1
|
Palenca I, Seguella L, Zilli A, Basili Franzin S, Del Re A, Pepi F, Troiani A, Pesce M, Rurgo S, De Palma FDE, Luglio G, Tropeano FP, Sarnelli G, Esposito G. Intrarectal Administration of Adelmidrol plus Hyaluronic Acid Gel Ameliorates Experimental Colitis in Mice and Inhibits Pro-Inflammatory Response in Ex Vivo Cultured Biopsies Derived from Ulcerative Colitis-Affected Patients. Int J Mol Sci 2023; 25:165. [PMID: 38203336 PMCID: PMC10778920 DOI: 10.3390/ijms25010165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Improving clinical outcomes and delaying disease recrudescence in Ulcerative Colitis (UC) patients is crucial for clinicians. In addition to traditional and new pharmacological therapies that utilize biological drugs, the development of medical devices that can ameliorate UC and facilitate the remission phase should not be overlooked. Drug-based therapy requires time to be personalized and to evaluate the benefit/risk ratio. However, the increasing number of diagnosed UC cases worldwide necessitates the exploration of new strategies to enhance clinical outcomes. By incorporating medical devices alongside pharmacological treatments, clinicians can provide additional support to UC patients, potentially improving their condition and slowing down the recurrence of symptoms. Chemically identified as an azelaic acid derivative and palmitoylethanolamide (PEA) analog, adelmidrol is a potent anti-inflammatory and antioxidant compound. In this study, we aimed to evaluate the effect of an intrarectal administration of 2% adelmidrol (Ade) and 0.1% hyaluronic acid (HA) gel formulation in both the acute and resolution phase of a mouse model of colitis induced via DNBS enema. We also investigated its activity in cultured human colon biopsies isolated from UC patients in the remission phase at follow-up when exposed in vitro to a cytomix challenge. Simultaneously, with its capacity to effectively alleviate chronic painful inflammatory cystitis when administered intravesically to urological patients such as Vessilen, the intrarectal administration of Ade/HA gel has shown remarkable potential in improving the course of colitis. This treatment approach has demonstrated a reduction in the histological damage score and an increase in the expression of ZO-1 and occludin tight junctions in both in vivo studies and human specimens. By acting independently on endogenous PEA levels and without any noticeable systemic absorption, the effectiveness of Ade/HA gel is reliant on a local antioxidant mechanism that functions as a "barrier effect" in the inflamed gut. Building on the findings of this preliminary study, we are confident that the Ade/HA gel medical device holds promise as a valuable adjunct in supporting traditional anti-UC therapies.
Collapse
Affiliation(s)
- Irene Palenca
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Luisa Seguella
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Aurora Zilli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Silvia Basili Franzin
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Alessandro Del Re
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| | - Federico Pepi
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.P.); (A.T.)
| | - Anna Troiani
- Department of Chemistry and Drug Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (F.P.); (A.T.)
| | - Marcella Pesce
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Sara Rurgo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Fatima Domenica Elisa De Palma
- Department of Molecular Medicine and Medical Biotechnologies, Centro Ingegneria Genetica-Biotecnologie Avanzate s.c.a rl, 80131 Naples, Italy;
| | - Gaetano Luglio
- Endoscopic Surgery Unit, Department of Medical and Surgical Gastrointestinal Disease, Federico II University of Naples, 80131 Naples, Italy; (G.L.); (F.P.T.)
| | - Francesca Paola Tropeano
- Endoscopic Surgery Unit, Department of Medical and Surgical Gastrointestinal Disease, Federico II University of Naples, 80131 Naples, Italy; (G.L.); (F.P.T.)
| | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (S.R.); (G.S.)
| | - Giuseppe Esposito
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (I.P.); (A.Z.); (S.B.F.); (A.D.R.); (G.E.)
| |
Collapse
|
2
|
Interdonato L, D’amico R, Cordaro M, Siracusa R, Fusco R, Peritore AF, Gugliandolo E, Crupi R, Coaccioli S, Genovese T, Impellizzeri D, Di Paola R, Cuzzocrea S. Aerosol-Administered Adelmidrol Attenuates Lung Inflammation in a Murine Model of Acute Lung Injury. Biomolecules 2022; 12:biom12091308. [PMID: 36139146 PMCID: PMC9496587 DOI: 10.3390/biom12091308] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Acute lung injury (ALI) is a common and devastating clinical disorder with a high mortality rate and no specific therapy. The pathophysiology of ALI is characterized by increased alveolar/capillary permeability, lung inflammation, oxidative stress and structural damage to lung tissues, which can progress to acute respiratory distress syndrome (ARDS). Adelmidrol (ADM), an analogue of palmitoylethanolamide (PEA), is known for its anti-inflammatory and antioxidant functions, which are mainly due to down-modulating mast cells (MCs) and promoting endogenous antioxidant defense. The aim of this study is to evaluate the protective effects of ADM in a mice model of ALI, induced by intratracheal administration of lipopolysaccharide (LPS) at the dose of 5 mg/kg. ADM 2% was administered by aerosol 1 and 6 h after LPS instillation. In this study, we clearly demonstrated that ADM reduced lung damage and airway infiltration induced by LPS instillation. At the same time, ADM counteracted the increase in MC number and the expression of specific markers of MC activation, i.e., chymase and tryptase. Moreover, ADM reduced oxidative stress by upregulating antioxidant enzymes as well as modulating the Nf-kB pathway and the resulting pro-inflammatory cytokine release. These results suggest that ADM could be a potential candidate in the management of ALI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Ramona D’amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Rosalia Crupi
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Stefano Coaccioli
- General Medical Clinic and Medical Therapy, Rheumatology and Medical Therapy of the Pain, University of Perugia, “Polo di Terni”, “AO Santa Maria” of Terni, 06129 Perugia, Italy
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5208
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| |
Collapse
|
3
|
Scuderi SA, Casili G, Lanza M, Ardizzone A, Pantaleo L, Campolo M, Paterniti I, Cucinotta L, Cuzzocrea S, Esposito E. Efficacy of a Product Containing Xyloglucan and Pea Protein on Intestinal Barrier Function in a Partial Restraint Stress Animal Model. Int J Mol Sci 2022; 23:ijms23042269. [PMID: 35216383 PMCID: PMC8875977 DOI: 10.3390/ijms23042269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Functional abdominal bloating and distension (FABD) are common and frequent symptoms in patients with pre-existing gastrointestinal (GI) disorders. FABD is characterized by recurrent abdominal fullness and bloating. The pathophysiology of FABD is still unclear. However, the plausible mechanisms involved are small intestinal bacterial overgrowth (SIBO), imbalance of gut microbiota, visceral hypersensitivity, intestinal permeability alteration, and disruption of intestinal barrier function. Thus, the creation of a barrier on the wall of the intestine could represent an alternative therapeutic strategy to prevent FABD. This study aimed to investigate the effect of two natural substances, Xyloglucan (XG) and Pea-protein (PP), known for their mucosal-protective properties, in an in vivo model of Partial restraint-stress (PRS). Our results showed that the pre-treatment with a product containing XG and PP in stressed-rats was able to reduce the number of abdominal contractions and visceral hypersensitivity. Moreover, XG and PP were able to reduce intestinal permeability alteration, restoring tight-junctions (TJs) expression and decreased the lactulose–mannitol ratio, a quantitative marker used to measure intestinal permeability, compared to PRS-group. In conclusion, the data obtained revealed that the product containing XG and PP was able to restore the normal intestinal-barrier function; therefore, it could be considered a therapeutic strategy to manage FABD.
Collapse
|
4
|
Scuderi SA, Casili G, Filippone A, Lanza M, Basilotta R, Giuffrida R, Munaò S, Colarossi L, Capra AP, Esposito E, Paterniti I. Beneficial effect of KYP-2047, a propyl-oligopeptidase inhibitor, on oral squamous cell carcinoma. Oncotarget 2021; 12:2459-2473. [PMID: 34917264 PMCID: PMC8664393 DOI: 10.18632/oncotarget.28147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022] Open
Abstract
Oral squamous cell-carcinoma (OSCC) is a common cancer which arises from the alveolar ridge, buccal mucosa, and tongue. Among OSCC, the incidence of tongue squamous cell-carcinoma (TSCC) is growing all over the world. Oral carcinogenesis has been linked to genetic mutations, chromosomal aberrations and viral factors. Apoptosis and angiogenesis play a key role in the development of oral cancer. Therefore, it is very important discover new therapeutic strategies to counteract oral cancer progression. This study aimed to investigate the effect of KYP-2047 in an in vitro model of TSCC and in vivo CAL27-xenograft model. Our results demonstrated that KYP-2047 was able to reduce TSCCs cell viability at the concentrations of 50 μM and 100 μM. Additionally, KYP-2047 was able to increase Bax, Bad and caspase-3 expression, whereas Bcl-2 and p53 expression were reduced. Moreover, KYP-2047 significantly reduced vascular-endothelial-growth-factor (VEGF) and endothelial-nitric-oxide-synthase (eNOS) expression. In the vivo xenograft model, KYP-2047 at doses of 1 and 5 mg/kg significantly reduced tumor burden and tumor weight, decreasing also angiogenesis markers VEGF and eNOS. Moreover, KYP-2047 increased Bax and reduced Bcl2 expressions. Thus, KYP-2047 could represent a potential therapeutic treatment to counteract tongue oral-cancer growth, thanks its abilities to modulate angiogenesis and apoptosis pathways.
Collapse
Affiliation(s)
- Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
- These authors contributed equally to this work
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | | | - Stefania Munaò
- Istituto Oncologico del Mediterraneo, Viagrande 95029, CT, Italy
| | | | - Anna Paola Capra
- Department of Clinical and Experimental Medicine, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’ Alcontres, Messina 31-98166, ME, Italy
| |
Collapse
|
5
|
Casili G, Ardizzone A, Basilotta R, Lanza M, Filippone A, Paterniti I, Esposito E, Campolo M. The Protective Role of Prolyl Oligopeptidase (POP) Inhibition in Kidney Injury Induced by Renal Ischemia-Reperfusion. Int J Mol Sci 2021; 22:11886. [PMID: 34769337 PMCID: PMC8584363 DOI: 10.3390/ijms222111886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 12/18/2022] Open
Abstract
Ischemia/reperfusion injury (IRI) is a complex pathophysiological process characterized by blood circulation disorder caused by various factors, such as traumatic shock, surgery, organ transplantation, and thrombus. Severe metabolic dysregulation and tissue structure destruction are observed upon restoration of blood flow to the ischemic tissue. The kidney is a highly perfused organ, sensitive to ischemia and reperfusion injury, and the incidence of renal IRI has high morbidity and mortality. Several studies showed that infiltration of inflammatory cells, apoptosis, and angiogenesis are important mechanisms involved in renal IRI. Despite advances in research, effective therapies for renal IRI are lacking. Recently it has been demonstrated the role of KYP2047, a selective inhibitor of prolyl oligopeptidase (POP), in the regulation of inflammation, apoptosis, and angiogenesis. Thus, this research focused on the role of POP in kidney ischemia/reperfusion (KI/R). An in vivo model of KI/R was performed and mice were subjected to KYP2047 treatment (intraperitoneal, 0.5, 1 and 5 mg/kg). Histological analysis, Masson's trichrome and periodic acid shift (PAS) staining, immunohistochemical and Western blots analysis, real-time PCR (RT-PCR) and ELISA were performed on kidney samples. Moreover, serum creatinine and blood urea nitrogen (BUN) were quantified. POP-inhibition by KYP2047 treatment, only at the doses of 1 and 5 mg/kg, significantly reduced renal injury and collagen amount, regulated inflammation through canonical and non-canonical NF-κB pathway, and restored renal function. Moreover, KYP2047 modulated angiogenesis markers, such as TGF-β and VEGF, also slowing down apoptosis. Interestingly, treatment with KYP2047 modulated PP2A activity. Thus, these findings clarified the role of POP inhibition in AKI, also offering novel therapeutic target for renal injury after KI/R.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres, 31-98166 Messina, Italy; (G.C.); (A.A.); (R.B.); (M.L.); (A.F.); (I.P.); (M.C.)
| | | |
Collapse
|
6
|
Filippone A, Casili G, Ardizzone A, Lanza M, Mannino D, Paterniti I, Esposito E, Campolo M. Inhibition of Prolyl Oligopeptidase Prevents Consequences of Reperfusion following Intestinal Ischemia. Biomedicines 2021; 9:biomedicines9101354. [PMID: 34680471 PMCID: PMC8533609 DOI: 10.3390/biomedicines9101354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/15/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Intestinal ischemia/reperfusion injury (IRI) remains a clinical event that contributes to high morbidity and mortality rates. Intestinal epithelium is exposed to histological and vascular changes following tissue ischemia. Prolyl endopeptidase (PREP), involved in inflammatory responses, could be targeted for recovery from the permanent consequences following intestinal ischemia. Our aim was to investigate the role of PREP inhibitor KYP-2047 in tissue damage, angiogenesis, and endothelial barrier permeability after intestinal IRI in mice. METHODS KYP-2047 treatments were performed 5 min prior to intestinal damage. Intestinal IRI was induced in mice by clamping the superior mesenteric artery and the celiac trunk for 30 min, followed by 1 h of reperfusion. RESULTS PREP inhibition by KYP-2047 treatment reduced intestinal IR-induced histological damage and neutrophil accumulation, limiting inflammation through decrease of NF-ĸB nuclear translocation and fibrotic processes. KYP-2047 treatment restored barrier permeability and structural alteration following intestinal IRI, attenuating neovascular processes compromised by ischemia/reperfusion. Additionally, loss of epithelial cells during intestinal ischemia occurring by apoptosis was limited by KYP-2047 treatment, which showed strong effects counteracting apoptosis and DNA damage. CONCLUSIONS These findings provide the first evidence that PREP inhibition through KYP-2047 inhibitor use could be a validate strategy for resolving alterations of intestinal epithelium the pathophysiology of intestinal disease.
Collapse
|
7
|
Casili G, Scuderi SA, Lanza M, Filippone A, Basilotta R, Mannino D, Campolo M, Esposito E, Paterniti I. The protective role of prolyl oligopeptidase (POP) inhibition in acute lung injury induced by intestinal ischemia-reperfusion. Oncotarget 2021; 12:1663-1676. [PMID: 34434495 PMCID: PMC8378771 DOI: 10.18632/oncotarget.28041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 07/27/2021] [Indexed: 12/15/2022] Open
Abstract
Intestinal ischemia-reperfusion (II/R) develops when the blood flow to the intestines decreases, followed by the reestablishment of the blood supply to the ischemic tissue, resulting in intestinal mucosal barrier dysfunction, with consequent severe local and systemic inflammation. Acute lung injury (ALI) represents the most serious complication after II/R. KYP-2047 is a selective inhibitor of prolyl oligopeptidase (POP), a serine protease involved in the release of pro-angiogenic and inflammatory molecules. The aim of the present study is to assess the effects of POP-inhibition mediated by KYP-2047 treatment in the pathophysiology of ALI following II/R. An in vivo model of II/R was performed and mice were subjected to KYP-2047 treatment (intraperitoneal, 1, 2.5 and 5 mg/kg). Histological analysis, Masson’s trichrome staining, immunohistochemical, immunofluorescence, biochemical and western blots analysis were performed on ileum and lung samples. KYP-2047 treatment ameliorated histological alteration in ileum and lung, reduced collagen amount and lowered inflammatory protein levels. Moreover, TGF-β1, eNOS, VEGF and CD34 positive staining has been modulated; also, a reduction in apoptosis expression was confirmed. This research revealed the strong anti-inflammatory potential of KYP-2047 associated to its modulatory role on angiogenesis and apoptosis, suggesting POP as a novel therapeutic target for ALI after II/R.
Collapse
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rossella Basilotta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Deborah Mannino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
8
|
Hidrox ® and Chronic Cystitis: Biochemical Evaluation of Inflammation, Oxidative Stress, and Pain. Antioxidants (Basel) 2021; 10:antiox10071046. [PMID: 34209690 PMCID: PMC8300770 DOI: 10.3390/antiox10071046] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
Interstitial cystitis/painful bladder syndrome (IC/PBS) is a chronic bladder condition characterized by frequent urination, inflammation, oxidative stress, and pain. The aim of the study was to evaluate the anti-inflammatory and antioxidant effects of an oral administration of Hidrox® (10 mg/kg) in the bladder and spinal cord in a rodent model of IC/BPS. The chronic animal model of cystitis was induced by repeated intraperitoneal injections of cyclophosphamide (CYP) for five consecutive days. Treatment with Hidrox® began on the third day of the CYP injection and continued until the 10th day. CYP administration caused macroscopic and histological bladder changes, inflammatory infiltrates, increased mast cell numbers, oxidative stress, decreased expression of the tight endothelial junction (e.g., zonula occludens-1 (ZO-1) and occludin), and bladder pain. Treatment with Hidrox® was able to improve CYP-induced inflammation and oxidative stress via the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) pathway. It was also able to reduce bladder pain which was aggravated by the activation of neuroinflammation in the central nervous system. In particular, Hidrox® reduced the brain-derived neurotrophic factor (BDNF), as well as the activation of astrocytes and microglia, consequently reducing mechanical allodynia. These results indicate that nutritional consumption of Hidrox® can be considered as a new therapeutic approach for human cystitis, increasing the conceivable potential of a significant improvement in the quality of life associated with a lowering of symptom intensity in patients with IC/BPS.
Collapse
|
9
|
D’Amico R, Siracusa R, Fusco R, Cordaro M, Genovese T, Peritore AF, Gugliandolo E, Crupi R, Impellizzeri D, Cuzzocrea S, Paola RD. Protective effects of Colomast ®, A New Formulation of Adelmidrol and Sodium Hyaluronate, in A Mouse Model of Acute Restraint Stress. Int J Mol Sci 2020; 21:E8136. [PMID: 33143356 PMCID: PMC7662642 DOI: 10.3390/ijms21218136] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Stress is generally defined as a homeostatic disruption from actual or implied threats and alters the homeostatic balance of different body organs, such as gastrointestinal function and the hypothalamic-pituitary-adrenal axis (HPA), inducing the release of glucocorticoid hormones. Stress is also known to be a risk factor for the development of depression and anxiety. However, until today there are no suitable therapies for treating of stress. The aim of this study was to explore the protective effect of Colomast®, a new preparation containing Adelmidrol, an enhancer of physiological of palmitoylethanolamide (PEA), and sodium hyaluronate in an animal model of immobilization stress. Acute restraint stress (ARS) was induced in mice by fixation for 2 h of the four extremities with an adhesive tape and Colomast® (20 mg/kg) was administered by oral gavage 30 min before the immobilization. Colomast® pre-treatment was able to decrease histopathological changes in the gastrointestinal tract, cytokines expression, neutrophil infiltration, mast cell activation, oxidative stress, as well as modulate nuclear factor NF-kB and apoptosis pathways after ARS induction. Moreover, Colomast® was able to restore tight junction in both ileum and hippocampus and cortex. Additionally, we demonstrated that Colomast® ameliorated depression and anxiety-related behaviours, and modulate inflammatory and apoptosis pathways also in brain after ARS induction. In conclusion, our results suggest Colomast® to be a potential approach to ARS.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (R.S.); (R.F.); (T.G.); (A.F.P.); (E.G.); (R.D.P.)
| |
Collapse
|
10
|
D’Amico R, Impellizzeri D, Cuzzocrea S, Di Paola R. ALIAmides Update: Palmitoylethanolamide and Its Formulations on Management of Peripheral Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21155330. [PMID: 32727084 PMCID: PMC7432736 DOI: 10.3390/ijms21155330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
Neuropathic pain results from lesions or diseases of the somatosensory nervous system and it remains largely difficult to treat. Peripheral neuropathic pain originates from injury to the peripheral nervous system (PNS) and manifests as a series of symptoms and complications, including allodynia and hyperalgesia. The aim of this review is to discuss a novel approach on neuropathic pain management, which is based on the knowledge of processes that underlie the development of peripheral neuropathic pain; in particular highlights the role of glia and mast cells in pain and neuroinflammation. ALIAmides (autacoid local injury antagonist amides) represent a group of endogenous bioactive lipids, including palmitoylethanolamide (PEA), which play a central role in numerous biological processes, including pain, inflammation, and lipid metabolism. These compounds are emerging thanks to their anti-inflammatory and anti-hyperalgesic effects, due to the down-regulation of activation of mast cells. Collectively, preclinical and clinical studies support the idea that ALIAmides merit further consideration as therapeutic approach for controlling inflammatory responses, pain, and related peripheral neuropathic pain.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, 1402 South Grand Blvd, St Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-90-6765208
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (R.D.); (D.I.); (R.D.P.)
| |
Collapse
|