1
|
Lee J, Chang SH, Cho YH, Kim JS, Kim H, Zaheer J, Lee G, Choi K, Yoon YS, Kim YA. Prenatal to peripubertal exposure to Di(2-ethylhexyl) phthalate induced endometrial atrophy and fibrosis in female mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115798. [PMID: 38086261 DOI: 10.1016/j.ecoenv.2023.115798] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Di(2-ethylhexy) phthalate (DEHP) is a widely used plasticizer that is ubiquitously found in the environment. Using a mouse model, we investigated the impact of early life DEHP exposure ranging from the prenatal to peripubertal developmental period of the female reproductive system. Pregnant female mice were allocated to three groups as follows: control, 100 mg/kg/day, and 500 mg/kg/day DEHP treatment. DEHP exposure was introduced through feeding during pregnancy (3 weeks) and lactation (3 weeks). After weaning, the offspring were also exposed to DEHP through feeding for another 2 weeks. Observations were conducted on female offspring at 10 and 24 weeks. The number of live offspring per dam was significantly lower in the high-DEHP-exposed group (500 mg/kg/day) compared to the control group (7.67 ± 1.24 vs. 14.17 ± 0.31; p < 0.05) despite no difference in pregnancy rates across the groups. Low-DEHP exposure (100 mg/kg/day) resulted to a decreased body weight (36.07 ± 3.78 vs. 50.11 ± 2.11 g; p < 0.05) and decreased left uterine length (10.60 ± 1.34 vs. 14.77 ± 0.82 mm; p < 0.05) in 24-week- old female mice. As early as 10 weeks, endometrial atrophy and fibrosis were observed, and endometrial cystic hyperplasia was noted in female mice at 24 weeks. Our study is the first to demonstrate that female mice exposed to DEHP in the early life developed endometrial fibrosis in the female offspring. Further studies on the consequences of these observations in fecundity and other reproductive functions are warranted.
Collapse
Affiliation(s)
- Jisun Lee
- Department of Obstetrics and Gynecology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | - Sun Hee Chang
- Departments of Pathology, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do 10380, the Republic of Korea
| | - Yoon Hee Cho
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jin Su Kim
- Division of Applied RI, Korea Institute Radiological and Medical Sciences (KIRAMS), Seoul 01812, the Republic of Korea
| | - Hyeongi Kim
- Division of Applied RI, Korea Institute Radiological and Medical Sciences (KIRAMS), Seoul 01812, the Republic of Korea
| | - Javeria Zaheer
- Division of Applied RI, Korea Institute Radiological and Medical Sciences (KIRAMS), Seoul 01812, the Republic of Korea
| | - Gowoon Lee
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, the Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, School of Public Health, Seoul National University, Seoul 08826, the Republic of Korea
| | - Yeong Sook Yoon
- Departments of Family Medicine, Center for Health Promotion, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do 10380, the Republic of Korea
| | - Young Ah Kim
- Department of Obstetrics and Gynecology, Inje University Ilsan Paik Hospital, Goyang-si, Gyeonggi-do 10380, the Republic of Korea.
| |
Collapse
|
2
|
Dong Y, Cai D, Liu C, Zhao S, Wang L. Combined cytotoxicity of phthalate esters on HepG2 cells: A comprehensive analysis of transcriptomics and metabolomics. Food Chem Toxicol 2023; 180:114034. [PMID: 37703926 DOI: 10.1016/j.fct.2023.114034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Phthalate esters (PAEs), widely used as plasticizers, may pose a potential environmental and human hazard. The aim of this study was to compare the cytotoxicity of di(2-ethylhexyl) phthalates (DEHP) and dibutyl phthalate (DBP)) after their exposure to HepG2 cells alone or in combination. HepG2 cells treated with individual/combined DEHP and DBP at a dose of 10-2 M for 24 h were selected for metabolome and transcriptome analysis. The results demonstrated that exposure to the mixtures of DEHP and DBP caused enhanced or reduced toxic effects regarding 8 pathways with 1065 downregulated genes and 643 upregulated genes, in comparison with those of single chemicals. The combined toxicity of mixture revealed both synergistic and antagonistic interactions between DEHP and DBP. Besides, combined exposure to DEHP and DBP promoted TCA cycle, pyrimidine, and purine metabolism, while an antagonistic effect on fatty acid derangement should require further investigation. To summarize, our results suggest that DEHP exposed alone or combined with DBP caused a variety of metabolic disorders, and the type of combination effects varied among metabolic pathways.
Collapse
Affiliation(s)
- Yanjie Dong
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Da Cai
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province, Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan, 250100, PR China
| | - Shancang Zhao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| | - Lei Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, 250100, PR China.
| |
Collapse
|
3
|
Lin Y, Xu W, Yang L, Chen Z, Zhai J, Zhu Q, Guo Z, Wang N, Zhang C, Deng H, Wang S, Yang G. Mechanism of testicular injury induced by Di-ethylhexyl phthalate and its protective agents. Chem Biol Interact 2023; 381:110575. [PMID: 37257576 DOI: 10.1016/j.cbi.2023.110575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Di-ethylhexyl phthalate (DEHP) is used as an important plasticizer in a wide range of products such as paints, food packaging, medical devices and children's toys. In recent years, there has been increasing interest in the toxic effects of DEHP on the male reproductive organs, the testicles. Here, we reviewed the basic pathways of testicular damage caused by DEHP. The mechanism involves oxidative stress, ferroptosis, interfering with hypothalamic-pituitary-gonadal axis (HPGA) and testosterone level. We summarized the protective agents that have been shown to be effective in repairing this type of testicular damage in recent years. This provides a new perspective and direction for future research into the health effects and molecular mechanisms of DEHP.
Collapse
Affiliation(s)
- Yuxuan Lin
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Wenqi Xu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ling Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Zhengguo Chen
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Jianan Zhai
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Qi Zhu
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Zhifang Guo
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Ningning Wang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Cong Zhang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Haoyuan Deng
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China
| | - Shaopeng Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Guang Yang
- Department of Food Nutrition and Safety, Dalian Medical University, No. 9W. Lushun South Road, Dalian, 116044, China.
| |
Collapse
|
4
|
Perini S, Filosi M, Domenici E. Candidate biomarkers from the integration of methylation and gene expression in discordant autistic sibling pairs. Transl Psychiatry 2023; 13:109. [PMID: 37012247 PMCID: PMC10070641 DOI: 10.1038/s41398-023-02407-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
While the genetics of autism spectrum disorders (ASD) has been intensively studied, resulting in the identification of over 100 putative risk genes, the epigenetics of ASD has received less attention, and results have been inconsistent across studies. We aimed to investigate the contribution of DNA methylation (DNAm) to the risk of ASD and identify candidate biomarkers arising from the interaction of epigenetic mechanisms with genotype, gene expression, and cellular proportions. We performed DNAm differential analysis using whole blood samples from 75 discordant sibling pairs of the Italian Autism Network collection and estimated their cellular composition. We studied the correlation between DNAm and gene expression accounting for the potential effects of different genotypes on DNAm. We showed that the proportion of NK cells was significantly reduced in ASD siblings suggesting an imbalance in their immune system. We identified differentially methylated regions (DMRs) involved in neurogenesis and synaptic organization. Among candidate loci for ASD, we detected a DMR mapping to CLEC11A (neighboring SHANK1) where DNAm and gene expression were significantly and negatively correlated, independently from genotype effects. As reported in previous studies, we confirmed the involvement of immune functions in the pathophysiology of ASD. Notwithstanding the complexity of the disorder, suitable biomarkers such as CLEC11A and its neighbor SHANK1 can be discovered using integrative analyses even with peripheral tissues.
Collapse
Affiliation(s)
- Samuel Perini
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
| | - Michele Filosi
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy
- EURAC Research, Bolzano, Italy
| | - Enrico Domenici
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento (TN), Italy.
- Fondazione The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto (TN), Italy.
| |
Collapse
|
5
|
Wu Y, Lu R, Lin Y, Wang J, Lou Z, Zheng X, Zhang L, Pan R, Lu G, Fang Q. DEHP mediates drug resistance by metabolic reprogramming in colorectal cancer cells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:47780-47786. [PMID: 36749513 PMCID: PMC10097731 DOI: 10.1007/s11356-022-25110-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/29/2022] [Indexed: 02/08/2023]
Abstract
Long-term exposure to diethylhexyl phthalate (DEHP), an endocrine-disrupting chemical (EDCs) and plasticizer widely used in consumer products, has been reported to be significantly positively correlated with increased risks of different human diseases, including various cancers, while the potential effect of DEHP on colorectal cancer progression was little studied. In the present study, we showed that DEHP could trigger the metabolic reprogramming of colorectal cancer cells, promote cell growth and decrease fluorouracil (5-FU) sensitivity. Mechanistic studies indicated that DEHP could reduce glycolysis activity and increase oxidative phosphorylation (OXPHOS) in SW620 cells. In addition, in vivo experiments showed that DEHP promoted tumorigenic progression and decreased survival time in mice. Collectively, our findings suggest that DEHP may be a potent risk factor for colorectal cancer development.
Collapse
Affiliation(s)
- Yue Wu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang Province, Hangzhou, 310014, China
| | - Ruijie Lu
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Yujie Lin
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jinjin Wang
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Zijian Lou
- The Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xiaochun Zheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang Province, Hangzhou, 310014, China
| | - Ling Zhang
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China.,Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Ruolang Pan
- Institute for Cell-Based Drug Development of Zhejiang Province, Hangzhou, China.,Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Gang Lu
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
| | - Qingxia Fang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Zhejiang Province, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Li Y, Yao Y, Xiao N, Liu Y, Du Y, Liu M, Zhang Q, Zhao H, Zhang T, Zhang H, Wang L, Luo H, Zhang Y, Sun H. The association of serum phthalate metabolites with biomarkers of ovarian reserve in women of childbearing age. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113909. [PMID: 35999756 DOI: 10.1016/j.ecoenv.2022.113909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/16/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Phthalates (PAEs) are widely used plasticizers drawing increasing concern due to reproductive toxicity. However, studies on serum PAEs metabolites (mPAEs) and their associations with human ovarian function remain very scarce. In this study, from April 2019 to August 2020, a total of 297 women of childbearing age were recruited in Tianjin, China. Eleven mPAEs were analyzed in serum samples and eight mPAEs were detected at frequencies > 65% with median concentrations of 0.43-15.3 ng/mL. In multinomial logistic analysis, an increase in serum mono (2-isobutyl) phthalate (miBP) was associated with decline in antral follicle count (AFC) (OR=1.26, 95% CI: 0.99, 1.61) and 5-mono-(2-ethyl-5-hydroxyhexyl) phthalate (mEHHP) was significantly associated with AFC increase (OR=1.43, 95% CI: 1.06, 1.92), which were aligned with the associations found between mPAEs and AMH through generalized linear regression. In multiple linear regression models, per 10% increase in serum mono (2-ethylhexyl) phthalate (mEHP), mono (2-ethyl-5-oxohexyl) phthalate (mEOHP) (oxo-mEHP), and principal component 1 featured for high concentrations of mono-n-butyl phthalate (mBP), miBP and mEHP were associated with 0.15 (95% CI: -0.29, -0.02), 0.01 (95% CI: -0.01, 0.00) and 0.01 (95% CI: -0.02, 0.00) ln-unit decrease in estradiol (E2) levels, respectively, while mono-[(2-carboxymethyl) hexyl] phthalate (mCMHP) (carboxymethyl-mEHP) was positively associated with 0.05 ln-unit increase of E2 (95% CI: 0.02, 0.08). The observed negative associations between mPAEs and the Anti-Müllerian hormone (AMH) also aligned with the change in AFC. Generalized linear regression also revealed nonlinear associations between mono-ethyl phthalate (mEP), mCMHP and follicle-stimulating hormone (FSH). Overall, serum mEHP and its metabolites were negatively associated with E2. miBP was negatively associated with AFC. The nonlinear associations between mPAEs and FSH, and AMH need further study.
Collapse
Affiliation(s)
- Yongcheng Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yiming Yao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Nan Xiao
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Yarui Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yongrui Du
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Min Liu
- Tianjin Medical University, Tianjin 300070, China
| | - Qiuyue Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Hongzhi Zhao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Tao Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Huajing Zhang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Haining Luo
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China.
| | - Yunshan Zhang
- Department of Center for Reproductive Medicine, Tianjin Central Hospital of Gynecology Obstetrics / Tianjin Key Laboratory of Human Development and Reproductive Regulation, Tianjin 300100, China
| | - Hongwen Sun
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China.
| |
Collapse
|
7
|
Zhang Y, Hui J, Xu Y, Ma Y, Sun Z, Zhang M, Nie L, Ye L. MEHP promotes liver fibrosis by down-regulating STAT5A in BRL-3A hepatocytes. CHEMOSPHERE 2022; 295:133925. [PMID: 35143864 DOI: 10.1016/j.chemosphere.2022.133925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE As an environmental endocrine disruptor, mono-2-ethylhexyl phthalate (MEHP) can interfere with liver metabolism and lead to liver diseases. We aimed to investigate the role of MEHP in liver fibrosis and its molecular mechanism. METHODS BRL-3A hepatocytes were exposed to MEHP (0, 10, 50, 100 and 200 μM) for 24 h. STAT5A gene was overexpressed by lentivirus transfection. The reactive oxygen species (ROS) was tested by the flow cytometer. The malondialdehyde (MDA), glutathione peroxidase (GSH-PX), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels were detected by commercial kits. Real-Time PCR and Western blot were performed to test the relative mRNA and proteins levels, respectively. RESULTS MEHP exposure significantly induced oxidative damage in BRL-3A cells, which inhibited the expression of STAT5A and promoted the expression of fibrosis related proteins MMP2, MMP9, TIMP2 and CTGF. After over-expression of STAT5A gene in BRL-3A cells, the elevated expression levels of CTGF, MMP2, MMP9 and TIMP2 induced by MEHP exposure were significantly reversed. CONCLUSION This study demonstrated that MEHP exposure inhibited the expression of STAT5A by causing oxidative damage in BRL-3A hepatocytes, thus accelerating the expression of key molecules in fibrosis and promoting the occurrence of liver fibrosis.
Collapse
Affiliation(s)
- Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ju Hui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yan Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingying Ma
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhe Sun
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Meng Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lushuang Nie
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Transposable Elements and Human Diseases: Mechanisms and Implication in the Response to Environmental Pollutants. Int J Mol Sci 2022; 23:ijms23052551. [PMID: 35269693 PMCID: PMC8910135 DOI: 10.3390/ijms23052551] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Transposable elements (TEs) are recognized as major players in genome plasticity and evolution. The high abundance of TEs in the human genome, especially the Alu and Long Interspersed Nuclear Element-1 (LINE-1) repeats, makes them responsible for the molecular origin of several diseases. This involves several molecular mechanisms that are presented in this review: insertional mutation, DNA recombination and chromosomal rearrangements, modification of gene expression, as well as alteration of epigenetic regulations. This literature review also presents some of the more recent and/or more classical examples of human diseases in which TEs are involved. Whether through insertion of LINE-1 or Alu elements that cause chromosomal rearrangements, or through epigenetic modifications, TEs are widely implicated in the origin of human cancers. Many other human diseases can have a molecular origin in TE-mediated chromosomal recombination or alteration of gene structure and/or expression. These diseases are very diverse and include hemoglobinopathies, metabolic and neurological diseases, and common diseases. Moreover, TEs can also have an impact on aging. Finally, the exposure of individuals to stresses and environmental contaminants seems to have a non-negligible impact on the epigenetic derepression and mobility of TEs, which can lead to the development of diseases. Thus, improving our knowledge of TEs may lead to new potential diagnostic markers of diseases.
Collapse
|
9
|
Wang J, Li X, Wang C, Li Y, Wang J, Fang R, Wang J, Chen J, Dong J. Exposure to di-(2-ethylhexyl) phthalate reduces secretion of GDNF via interfering with estrogen pathway and downregulating ERK/c-fos signaling pathway in astrocytes. Food Chem Toxicol 2021; 158:112592. [PMID: 34624416 DOI: 10.1016/j.fct.2021.112592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 02/07/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a typical endocrine-disrupting chemical (EDC) that can increase the risk of central nervous system disease. This study aimed to investigate the in vitro and in vivo effects of DEHP exposure on GDNF secretion and the underlying mechanisms. Pregnant Wistar rats were randomly assigned into four groups and administered 0, 30, 300, or 750 mg/kg DEHP daily by oral gavage. In addition, primary astrocytes were exposed to mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP. Our results showed that DEHP exposure reduced GDNF levels and downregulated the ERK/c-fos signaling pathway in the cerebral cortex of male, but not female, offspring. Moreover, exogenous estrogen could overcome the decreased GDNF levels in astrocytes caused by MEHP exposure. MEHP also decreased p300 levels and downregulated the ERK/c-fos signaling pathway in primary astrocytes. Honokiol restored GDNF levels following MEHP exposure by activating the ERK/c-fos signaling pathway, while the inhibitor U0126 further reduced the GDNF levels. These results suggested that DEHP exposure could interfere with the normal effects of estrogen in the brain and downregulate the ERK/c-fos signaling pathway to decrease the GDNF secretion from astrocytes in the cerebral cortex.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Xudong Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Chaonan Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Yan Li
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jinmiao Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Rui Fang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jingsi Wang
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China
| | - Jie Chen
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| | - Jing Dong
- Department of Occupational and Environmental Health, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang, 110122, PR China.
| |
Collapse
|
10
|
Tando Y, Hiura H, Takehara A, Ito-Matsuoka Y, Arima T, Matsui Y. Epi-mutations for spermatogenic defects by maternal exposure to di(2-ethylhexyl) phthalate. eLife 2021; 10:70322. [PMID: 34319233 PMCID: PMC8318585 DOI: 10.7554/elife.70322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/15/2021] [Indexed: 12/13/2022] Open
Abstract
Exposure to environmental factors during fetal development may lead to epigenomic modifications in fetal germ cells, altering gene expression and promoting diseases in successive generations. In mouse, maternal exposure to di(2-ethylhexyl) phthalate (DEHP) is known to induce defects in spermatogenesis in successive generations, but the mechanism(s) of impaired spermatogenesis are unclear. Here, we showed that maternal DEHP exposure results in DNA hypermethylation of promoters of spermatogenesis-related genes in fetal testicular germ cells in F1 mice, and hypermethylation of Hist1h2ba, Sycp1, and Taf7l, which are crucial for spermatogenesis, persisted from fetal testicular cells to adult spermatogonia, resulting in the downregulation of expression of these genes. Forced methylation of these gene promoters silenced expression of these loci in a reporter assay. These results suggested that maternal DEHP exposure-induced hypermethylation of Hist1h2ba, Sycp1, and Taf7l results in downregulation of these genes in spermatogonia and subsequent defects in spermatogenesis, at least in the F1 generation.
Collapse
Affiliation(s)
- Yukiko Tando
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Hitoshi Hiura
- Department of Bioscience, Faculty of Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| | - Asuka Takehara
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yumi Ito-Matsuoka
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takahiro Arima
- Department of Informative Genetics, Environment and Genome Research Center, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
11
|
Liu S, Wang K, Svoboda LK, Rygiel CA, Neier K, Jones TR, Cavalcante RG, Colacino JA, Dolinoy DC, Sartor MA. Perinatal DEHP exposure induces sex- and tissue-specific DNA methylation changes in both juvenile and adult mice. ENVIRONMENTAL EPIGENETICS 2021; 7:dvab004. [PMID: 33986952 PMCID: PMC8107644 DOI: 10.1093/eep/dvab004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 05/04/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a type of phthalate plasticizer found in a variety of consumer products and poses a public health concern due to its metabolic and endocrine disruption activities. Dysregulation of epigenetic modifications, including DNA methylation, has been shown to be an important mechanism for the pathogenic effects of prenatal exposures, including phthalates. In this study, we used an established mouse model to study the effect of perinatal DEHP exposure on the DNA methylation profile in liver (a primary target tissue of DEHP) and blood (a common surrogate tissue) of both juvenile and adult mice. Despite exposure ceasing at 3 weeks of age (PND21), we identified thousands of sex-specific differential DNA methylation events in 5-month old mice, more than identified at PND21, both in blood and liver. Only a small number of these differentially methylated cytosines (DMCs) overlapped between the time points, or between tissues (i.e. liver and blood), indicating blood may not be an appropriate surrogate tissue to estimate the effects of DEHP exposure on liver DNA methylation. We detected sex-specific DMCs common between 3-week and 5-month samples, pointing to specific DNA methylation alterations that are consistent between weanling and adult mice. In summary, this is the first study to assess the genome-wide DNA methylation profiles in liver and blood at two different aged cohorts in response to perinatal DEHP exposure. Our findings cast light on the implications of using surrogate tissue instead of target tissue in human population-based studies and identify epigenetic biomarkers for DEHP exposure.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Laurie K Svoboda
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Christine A Rygiel
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Kari Neier
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Tamara R Jones
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Raymond G Cavalcante
- Epigenomics Core, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
- Nutritional Sciences, University of Michigan, 500 S State St., Ann Arbor, MI 48109, USA
| | - Dana C Dolinoy
- Correspondence address. Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA. Tel: +734-647-3155; Fax: +734-936-7283; E-mail: (D.C.D.); Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI 48109-2218, USA . Tel: +734-763-8013; Fax: +734-615-6553; E-mail: (M.A.S.)
| | - Maureen A Sartor
- Correspondence address. Environmental Health Sciences, University of Michigan, 1415 Washington Heights, Ann Arbor, MI 48109-2029, USA. Tel: +734-647-3155; Fax: +734-936-7283; E-mail: (D.C.D.); Department of Computational Medicine and Bioinformatics, University of Michigan, 100 Washtenaw Ave., Ann Arbor, MI 48109-2218, USA . Tel: +734-763-8013; Fax: +734-615-6553; E-mail: (M.A.S.)
| |
Collapse
|
12
|
Cheroni C, Caporale N, Testa G. Autism spectrum disorder at the crossroad between genes and environment: contributions, convergences, and interactions in ASD developmental pathophysiology. Mol Autism 2020; 11:69. [PMID: 32912338 PMCID: PMC7488083 DOI: 10.1186/s13229-020-00370-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
The complex pathophysiology of autism spectrum disorder encompasses interactions between genetic and environmental factors. On the one hand, hundreds of genes, converging at the functional level on selective biological domains such as epigenetic regulation and synaptic function, have been identified to be either causative or risk factors of autism. On the other hand, exposure to chemicals that are widespread in the environment, such as endocrine disruptors, has been associated with adverse effects on human health, including neurodevelopmental disorders. Interestingly, experimental results suggest an overlap in the regulatory pathways perturbed by genetic mutations and environmental factors, depicting convergences and complex interplays between genetic susceptibility and toxic insults. The pervasive nature of chemical exposure poses pivotal challenges for neurotoxicological studies, regulatory agencies, and policy makers. This highlights an emerging need of developing new integrative models, including biomonitoring, epidemiology, experimental, and computational tools, able to capture real-life scenarios encompassing the interaction between chronic exposure to mixture of substances and individuals' genetic backgrounds. In this review, we address the intertwined roles of genetic lesions and environmental insults. Specifically, we outline the transformative potential of stem cell models, coupled with omics analytical approaches at increasingly single cell resolution, as converging tools to experimentally dissect the pathogenic mechanisms underlying neurodevelopmental disorders, as well as to improve developmental neurotoxicology risk assessment.
Collapse
Affiliation(s)
- Cristina Cheroni
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Nicolò Caporale
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
- Human Technopole, Via Cristina Belgioioso 171, Milan, Italy.
| |
Collapse
|
13
|
Wen Y, Rattan S, Flaws JA, Irudayaraj J. Multi and transgenerational epigenetic effects of di-(2-ethylhexyl) phthalate (DEHP) in liver. Toxicol Appl Pharmacol 2020; 402:115123. [PMID: 32628958 DOI: 10.1016/j.taap.2020.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/01/2020] [Accepted: 06/12/2020] [Indexed: 12/20/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a ubiquitous industrial pollutant, is a known endocrine disrupter implicated in metabolic diseases. Prenatal DEHP exposure promotes epigenetic multi- and transgenerational inheritance of adult onset disease in subsequent generations (F1-F3). However, the epigenetic toxicity is less understood in the liver. In this study, CD-1 mice were prenatally exposed to 20 μg/kg/day, 200 μg/kg/day, 500 mg/kg/day, or 750 mg/kg/day DEHP from gestational day (GD) 10.5 until birth of pups. Following prenatal exposure, the multigenerational and transgenerational effects of mRNA expression of epigenetic regulators were evaluated in F1, F2, and F3 generation mouse livers at postnatal days (PNDs) 8 and 60. Results showed that DEHP exposed mice livers exhibited significant changes in global DNA methylation levels in all three generations, with the effect being different in F2 after high dosage exposure. Histopathology indicated that DEHP exposure could induce mild damage in F1 livers. The expression levels of DNA methyltransferase 1 (Dnmt1) were significantly changed in both the F1 and F2 generations at PND 8, suggesting that maintenance Dnmt1 plays a major role in the multigenerational effect that occur in the early developmental stages. Additionally, DEHP exposure caused significant changes in ten-eleven translocation methylcytosine (Tet) dioxygenases encoding Tet1 expression in all three generations and Tet2 expression in F3 at PND 60, implicating their contributions in inducing both multi- and transgenerational effects after DEHP exposure in mouse liver. Overall, our results establish that prenatal and ancestral DEHP exposure are critical for epigenetic regulation of DNA methylation in female mouse livers.
Collapse
Affiliation(s)
- Yi Wen
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA
| | - Saniya Rattan
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA
| | - Joseph Irudayaraj
- Department of Bioengineering. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Biomedical Research Center in Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL 61801, USA; Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61802, USA; Micro and Nanotechnology Laboratory. University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Zhao Y, Li MZ, Shen Y, Lin J, Wang HR, Talukder M, Li JL. Lycopene Prevents DEHP-Induced Leydig Cell Damage with the Nrf2 Antioxidant Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2031-2040. [PMID: 31814398 DOI: 10.1021/acs.jafc.9b06882] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
As a plasticizer, di(2-ethylhexyl) phthalate (DEHP) is the most usually used phthalate. Leydig cell is a male-specific cell, which plays a principal role in spermatogenesis and masculinization by the androgens of synthesis and secretion. Numerous researchers have indicated that DEHP can result in testicular toxicity by inducing oxidative stress. Lycopene (LYC) is a possible treatment option for male infertility due to its natural antioxidant properties. Our study was aimed to investigate whether LYC could rescue DEHP-induced Leydig cell damage. The mice were treated with DEHP (500 mg/kg BW/day or 1000 mg/kg BW/day) and/or LYC (5 mg/kg BW/day) for 28 days. We found that LYC attenuated DEHP-induced Leydig cell damage. Moreover, the protective role of LYC was verified by the histopathological and ultrastructural analysis of the Leydig cell. LYC suppressed oxidative stress that was induced by DEHP. In the Leydig cell, the expressions of the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream target genes were improved through LYC-mediated protection in DEHP-induced Leydig cell damage. Our findings indicated that LYC could increase the antioxidant capacity via mediating Nrf2 signaling pathway, thereby attenuating DEHP-induced Leydig cell damage.
Collapse
Affiliation(s)
| | | | | | | | | | - Milton Talukder
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine , Patuakhali Science and Technology University , Barishal 8210 , Bangladesh
| | | |
Collapse
|