1
|
Li J, Li B. EBNA-1 antibody and autoimmune rheumatic diseases: A Mendelian Randomization Study. Heliyon 2024; 10:e37045. [PMID: 39286141 PMCID: PMC11402932 DOI: 10.1016/j.heliyon.2024.e37045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
Background Numerous studies have investigated a possible correlation between Epstein-Barr virus (EBV) and autoimmune rheumatic diseases (ARDs). However, establishing a cause-and-effect relationship remains a challenging endeavor. This study employs Mendelian randomization to examine the impact of EBV nuclear antigen-1 antibody (EBNA-1) antibody levels on the susceptibility to nine distinct ARDs, including rheumatoid arthritis (RA), primary Sjogren's syndrome (PSS), systemic lupus erythematosus (SLE), undifferentiated reactive arthritis (UA), systemic sclerosis (SSc), adult-onset Still's disease (AOSD), psoriatic arthritis (PsA), dermatomyositis (DM), and ankylosing spondylitis (AS). Methods The researchers applied a two-sample Mendelian randomization approach, utilizing online data from separate cohorts of European descent. We drew upon data from GWAS related to EBNA-1 antibody levels and the nine autoimmune-related disorders. Our primary analyses predominantly relied on the Inverse Variance Weighted methodology, complemented by a range of sensitivity assessments. Results Our analysis revealed significant direct associations between EBNA-1 antibody levels and the risk of developing PSS (95 % CI: 0.44 to 0.85, p = 0.003), PsA (95 % CI: 0.36 to 0.99, p = 0.044), AS (95 % CI: 0.07 to 0.88, p = 0.031), and UA (95 % CI: 0.56 to 0.96, p = 0.025). These results remained consistent through comprehensive sensitivity analyses. However, no clear associations were found for the other specified conditions. Conclusions Our findings provide compelling evidence that EBNA-1 antibody levels play a role in developing ARDs. These findings enhance our understanding of ARD pathogenesis and hold substantial promise for developing potential treatment strategies.
Collapse
Affiliation(s)
- Jinjiao Li
- Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Bao Li
- Qilu Medical University, Zibo, 255000, Shandong Province, China
| |
Collapse
|
2
|
Chen G, Zhang L, Wang R, Xie Z. Histone methylation in Epstein-Barr virus-associated diseases. Epigenomics 2024; 16:865-877. [PMID: 38869454 PMCID: PMC11370928 DOI: 10.1080/17501911.2024.2345040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
Epstein-Barr virus (EBV) infection is linked to various human diseases, including both noncancerous conditions like infectious mononucleosis and cancerous diseases such as lymphoma and nasopharyngeal carcinoma. After the initial infection, EBV establishes a lifelong presence and remains latent in specific cells. This latent infection causes changes in the epigenetic marks known as histone methylation. Many studies have examined the role of histone methylation in different EBV-associated diseases, and understanding how EBV affects histone methylation can help us identify potential targets for epigenetic therapies. This review focuses on the research progress made in understanding histone methylation in well-studied EBV-associated diseases, intending to provide insights into potential strategies based on histone methylation to combat EBV-related ailments.
Collapse
Affiliation(s)
- Guanglian Chen
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, 100045, China
| |
Collapse
|
3
|
Borghol AH, Bitar ER, Hanna A, Naim G, Rahal EA. The role of Epstein-Barr virus in autoimmune and autoinflammatory diseases. Crit Rev Microbiol 2024:1-21. [PMID: 38634723 DOI: 10.1080/1040841x.2024.2344114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Epstein-Barr Virus (EBV), a dsDNA herpesvirus, is believed to play a significant role in exacerbating and potentially triggering autoimmune and autoinflammatory maladies. Around 90% of the world is infected with the virus, which establishes latency within lymphocytes. EBV is also known to cause infectious mononucleosis, a self-limited flu-like illness, in adolescents. EBV is often reactivated and it employs several mechanisms of evading the host immune system. It has also been implicated in inducing host immune dysfunction potentially resulting in exacerbation or triggering of inflammatory processes. EBV has therefore been linked to a number of autoimmune diseases, including systemic lupus erythematosus, multiple sclerosis, rheumatoid arthritis, and Sjögren's syndrome. The review examines the molecular mechanisms through which the virus alters host immune system components thus possibly resulting in autoimmune processes. Understanding the mechanisms underpinning EBV-associated autoimmunity is pivotal; however, the precise causal pathways remain elusive. Research on therapeutic agents and vaccines for EBV has been stagnant for a long number of years until recent advances shed light on potential therapeutic targets. The implications of EBV in autoimmunity underscore the importance of developing targeted therapeutic strategies and, potentially, vaccines to mitigate the autoimmune burden associated with this ubiquitous virus.
Collapse
Affiliation(s)
- Abdul Hamid Borghol
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elio R Bitar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Aya Hanna
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Georges Naim
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| | - Elias A Rahal
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Center for Infectious Diseases Research (CIDR), American University of Beirut, Beirut, Lebanon
| |
Collapse
|
4
|
Viel KCMF, Parameswaran S, Donmez OA, Forney CR, Hass MR, Yin C, Jones SH, Prosser HK, Diouf AA, Gittens OE, Edsall LE, Chen X, Rowden H, Dunn KA, Guo R, VonHandorf A, Leong MML, Ernst K, Kaufman KM, Lawson LP, Gewurz B, Zhao B, Kottyan LC, Weirauch MT. Shared and distinct interactions of type 1 and type 2 Epstein-Barr Nuclear Antigen 2 with the human genome. BMC Genomics 2024; 25:273. [PMID: 38475709 PMCID: PMC10935964 DOI: 10.1186/s12864-024-10183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND There are two major genetic types of Epstein-Barr Virus (EBV): type 1 (EBV-1) and type 2 (EBV-2). EBV functions by manipulating gene expression in host B cells, using virus-encoded gene regulatory proteins including Epstein-Barr Nuclear Antigen 2 (EBNA2). While type 1 EBNA2 is known to interact with human transcription factors (hTFs) such as RBPJ, EBF1, and SPI1 (PU.1), type 2 EBNA2 shares only ~ 50% amino acid identity with type 1 and thus may have distinct binding partners, human genome binding locations, and functions. RESULTS In this study, we examined genome-wide EBNA2 binding in EBV-1 and EBV-2 transformed human B cells to identify shared and unique EBNA2 interactions with the human genome, revealing thousands of type-specific EBNA2 ChIP-seq peaks. Computational predictions based on hTF motifs and subsequent ChIP-seq experiments revealed that both type 1 and 2 EBNA2 co-occupy the genome with SPI1 and AP-1 (BATF and JUNB) hTFs. However, type 1 EBNA2 showed preferential co-occupancy with EBF1, and type 2 EBNA2 preferred RBPJ. These differences in hTF co-occupancy revealed possible mechanisms underlying type-specific gene expression of known EBNA2 human target genes: MYC (shared), CXCR7 (type 1 specific), and CD21 (type 2 specific). Both type 1 and 2 EBNA2 binding events were enriched at systemic lupus erythematosus (SLE) and multiple sclerosis (MS) risk loci, while primary biliary cholangitis (PBC) risk loci were specifically enriched for type 2 peaks. CONCLUSIONS This study reveals extensive type-specific EBNA2 interactions with the human genome, possible differences in EBNA2 interaction partners, and a possible new role for type 2 EBNA2 in autoimmune disorders. Our results highlight the importance of considering EBV type in the control of human gene expression and disease-related investigations.
Collapse
Affiliation(s)
- Kenyatta C M F Viel
- Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Omer A Donmez
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Carmy R Forney
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Matthew R Hass
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cailing Yin
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Sydney H Jones
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hayley K Prosser
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Arame A Diouf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Olivia E Gittens
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lee E Edsall
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Hope Rowden
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Katelyn A Dunn
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Rui Guo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA, 02111, USA
| | - Andrew VonHandorf
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Kevin Ernst
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kenneth M Kaufman
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ben Gewurz
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bo Zhao
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
| |
Collapse
|
5
|
Gutiérrez-Guerrero A, Espinosa-Padilla SE, Lugo-Reyes SO. [Anything that can go wrong: cytotoxic cells and their control of Epstein-Barr virus]. REVISTA ALERGIA MÉXICO 2024; 71:29-39. [PMID: 38683066 DOI: 10.29262/ram.v71i1.1276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/31/2023] [Indexed: 05/01/2024] Open
Abstract
Epstein-Barr virus (EBV) is an gamma of herpes virus affecting exclusively humans, was the first oncogenic virus described and is associated with over seven different cancers. Curiously, the exchange of genes during viral infections has enabled the evolution of other cellular organisms, favoring new functions and the survival of the host. EBV has been co-evolving with mammals for hundreds of millions of years, and more than 95% of adults have been infected in one moment of their life. The infection is acquired primarily during childhood, in most cases as an asymptomatic infection. However, during adolescence or young adulthood, around 10 to 30% develop infectious mononucleosis. The NK and CD8+ T cells are the cytotoxic cells of the immune system that focus on antiviral responses. Importantly, an essential role of NK and CD8+ T cells has been demonstrated during the control and elimination of EBV-infected cells. Nonetheless, when the cytotoxic function of these cells is compromised, the infection increases the risk of developing lymphoproliferative diseases and cancer, often fatal. In this review, we delineate EBV infection and the importance of cytotoxic responses by NK and CD8+ T cells during the control and elimination of EBV-infected cells. Furthermore, we briefly discuss the main inborn errors of immunity that compromise cytotoxic responses by NK and CD8+ T cells, and how this scenario affects the antiviral response during EBV infection. Finally, we conclude the review by underlying the need for an effective EBV vaccine capable of preventing infection and the consequent development of malignancies and autoimmune diseases.
Collapse
Affiliation(s)
- Arturo Gutiérrez-Guerrero
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Sara Elva Espinosa-Padilla
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| | - Saúl Oswaldo Lugo-Reyes
- Laboratorio de Inmunodeficiencias, Instituto Nacional de Pediatría, Secretaría de Salud, Ciudad de México
| |
Collapse
|
6
|
Suliman BA. Potential clinical implications of molecular mimicry-induced autoimmunity. Immun Inflamm Dis 2024; 12:e1178. [PMID: 38415936 PMCID: PMC10832321 DOI: 10.1002/iid3.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Molecular mimicry is hypothesized to be a mechanism by which autoimmune diseases are triggered. It refers to sequence or structural homology between foreign antigens and self-antigens, which can activate cross-reactive lymphocytes that attack host tissues. Elucidating the role of molecular mimicry in human autoimmunity could have important clinical implications. OBJECTIVE To review evidence for the role of molecular mimicry in major autoimmune diseases and discuss potential clinical implications. METHODS Comprehensive literature review of clinical trials, observational studies, animal models, and immunology studies on molecular mimicry in multiple sclerosis, type 1 diabetes, rheumatoid arthritis, lupus, Guillain-Barre syndrome, autoimmune myocarditis, and primary biliary cirrhosis published from 2000-2023. RESULTS Substantial indirect evidence supports molecular mimicry as a contributor to loss of self-tolerance in several autoimmune conditions. Proposed microbial triggers include Epstein-Barr virus, coxsackievirus, Campylobacter jejuni, and bacterial commensals. Key mechanisms involve cross-reactive T cells and autoantibodies induced by epitope homology between microbial and self-antigens. Perpetuation of autoimmunity involves epitope spreading, inflammatory mediators, and genetic factors. CONCLUSIONS Molecular mimicry plausibly explains initial stages of autoimmune pathogenesis induced by infection or microbiota disturbances. Understanding mimicry antigens and pathways could enable improved prediction, monitoring, and antigen-specific immunotherapy for autoimmune disorders. However, definitive proof of causation in humans remains limited. Further research should focus on establishing clinical evidence and utility.
Collapse
Affiliation(s)
- Bandar A Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityMadinahSaudi Arabia
| |
Collapse
|
7
|
Uribe FR, González VPI, Kalergis AM, Soto JA, Bohmwald K. Understanding the Neurotrophic Virus Mechanisms and Their Potential Effect on Systemic Lupus Erythematosus Development. Brain Sci 2024; 14:59. [PMID: 38248274 PMCID: PMC10813552 DOI: 10.3390/brainsci14010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/24/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Central nervous system (CNS) pathologies are a public health concern, with viral infections one of their principal causes. These viruses are known as neurotropic pathogens, characterized by their ability to infiltrate the CNS and thus interact with various cell populations, inducing several diseases. The immune response elicited by neurotropic viruses in the CNS is commanded mainly by microglia, which, together with other local cells, can secrete inflammatory cytokines to fight the infection. The most relevant neurotropic viruses are adenovirus (AdV), cytomegalovirus (CMV), enterovirus (EV), Epstein-Barr Virus (EBV), herpes simplex virus type 1 (HSV-1), and herpes simplex virus type 2 (HSV-2), lymphocytic choriomeningitis virus (LCMV), and the newly discovered SARS-CoV-2. Several studies have associated a viral infection with systemic lupus erythematosus (SLE) and neuropsychiatric lupus (NPSLE) manifestations. This article will review the knowledge about viral infections, CNS pathologies, and the immune response against them. Also, it allows us to understand the relevance of the different viral proteins in developing neuronal pathologies, SLE and NPSLE.
Collapse
Affiliation(s)
- Felipe R. Uribe
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Valentina P. I. González
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8330025, Chile;
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Jorge A. Soto
- Millennium Institute on Immunology and Immunotherapy, Laboratorio de Inmunología Traslacional, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370146, Chile; (F.R.U.); (V.P.I.G.)
| | - Karen Bohmwald
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma, Santiago 8910060, Chile
| |
Collapse
|
8
|
Munir A, Khan S, Khan S, Attaullah S, Munir M, Saleem A, Ali I. Frequency and association of Epstein-Barr Virus genotype in rheumatoid arthritis patients of Khyber Pakhtunkhwa, Pakistan. PLoS One 2023; 18:e0295124. [PMID: 38117833 PMCID: PMC10732363 DOI: 10.1371/journal.pone.0295124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an immune-mediated, polyarthritis linked with various genetic and environmental causative agents. Among environmental triggers, Epstein-Barr Virus (EBV) is considered the most potent etiological agent. OBJECTIVE This study aimed to investigate the prevalence of EBV and its genotypes in RA patients and to investigate their association with clinical and laboratory parameters of RA. METHODOLOGY This study included blood samples of RA and control healthy individuals (100 each). Blood samples along with clinical and laboratory parameters were collected from patients after consent in the Department of Rheumatology, at Lady Reading Hospital, in Peshawar Pakistan. Blood samples were processed for DNA extraction followed by PCR amplification for EBV detection and genotype discrimination. RESULTS RA patients were 85 females and 15 males with a mean age of 40.13±14.05 years. EBV Type-1 was detected in 45% of RA and 9% of control cases. The mean disease duration of RA patients was 6.61±6.23 years. Out of 100 diseased patients, 43% were seropositive rheumatoid arthritis (SPRA) and showed a significant correlation with a family history of RA in EBV-positive individuals (P = 0.017). The demographic, clinical, and laboratory parameters of RA patients showed a non-significant association with EBV. Moreover, only a family history and Serum creatinine of RA patients showed a significant association with EBV (P = 0.0001 and P = 0.022 respectively). CONCLUSION It is concluded that EBV-1 is prevalent and associated with RA. Further investigation is required for detailed genetic analysis of EBV to determine its possible role in modulating the immune system in RA.
Collapse
Affiliation(s)
- Ayesha Munir
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Suleman Khan
- Department of Rheumatology, Lady Reading Hospital, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sobia Attaullah
- Islamia College (University) Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Mehwish Munir
- Abdul Wali Khan University Mardan, Mardan, Khyber Pakhtunkhwa, Pakistan
| | - Aisha Saleem
- Department of Zoology, University of Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
- CAMB, College of Arts and Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| |
Collapse
|
9
|
Banko A, Cirkovic A, Miskovic R, Jeremic I, Grk M, Basaric M, Lazarevic I, Raskovic S, Despotovic A, Miljanovic D. Epstein-Barr virus infection as potential indicator of the occurrence and clinical presentation of systemic lupus erythematosus. Front Immunol 2023; 14:1307589. [PMID: 38146370 PMCID: PMC10749334 DOI: 10.3389/fimmu.2023.1307589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/27/2023] Open
Abstract
Introduction The relationship between Systemic lupus erythematosus (SLE) and Epstein-Barr virus (EBV) infection has been suggested for decades, but the underlying mechanism of the EBV influence on SLE development remains to be elucidated. Methods The goals of this research, which included 103 SLE patients and 99 controls, were to investigate the association of the parameters of EBV infection and SLE, to explore whether pooled demographic, clinical and EBV markers achieve a more significant effect on SLE development than each of them individually, and to evaluate EBV nuclear antigen 1 (EBNA1) and latent membrane protein 1 (LMP1) gene polymorphisms in isolates from SLE patients. Results Comprehensive results related to serological, molecular and sequence markers of EBV infection in SLE patients demonstrated even 24 times higher possibility of having SLE if there is the presence of anti-EBV-EA(D) (early antigen) IgG antibodies (OR=24.086 95%CI OR=2.86-216.07, p=0.004). There was the same distribution of glucocorticoids (p=0.130), antimalarials (p=0.213), and immunosuppressives (p=0.712) in anti-EBV-EA(D) IgG positive and negative SLE patients. Further, higher anti-EBV-EA(D) IgG antibodies titers were identified as independent factors associated with lymphopenia, hematological SLE manifestation (OR=1.041, 95%CI OR=1.01-1.08, p=0.025, while a higher titer of anti-CA (viral capsid antigen) IgG antibodies (OR=1.015, 95%CI OR=1.01-1.03, p=0.019) and positive RF (rheumatoid factors) (OR=4.871, 95%CI OR=1.52-15.61, p=0.008) were identified as independent factors associated with alopecia within SLE. Finally, novel data on EBV EBNA1 and LMP1 gene polymorphisms in lupus are reported. Conclusion The results support further investigation targeting EBV as a prognostic marker and therapeutic goal for lupus.
Collapse
Affiliation(s)
- Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivica Jeremic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milica Basaric
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanvila Raskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksa Despotovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Banko A, Cirkovic A, Jeremic I, Basaric M, Grk M, Miskovic R, Lazarevic I, Miljanovic D. Uncovering the Role of Epstein-Barr Virus Infection Markers for Remission in Rheumatoid Arthritis. Biomedicines 2023; 11:2375. [PMID: 37760816 PMCID: PMC10525384 DOI: 10.3390/biomedicines11092375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
Epstein-Barr virus (EBV) infection has been shown as a potential risk factor for the development of rheumatoid arthritis (RA). This prospective research aimed to investigate whether EBV infection markers changed during the six-month follow-up period in 133 RA patients (80 newly diagnosed on methotrexate (MTX)-RA-A, and 53 on biologic therapy-RA-B) and whether it was related to a disease outcome. Reduction of disease activity and inflammation was obtained. A significant decline in seroprevalence and titer for anti-VCA-IgM (p = 0.022 and p = 0.026) and anti-EA(D)-IgM (p = 0.022 and p = 0.006) in RA-A, and in seroprevalence and titer of anti-EA(D)-IgG in the RA-B subgroup (p = 0.021 and p = 0.006) were detected after the follow-up. A lower titer of anti-EBNA1-IgG could be considered a significant marker of RA remission in all RA patients regardless of age and gender (OR = 0.99, 95% CI OR = 0.98-0.99, p = 0.038), and also in RA-B patients separately (OR = 0.988, 95% CI OR = 0.98-0.99, p = 0.041). This study supported the basic hypothesis that the immune response to EBV infection is involved in the RA pathogenesis, at the beginning of the disease or during the RA evolution. Moreover, the potential influence of MTX or TNF-alpha inhibitors on the impairment of the host to control EBV infection was indirectly refuted.
Collapse
Affiliation(s)
- Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.L.); (D.M.)
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Ivica Jeremic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.J.); (R.M.)
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milica Basaric
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Rada Miskovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.J.); (R.M.)
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.L.); (D.M.)
| | - Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.L.); (D.M.)
| |
Collapse
|
11
|
Miljanovic D, Cirkovic A, Jermic I, Basaric M, Lazarevic I, Grk M, Miskovic R, Despotovic A, Banko A. Markers of Epstein-Barr Virus Infection in Association with the Onset and Poor Control of Rheumatoid Arthritis: A Prospective Cohort Study. Microorganisms 2023; 11:1958. [PMID: 37630516 PMCID: PMC10459700 DOI: 10.3390/microorganisms11081958] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Although the connection between Epstein-Barr virus (EBV) and rheumatoid arthritis (RA) has been studied for over 40 years, many questions still need clarification. The study aimed to analyze the possible association between anti-EBV antibody titers, EBV DNA viremia, EBV infection status and EBNA1 (Epstein-Barr nuclear antigen 1-EBNA1) variants and clinical parameters of RA patients. This prospective cohort study included 133 RA patients and 50 healthy controls. Active/recent EBV infection was more prevalent in RA patients than in controls (42% vs. 16%, p < 0.001). RA patients had higher titers of anti-EBV-CA-IgM (capsid antigen-CA) and anti-EBV-EA(D)-IgG (early antigen-EA) antibodies than controls (p = 0.003 and p = 0.023, respectively). Lower levels of anti-EBNA1-IgG and anti-EBV-CA-IgG were observed in RA patients who received methotrexate (anti-EBNA1 IgG p < 0.001; anti-EBV-CA IgG p < 0.001). Based on amino acid residue on position 487, two EBNA1 prototypes were detected: P-Thr and P-Ala. Patients with active/recent EBV infection had a five times more chance of having RA and a nearly six times more chance of getting RA. Also, EBV active/recent infection is twice more likely in newly diagnosed than in methotrexate-treated patients. Further studies are needed to clarify "who is the chicken and who is the egg" in this EBV-RA relationship.
Collapse
Affiliation(s)
- Danijela Miljanovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.L.); (A.B.)
| | - Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.D.)
| | - Ivica Jermic
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.J.); (M.B.)
| | - Milica Basaric
- Institute of Rheumatology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.J.); (M.B.)
| | - Ivana Lazarevic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.L.); (A.B.)
| | - Milka Grk
- Institute of Human Genetics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Rada Miskovic
- Clinic of Allergy and Immunology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Aleksa Despotovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (A.C.); (A.D.)
| | - Ana Banko
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (I.L.); (A.B.)
| |
Collapse
|
12
|
Chen C, Zhang Y, Yao X, Li S, Wang G, Huang Y, Yang Y, Zhang A, Liu C, Zhu D, Li H, Yan Q, Ma W. Characterizations of the Gut Bacteriome, Mycobiome, and Virome in Patients with Osteoarthritis. Microbiol Spectr 2023; 11:e0171122. [PMID: 36515546 PMCID: PMC9927108 DOI: 10.1128/spectrum.01711-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/13/2022] [Indexed: 12/15/2022] Open
Abstract
The gut microbiota plays an essential role in the regulation of the immune system and the etiology of human autoimmune diseases. However, a holistic understanding of the gut bacteriome, mycobiome, and virome in patients with osteoarthritis (OA) remains lacking. Here, we explored the gut microbiotas of 44 OA patients and 46 healthy volunteers via deep whole-metagenome shotgun sequencing of their fecal samples. The gut bacteriome and mycobiome were analyzed using a reference-based strategy. Gut viruses were identified from the metagenomic assembled contigs, and the gut virome was profiled based on 6,567 nonredundant viral operational taxonomic units (vOTUs). We revealed that the gut microbiome (including bacteriome, mycobiome, and virome) of OA patients is fundamentally altered, characterized by a panel of 279 differentially abundant bacterial species, 10 fungal species, and 627 vOTUs. The representative OA-enriched bacteria included Anaerostipes hadrus (GENOME147149), Prevotella sp900313215 (GENOME08259), Eubacterium_E hallii (GENOME000299), and Blautia A (GENOME001004), while Bacteroides plebeius A (GENOME239725), Roseburia inulinivorans (GENOME 001770), Dialister sp900343095 (GENOME075103), Phascolarctobacterium faecium (GENOME233517), and several members of Faecalibacterium and Prevotella were depleted in OA patients. Fungi such as Debaryomyces fabryi (GenBank accession no. GCA_003708665), Candida parapsilosis (GCA_000182765), and Apophysomyces trapeziformis (GCA_000696975) were enriched in the OA gut microbiota, and Malassezia restricta (GCA_003290485), Aspergillus fumigatus (GCA_003069565), and Mucor circinelloides (GCA_010203745) were depleted. The OA-depleted viruses spanned Siphoviridae (95 vOTUs), Myoviridae (70 vOTUs), and Microviridae (5 vOTUs), while 30 Siphoviridae vOTUs were enriched in OA patients. Functional analysis of the gut bacteriome and virome also uncovered their functional signatures in relation to OA. Moreover, we demonstrated that the OA-associated gut bacterial and viral signatures are tightly interconnected, suggesting that they may impact disease together. Finally, we showed that the multikingdom signatures are effective in discriminating the OA patients from healthy controls, suggesting the potential of gut microbiota for the prediction of OA and related diseases. Our results delineated the fecal bacteriome, mycobiome, and virome landscapes of the OA microbiota and provided biomarkers that will aid in future mechanistic and clinical intervention studies. IMPORTANCE The gut microbiome of OA patients was completely altered compared to that in healthy individuals, including 279 differentially abundant bacterial species, 10 fungal species and 627 viral operational taxonomic units (vOTUs). Functional analysis of the gut bacteriome and virome also revealed their functional signatures in relation to OA. We found that OA-associated gut bacterial and viral signatures were tightly interconnected, indicating that they may affect the disease together. The OA patients can be discriminated effectively from healthy controls using the multikingdom signatures, suggesting the potential of gut microbiota for the prediction of OA and related diseases.
Collapse
Affiliation(s)
- Changming Chen
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Xueming Yao
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Huang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Yutao Yang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | | | - Can Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dan Zhu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hufan Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Wukai Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
13
|
Wang S, Zhou Y, Huang J, Li H, Pang H, Niu D, Li G, Wang F, Zhou Z, Liu Z. Advances in experimental models of rheumatoid arthritis. Eur J Immunol 2023; 53:e2249962. [PMID: 36330559 DOI: 10.1002/eji.202249962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 10/16/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease characterized by persistent articular inflammation and joint damage. RA was first described over 200 years ago; however, its etiology and pathophysiology remain insufficiently understood. The current treatment of RA is mainly empirical or based on the current understanding of etiology with limited efficacy and/or substantial side effects. Thus, the development of safer and more potent therapeutics, validated and optimized in experimental models, is urgently required. To improve the transition from bench to bedside, researchers must carefully select the appropriate experimental models as well as draw the right conclusions. Here, we summarize the establishment, pathological features, potential mechanisms, advantages, and limitations of the currently available RA models. The aim of the review is to help researchers better understand available RA models; discuss future trends in RA model development, which can help highlight new translational and human-based avenues in RA research.
Collapse
Affiliation(s)
- Siwei Wang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Yanhua Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Jiangrong Huang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huilin Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Huidan Pang
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Dandan Niu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Guangyao Li
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Fei Wang
- Department of Experiment and Training, Hubei College of Chinese Medicine, Hubei Province, China
| | - Zushan Zhou
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China.,Honghu Hospital of Traditional Chinese Medicine, Affiliated Hospital of Yangtze University, Honghu, Hubei Province, China
| | - Zhenzhen Liu
- School of Basic Medicine, Yangtze University, Jingzhou, Hubei Province, China
| |
Collapse
|
14
|
Guo R, Li S, Zhang Y, Zhang Y, Wang G, Ullah H, Ma Y, Yan Q. Dysbiotic Oral and Gut Viromes in Untreated and Treated Rheumatoid Arthritis Patients. Microbiol Spectr 2022; 10:e0034822. [PMID: 36040159 PMCID: PMC9603985 DOI: 10.1128/spectrum.00348-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Rheumatoid arthritis (RA) is influenced by oral and gut bacteria; however, much less is known about the relationship between oral or gut viromes and RA. Here, we performed whole-oral- and whole-gut-virome analyses based on shotgun sequencing of 497 samples. A comparative analysis of the oral and gut viromes in healthy controls and untreated and treated RA patients was performed, and system interaction networks among viruses, bacteria, and RA-associated clinical indices were constructed to address the potential relationship between the virome and RA by principal-coordinate analysis, distance-based redundancy analysis, permutational multivariate analysis, Spearman correlation coefficient analysis, and random-forest model analysis. The results showed that the viromes could be profiled in dental plaque, saliva, and fecal samples, among which saliva had the highest within-sample diversity. Importantly, significantly different diversities and compositions of the oral (i.e., dental plaque and saliva) viromes were observed not only between RA patients and healthy controls but also between untreated and treated RA patients, yet there were relatively minor differences in the gut viromes. Furthermore, to understand how these viruses affected the bacteriome, a virus-bacterium interaction network was constructed from dental plaque, saliva, and fecal samples of RA patients. Additionally, some RA-associated oral taxa, including Lactococcus phage (vOTU70), Bacteroides vulgatus, Lactococcus lactis, Escherichia coli, and Neisseria elongata, were correlated with the RA-related clinical indices. Whole-virome analysis illustrated the potential role of the oral and gut viromes in affecting our body either directly or via bacteria, which characterized neglected and new candidates contributing to the development of RA. IMPORTANCE Our results demonstrated community variation among dental plaque, saliva, and fecal viromes. In oral and gut samples from untreated and treated RA patients, the perturbance of viral composition and the correlation network of microbes and RA-associated clinical indices might be involved in the pathogenicity of RA. The findings in this study expand the knowledge of the potential role of oral and gut viral communities in the development of RA and may contribute to research on correlations between viruses and other diseases.
Collapse
Affiliation(s)
- Ruochun Guo
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Puensum Genetech Institute, Wuhan, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yu Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, China
| | - Guangyang Wang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hayan Ullah
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufang Ma
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
15
|
Etiologies of Rheumatoid Arthritis: Update on Mucosal, Genetic, and Cellular Pathogenesis. Curr Rheumatol Rep 2021; 23:21. [PMID: 33646410 PMCID: PMC7919619 DOI: 10.1007/s11926-021-00993-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Purpose of Review Over the last few years, the scientific community has made significant progress in understanding the etiology of rheumatoid arthritis (RA). In this review, we summarize those key findings and trends. Recent Findings New data strongly implicates respiratory exposures, obesity, diet and microbiome, genetics, and their interactions in the etiology of RA. Furthermore, anti-posttranslationally modified protein antibodies (AMPAs) and abnormal glycosylation may be additional biomarkers for RA. Finally, functional genomics techniques implicate loss of certain macrophage populations and proliferation of synovial fibroblasts in RA. Summary These findings support the notion that RA originates at mucosal sites, augmented by genetic predisposition, and mediated by certain cell types including macrophages and fibroblasts. Weight loss, physical activity, and diet are additional modifiable factors beyond smoking cessation that can reduce risk of RA. Future epidemiologic and translational studies leveraging multi-omics approaches will help map the precise sequence of events in RA pathogenesis.
Collapse
|
16
|
Yang J, Zhang Y, Li WH, Guo BF, Peng QL, Yao WY, Gong DH, Ding WJ. Assessment of the anti-rheumatoid arthritis activity of Gastrodia elata (tian-ma) and Radix aconitic lateralis preparata (fu-zi) via network pharmacology and untargeted metabolomics analyses. Int J Rheum Dis 2021; 24:380-390. [PMID: 33523580 DOI: 10.1111/1756-185x.14063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/21/2020] [Accepted: 12/21/2020] [Indexed: 12/25/2022]
Abstract
AIM Gastrodia elata and Radix aconiti lateralis preparrata are respectively named as Tian-Ma and Fu-Zi (TF) in Chinese. We explored the active components against rheumatoid arthritis (RA) from an extensively used couplet of Chinese herbs, Gastrodia elata and Radix aconiti lateralis preparata (TF) via untargeted metabolomics and network pharmacological approaches. METHODS Water extracts of TF were mixed at ratios 1:1, 3:2 and 2:3 (w/w). Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was then utilized as metabolomics screening. Human Metabolome (http://www.hmdb.ca/) and Lipidmaps (http://www.lipidmaps.org/) databases were used to annotate detected compounds. Further identification of vital genes and important pathways associated with the anti-RA properties of the TF preparations was done via network pharmacology, and verified by real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS Four key compounds involved in unsaturated fatty acid biosynthesis and isoflavonoid biosynthesis were identified through metabolomics analyses. Three key components of TF associated with anti-RA activity were linoleic acid, daidzein, and daidzin. Results of RT-qPCR revealed that all 3 tested TF couplets (1:1, 3:2, and 2:3) markedly suppressed the transcription of PTGS2. These results were consistent with our network pharmacological predictions. CONCLUSIONS The anti-RA properties of Tian-Ma and Fu-Zi are associated with the inhibition of arachidonic acid metabolism pathway.
Collapse
Affiliation(s)
- Jie Yang
- Department of Fundamental Medicine, Bijie Medical College, Bijie, China
| | - Yu Zhang
- Department of Traditional Chinese Medicine, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Wei-Hong Li
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bu-Fa Guo
- Department of Fundamental Medicine, Bijie Medical College, Bijie, China
| | - Qi-Lun Peng
- Department of Fundamental Medicine, Bijie Medical College, Bijie, China
| | - Wei-Yi Yao
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Di-Hong Gong
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei-Jun Ding
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
17
|
Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol 2021; 11:587380. [PMID: 33488588 PMCID: PMC7817975 DOI: 10.3389/fimmu.2020.587380] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein-Barr Virus (EBV) is an extremely successful human herpes virus, which infects essentially all human beings at some time during their life span. EBV infection and the associated immune response results in production of antibodies (seroconversion), which occurs mainly during the first years of life, but may also happen during adolescence or later in life. Infection of adolescents can result in infectious mononucleosis, an acute serious condition characterized by massive lymphocytosis. Transmission of EBV mainly occurs through saliva but can rarely be spread through semen or blood, e.g. through organ transplantations and blood transfusions. EBV transmission through oral secretions results in infection of epithelial cells of the oropharynx. From the epithelial cells EBV can infect B cells, which are the major reservoir for the virus, but other cell types may also become infected. As a result, EBV can shuttle between different cell types, mainly B cells and epithelial cells. Moreover, since the virus can switch between a latent and a lytic life cycle, EBV has the ability to cause chronic relapsing/reactivating infections. Chronic or recurrent EBV infection of epithelial cells has been linked to systemic lupus erythematosus and Sjögren’s syndrome, whereas chronic/recurrent infection of B cells has been associated with rheumatoid arthritis, multiple sclerosis and other diseases. Accordingly, since EBV can shuttle between epithelial cells and B cells, the systemic autoimmune diseases often occur as overlapping syndromes with symptoms and characteristic autoantibodies (e.g. antinuclear antibodies and rheumatoid factors) reflecting epithelial and/or B cell infection.
Collapse
Affiliation(s)
- Gunnar Houen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.,Department of Neurology, Rigshospitalet, Glostrup, Denmark
| | | |
Collapse
|
18
|
Cone AS, York SB, Meckes DG. Extracellular Vesicles in Epstein-Barr Virus Pathogenesis. CURRENT CLINICAL MICROBIOLOGY REPORTS 2019; 6:121-131. [PMID: 32051811 DOI: 10.1007/s40588-019-00123-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Purpose of review Epstein-Barr virus (EBV) is a known determinant for numerous malignancies and may contribute to autoimmune diseases. The underlining mechanisms behind EBV pathologies is not completely understood. Recently, extracellular vesicles (EVs) released from infected cells have been found to produce profound effects on cellular microenvironments. Therefore, in this review we sought to critically evaluate the roles of EVs in EBV pathogenesis and assess their potential therapeutic and diagnostic utility. Recent findings EBV-altered EVs are capable of activating signaling cascades and phenotypic changes in recipient cells through the transfer of viral proteins and RNAs. Moreover, several EV-associated microRNAs have encouraging prognostic or diagnostic potential in EBV-associated cancers. Summary Current evidence suggests that EBV-modified EVs affect viral pathogenesis and cancer progression. However, further research is needed to investigate the direct role of both viral and host products on recipient cells and the mechanisms driving viral protein and RNA EV packaging and content modification.
Collapse
Affiliation(s)
- Allaura S Cone
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - Sara B York
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | - David G Meckes
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| |
Collapse
|