same changes take days to weeks, limiting a clinician's ability to explore parameter space and identify patient-specific optimal settings. I review new approaches to psychiatric target engagement, with an emphasis on major depressive disorder (MDD). Specifically, I argue that better engagement may come by focusing on the root causes of psychiatric illness: dysfunction in specific, measurable cognitive functions and in the connectivity and synchrony of distributed brain circuits. I overview recent progress in both those domains, and how it may relate to other technologies discussed in companion articles in this issue.
Collapse
Affiliation(s)
- Alik S Widge
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Pinotsis DA, Fridman G, Miller EK. Cytoelectric Coupling: Electric fields sculpt neural activity and "tune" the brain's infrastructure. Prog Neurobiol 2023; 226:102465. [PMID: 37210066 DOI: 10.1016/j.pneurobio.2023.102465] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
We propose and present converging evidence for the Cytoelectric Coupling Hypothesis: Electric fields generated by neurons are causal down to the level of the cytoskeleton. This could be achieved via electrodiffusion and mechanotransduction and exchanges between electrical, potential and chemical energy. Ephaptic coupling organizes neural activity, forming neural ensembles at the macroscale level. This information propagates to the neuron level, affecting spiking, and down to molecular level to stabilize the cytoskeleton, "tuning" it to process information more efficiently.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London EC1V 0HB, United Kingdom; The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Gene Fridman
- Departments of Otolaryngology, Biomedical Engineering, and Electrical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Phase-Dependent Deep Brain Stimulation: A Review. Brain Sci 2021; 11:brainsci11040414. [PMID: 33806170 PMCID: PMC8103241 DOI: 10.3390/brainsci11040414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/28/2021] [Accepted: 03/23/2021] [Indexed: 02/06/2023] Open
Abstract
Neural oscillations are repetitive patterns of neural activity in the central nervous systems. Oscillations of the neurons in different frequency bands are evident in electroencephalograms and local field potential measurements. These oscillations are understood to be one of the key mechanisms for carrying out normal functioning of the brain. Abnormality in any of these frequency bands of oscillations can lead to impairments in different cognitive and memory functions leading to different pathological conditions of the nervous system. However, the exact role of these neural oscillations in establishing various brain functions is still under investigation. Closed loop deep brain stimulation paradigms with neural oscillations as biomarkers could be used as a mechanism to understand the function of these oscillations. For making use of the neural oscillations as biomarkers to manipulate the frequency band of the oscillation, phase of the oscillation, and stimulation signal are of importance. This paper reviews recent trends in deep brain stimulation systems and their non-invasive counterparts, in the use of phase specific stimulation to manipulate individual neural oscillations. In particular, the paper reviews the methods adopted in different brain stimulation systems and devices for stimulating at a definite phase to further optimize closed loop brain stimulation strategies.
Collapse
|
6
|
Zelmann R, Paulk AC, Basu I, Sarma A, Yousefi A, Crocker B, Eskandar E, Williams Z, Cosgrove GR, Weisholtz DS, Dougherty DD, Truccolo W, Widge AS, Cash SS. CLoSES: A platform for closed-loop intracranial stimulation in humans. Neuroimage 2020; 223:117314. [PMID: 32882382 PMCID: PMC7805582 DOI: 10.1016/j.neuroimage.2020.117314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/15/2020] [Accepted: 08/25/2020] [Indexed: 01/02/2023] Open
Abstract
Targeted interrogation of brain networks through invasive brain stimulation has become an increasingly important research tool as well as therapeutic modality. The majority of work with this emerging capability has been focused on open-loop approaches. Closed-loop techniques, however, could improve neuromodulatory therapies and research investigations by optimizing stimulation approaches using neurally informed, personalized targets. Implementing closed-loop systems is challenging particularly with regard to applying consistent strategies considering inter-individual variability. In particular, during intracranial epilepsy monitoring, where much of this research is currently progressing, electrodes are implanted exclusively for clinical reasons. Thus, detection and stimulation sites must be participant- and task-specific. The system must run in parallel with clinical systems, integrate seamlessly with existing setups, and ensure safety features are in place. In other words, a robust, yet flexible platform is required to perform different tests with a single participant and to comply with clinical requirements. In order to investigate closed-loop stimulation for research and therapeutic use, we developed a Closed-Loop System for Electrical Stimulation (CLoSES) that computes neural features which are then used in a decision algorithm to trigger stimulation in near real-time. To summarize CLoSES, intracranial electroencephalography (iEEG) signals are acquired, band-pass filtered, and local and network features are continuously computed. If target features are detected (e.g. above a preset threshold for a certain duration), stimulation is triggered. Not only could the system trigger stimulation while detecting real-time neural features, but we incorporated a pipeline wherein we used an encoder/decoder model to estimate a hidden cognitive state from the neural features. CLoSES provides a flexible platform to implement a variety of closed-loop experimental paradigms in humans. CLoSES has been successfully used with twelve patients implanted with depth electrodes in the epilepsy monitoring unit. During cognitive tasks (N=5), stimulation in closed loop modified a cognitive hidden state on a trial by trial basis. Sleep spindle oscillations (N=6) and sharp transient epileptic activity (N=9) were detected in near real-time, and stimulation was applied during the event or at specified delays (N=3). In addition, we measured the capabilities of the CLoSES system. Total latency was related to the characteristics of the event being detected, with tens of milliseconds for epileptic activity and hundreds of milliseconds for spindle detection. Stepwise latency, the actual duration of each continuous step, was within the specified fixed-step duration and increased linearly with the number of channels and features. We anticipate that probing neural dynamics and interaction between brain states and stimulation responses with CLoSES will lead to novel insights into the mechanism of normal and pathological brain activity, the discovery and evaluation of potential electrographic biomarkers of neurological and psychiatric disorders, and the development and testing of patient-specific stimulation targets and control signals before implanting a therapeutic device.
Collapse
Affiliation(s)
- Rina Zelmann
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Angelique C Paulk
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Ishita Basu
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, University of Cincinnati, OH, USA
| | - Anish Sarma
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Ali Yousefi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Computer Science, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Britni Crocker
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emad Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA; Department of Neurosurgery, Albert Einstein College of Medicine, NY, USA
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Darin D Dougherty
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Wilson Truccolo
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Department of Psychiatry, University of Minnesota, MI, USA
| | - Sydney S Cash
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
7
|
Hanslmayr S, Axmacher N, Inman CS. Modulating Human Memory via Entrainment of Brain Oscillations. Trends Neurosci 2019; 42:485-499. [PMID: 31178076 DOI: 10.1016/j.tins.2019.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/01/2019] [Accepted: 04/25/2019] [Indexed: 12/30/2022]
Abstract
In the human brain, oscillations occur during neural processes that are relevant for memory. This has been demonstrated by a plethora of studies relating memory processes to specific oscillatory signatures. Several recent studies have gone beyond such correlative approaches and provided evidence supporting the idea that modulating oscillations via frequency-specific entrainment can alter memory functions. Such causal evidence is important because it allows distinguishing mechanisms directly related to memory from mere epiphenomenal oscillatory signatures of memory. This review provides an overview of stimulation studies using different approaches to entrain brain oscillations for modulating human memory. We argue that these studies demonstrate a causal link between brain oscillations and memory, speaking against an epiphenomenal perspective of brain oscillations.
Collapse
Affiliation(s)
- Simon Hanslmayr
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, UK.
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| | - Cory S Inman
- Department of Neurosurgery, Emory University, 1365 Clifton Road North East, Atlanta, GA 30322, USA
| |
Collapse
|
8
|
Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat Commun 2019; 10:1536. [PMID: 30948727 PMCID: PMC6449385 DOI: 10.1038/s41467-019-09557-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is a circuit-oriented treatment for mental disorders. Unfortunately, even well-conducted psychiatric DBS clinical trials have yielded inconsistent symptom relief, in part because DBS’ mechanism(s) of action are unclear. One clue to those mechanisms may lie in the efficacy of ventral internal capsule/ventral striatum (VCVS) DBS in both major depression (MDD) and obsessive-compulsive disorder (OCD). MDD and OCD both involve deficits in cognitive control. Cognitive control depends on prefrontal cortex (PFC) regions that project into the VCVS. Here, we show that VCVS DBS’ effect is explained in part by enhancement of PFC-driven cognitive control. DBS improves human subjects’ performance on a cognitive control task and increases theta (5–8Hz) oscillations in both medial and lateral PFC. The theta increase predicts subjects’ clinical outcomes. Our results suggest a possible mechanistic approach to DBS therapy, based on tuning stimulation to optimize these neurophysiologic phenomena. Deep brain stimulation (DBS) is a promising treatment for psychiatric disorders, but its mechanism in relieving symptoms is unclear. Here, the authors show that DBS of ventral internal capsule/ventral striatum (VCVS) may act by enhancing prefrontal cortex oscillations that in turn enhance cognitive control.
Collapse
|