1
|
Wei H, Zhong Z, Li Z, Zhang Y, Stukenbrock EH, Tang B, Yang N, Baroncelli R, Peng L, Liu Z, He X, Yang Y, Yuan Z. Loss of the accessory chromosome converts a pathogenic tree-root fungus into a mutualistic endophyte. PLANT COMMUNICATIONS 2024; 5:100672. [PMID: 37563834 PMCID: PMC10811371 DOI: 10.1016/j.xplc.2023.100672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/01/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a ∼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.
Collapse
Affiliation(s)
- Huanshen Wei
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongfeng Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yuwei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University, 24118 Kiel, Germany; Max Planck Fellow Group Environmental Genomics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany.
| | - Boping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| | - Ningning Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Riccardo Baroncelli
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, 40127 Bologna, Italy
| | - Long Peng
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhuo Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xinghua He
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Yuzhan Yang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhilin Yuan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
2
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Pavlović J, Puškárová A, Planý M, Farkas Z, Rusková M, Kvalová K, Kraková L, Bučková M, Pangallo D. Colored stains: Microbial survey of cellulose-based and lignin rich papers. Int J Biol Macromol 2023; 241:124456. [PMID: 37085082 DOI: 10.1016/j.ijbiomac.2023.124456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
During the centuries diverse types of paper were produced and were characterized by a different ratio of natural macromolecules, mainly lignin and cellulose. Handmade paper has a higher content of cellulose respect to the early machine-made paper, where the lignin is the other important component. Microorganisms are able to colonize and deteriorate both types of papers. They can release on their surfaces pigments and colorants which produced anesthetic stains. The microbiota colonising 17 stains on handmade and machine-made paper surfaces together with that in library and archive environments was analyzed. Combination of microbiological and high-throughput sequencing (HTS) approaches were applied. The culture-dependent methodology comprised: isolation, DNA identification, hydrolytic and paper staining assays. The HTS was performed by MinION platform and for the mycobiome a more suitable bioinformatics analysis pipeline, MetONTIIME based on QIIME2 framework, was applied. The paper model staining assay permitted the direct recognition of colorizing isolates which in combination with sequencing data evidenced a complex microbial community able to stain the two types of paper. Staining abilities were confirmed by frequently isolated and detected fungi and also by new ones such as Roussoella euonymi and Achaetomium. We have also evidenced the staining ability of several bacteria.
Collapse
Affiliation(s)
- Jelena Pavlović
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Andrea Puškárová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Matej Planý
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Zuzana Farkas
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Magdaléna Rusková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Katarína Kvalová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Lucia Kraková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Mária Bučková
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia
| | - Domenico Pangallo
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 84551 Bratislava, Slovakia; Caravella, s.r.o., Tupolevova 2, 85101 Bratislava, Slovakia.
| |
Collapse
|
4
|
Humicolopsis cephalosporioides synthesizes DHN-melanin in its chlamydospores. Mycol Prog 2023. [DOI: 10.1007/s11557-022-01853-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
5
|
Moo-Koh FA, Cristóbal-Alejo J, Tun-Suárez JM, Medina-Baizabal IL, Arjona-Cruz AA, Gamboa-Angulo M. Activity of Aqueous Extracts from Native Plants of the Yucatan Peninsula against Fungal Pathogens of Tomato In Vitro and from Croton chichenensis against Corynespora cassiicola on Tomato. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212821. [PMID: 36365274 PMCID: PMC9654290 DOI: 10.3390/plants11212821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 05/29/2023]
Abstract
Plant extracts are a valuable alternative to control pathogens of horticultural crops. In the present study, four species of pathogenic fungi were isolated from leaf spots on Solanum lycopersicum and identified by traditional and molecular techniques as Alternaria alternata ITC24, Corynespora cassiicola ITC23, Curvularia lunata ITC22, and Fusarium equiseti ITC32. When 11 aqueous extracts from eight native plants of the Yucatan Peninsula were tested against the four fungi in vitro, the extract from Croton chichenensis roots was most active, inhibiting mycelial growth (79-100%), sporulation (100%), and conidial germination (71-100%) at 3% (w/v). A logarithmic-diagrammatic scale of the pathosystem C. cassiicola-S. lycopersicum was established and used to assess disease severity on inoculated tomato plants in a greenhouse after treatment with the aqueous extract from C. chichenensis roots at 12% (w/v). After 21 days, the disease severity was 57% lower than on the control without extract applied. This dose of the extract was not phytotoxic to tomato leaves and was compatible with the beneficial organisms Bacillus subtilis CBCK47 and Trichodema asperellum Ta13-17. The antifungal efficacy of C. chichenensis is highly promising for incorporation into integrated disease management of tomato crops.
Collapse
Affiliation(s)
- Felicia Amalia Moo-Koh
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Yucatán, Mérida 97205, Mexico
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Yucatán, Conkal 97345, Mexico
| | - Jairo Cristóbal-Alejo
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Yucatán, Conkal 97345, Mexico
| | - José María Tun-Suárez
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Yucatán, Conkal 97345, Mexico
| | - Irma Leticia Medina-Baizabal
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Yucatán, Mérida 97205, Mexico
| | | | - Marcela Gamboa-Angulo
- Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, Yucatán, Mérida 97205, Mexico
| |
Collapse
|
6
|
Mosunova OV, Navarro-Muñoz JC, Haksar D, van Neer J, Hoeksma J, den Hertog J, Collemare J. Evolution-Informed Discovery of the Naphthalenone Biosynthetic Pathway in Fungi. mBio 2022; 13:e0022322. [PMID: 35616333 PMCID: PMC9239057 DOI: 10.1128/mbio.00223-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
Fungi produce a wide diversity of secondary metabolites with interesting biological activities for the health, industrial, and agricultural sectors. While fungal genomes have revealed an unexpectedly high number of biosynthetic pathways that far exceeds the number of known molecules, accessing and characterizing this hidden diversity remain highly challenging. Here, we applied a combined phylogenetic dereplication and comparative genomics strategy to explore eight lichenizing fungi. The determination of the evolutionary relationships of aromatic polyketide pathways resulted in the identification of an uncharacterized biosynthetic pathway that is conserved in distant fungal lineages. The heterologous expression of the homologue from Aspergillus parvulus linked this pathway to naphthalenone compounds, which were detected in cultures when the pathway was expressed. Our unbiased and rational strategy generated evolutionary knowledge that ultimately linked biosynthetic genes to naphthalenone polyketides. Applied to many more genomes, this approach can unlock the full exploitation of the fungal kingdom for molecule discovery. IMPORTANCE Fungi have provided us with life-changing small bioactive molecules, with the best-known examples being the first broad-spectrum antibiotic penicillin, immunosuppressive cyclosporine, and cholesterol-lowering statins. Since the 1980s, exploration of chemical diversity in nature has been highly reduced. However, the genomic era has revealed that fungal genomes are concealing an unexpected and largely unexplored chemical diversity. So far, fungal genomes have been exploited to predict the production potential of bioactive compounds or to find genes that control the production of known molecules of interest. But accessing and characterizing the full fungal chemical diversity require rational and, thus, efficient strategies. Our approach is to first determine the evolutionary relationships of fungal biosynthetic pathways in order to identify those that are already characterized and those that show a different evolutionary origin. This knowledge allows prioritizing the choice of the pathway to functionally characterize in a second stage using synthetic-biology tools like heterologous expression. A particular strength of this strategy is that it is always successful: it generates knowledge about the evolution of bioactive-molecule biosynthesis in fungi, it either yields novel molecules or links the studied pathway to already known molecules, and it reveals the chemical diversity within a given pathway, all at once. The strategy is very powerful to avoid studying the same pathway again and can be used with any fungal genome. Functional characterization using heterologous expression is particularly suitable for fungi that are difficult to grow or not genetically tractable. Thanks to the decreasing cost of gene synthesis, ultimately, only the genome sequence is needed to identify novel pathways and characterize the molecules that they produce. Such an evolution-informed strategy allows the efficient exploitation of the chemical diversity hidden in fungal genomes and is very promising for molecule discovery.
Collapse
Affiliation(s)
- Olga V. Mosunova
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | | | - Diksha Haksar
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jacq van Neer
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW, Utrecht, The Netherlands
- University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen den Hertog
- University Medical Center Utrecht, Utrecht, The Netherlands
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Jérôme Collemare
- Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands
| |
Collapse
|
7
|
Abstract
Contamination of food and feed with toxin-producing fungi is a major threat in agriculture and for human health. The filamentous fungus Alternaria alternata is one of the most widespread postharvest contaminants and a weak plant pathogen. It produces a large variety of secondary metabolites with alternariol and its derivatives as characteristic mycotoxin. Other important phyto- and mycotoxins are perylene quinones (PQs), some of which have anticancer properties. Here, we discovered that the PQ altertoxin (ATX) biosynthesis shares most enzymes with the 1,8-dihydroxynaphthalene (1,8-DHN) melanin pathway. However, melanin was formed in aerial hyphae and spores, and ATXs were synthesized in substrate hyphae. This spatial separation is achieved through the promiscuity of a polyketide synthase, presumably producing a pentaketide (T4HN), a hexaketide (AT4HN), and a heptaketide (YWA1) as products. T4HN directly enters the altertoxin and DHN melanin pathway, whereas AT4HN and YWA1 can be converted only in aerial hyphae, which probably leads to a higher T4HN concentration, favoring 1,8-DHN melanin formation. Whereas the production of ATXs was strictly dependent on the CmrA transcription factor, melanin could still be produced in the absence of CmrA to some extent. This suggests that different cues regulate melanin and toxin formation. Since DHN melanin is produced by many fungi, PQs or related compounds may be produced in many more fungi than so far assumed.
Collapse
|
8
|
Idbella M, Bonanomi G, De Filippis F, Amor G, Chouyia FE, Fechtali T, Mazzoleni S. Contrasting effects of Rhizophagus irregularis versus bacterial and fungal seed endophytes on Trifolium repens plant-soil feedback. MYCORRHIZA 2021; 31:103-115. [PMID: 33185700 DOI: 10.1007/s00572-020-01003-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/08/2020] [Indexed: 06/11/2023]
Abstract
Interactions between plants and soil affect plant-plant interactions and community composition by modifying soils conditions in plant-soil feedback, where associated microbes have the most crucial role. Both arbuscular mycorrhizal fungi (AMF) and microbial seed endophytes have been demonstrated to influence, directly or indirectly, biotic or abiotic soil properties, thus affecting subsequent plant growth, and community structure. However, little is known about how plant endophyte communities, individually or in interaction with AMF, affect plant-soil feedback processes. Here, we investigated, through a manipulative experiment, the behavior of endophyte-free and endophyte-associated Trifolium repens plants grown in soils previously conditioned by conspecific endophyte-free and endophyte-associated plants, inoculated or not by Rhizophagus intraradices. Furthermore, we identified microbial endophytes directly from the inner tissues of seeds by high-throughput sequencing, to compare seed fungal and bacterial endophyte composition. Results demonstrated that the outcome of simultaneous occurrence of seed endophytes and AMF on plant behavior depended on matching the endophytic status, i.e., either the presence or absence of seed microbial endophytes, of the conditioning and response phase. Seed fungal endophytes generated strong conspecific negative feedback, while seed bacterial endophytes proved to shift the feedback from negative to positive. Moreover, the simultaneous occurrence of both seed endophytes with AMF could either generate or expand negative plant-soil feedback effects. Our results show that seed and root symbionts can play a significant role on setting conspecific plant-soil feedback.
Collapse
Affiliation(s)
- Mohamed Idbella
- Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco.
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy.
| | - Giuliano Bonanomi
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Ghita Amor
- Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Fatima Ezzahra Chouyia
- Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| | - Taoufiq Fechtali
- Faculty of Sciences and Techniques, Hassan II University, Casablanca, Morocco
| | - Stefano Mazzoleni
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, NA, Italy
| |
Collapse
|
9
|
Liu S, Wei Y, Zhang SH. The C3HC type zinc-finger protein (ZFC3) interacting with Lon/MAP1 is important for mitochondrial gene regulation, infection hypha development and longevity of Magnaporthe oryzae. BMC Microbiol 2020; 20:23. [PMID: 32000669 PMCID: PMC6993355 DOI: 10.1186/s12866-020-1711-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/22/2020] [Indexed: 12/20/2022] Open
Abstract
Background The rice blast is a typical fungal disease caused by Magnaporthe oryzae, and the mitochondrial ATP-dependent Lon protease (MAP1) has been proven to be involved in blast development. We previously screened a C3HC type Zinc-finger domain protein (ZFC3), which is interacted with MAP1. The purpose of this research was to study the biological function of ZFC3 protein in M. oryzae. Results We first confirmed that the ZFC3-RFP fusion protein is localized within the mitochondria. The deleted mutant strains of ZFC3 (∆ZFC3) showed the enhanced expression level of mtATP6, particularly mtATP8, and almost unchanged nATP9. ΔZFC3 produces more conidia and more tolerance to multiple stressors. The knock-out strain shows more melanin accumulation suggests the susceptibility to aging. ΔZFC3 displays faster early-stage hypha infiltration involved in MAP1-mediated pathogenicity in host rice. Conclusion These results support the view that ZFC3 is a key regulator involved in gene regulation, stress response, cell wall integrity, longevity, conidiation, infection hypha development and MAP1-mediated pathogenicity in M. oryzae.
Collapse
Affiliation(s)
- Shaoshuai Liu
- College of Plant Sciences, Jilin University, Changchun, China.,Present address: Institute of Phytopathology, Centre for BioSystems, Land Use and Nutrition, Justus Liebig University, Heinrich Buff-Ring 26-32, D-35392, Giessen, Germany
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.
| |
Collapse
|
10
|
Li JJ, Zhou L, Yin CM, Zhang DD, Klosterman SJ, Wang BL, Song J, Wang D, Hu XP, Subbarao KV, Chen JY, Dai XF. The Verticillium dahliae Sho1-MAPK pathway regulates melanin biosynthesis and is required for cotton infection. Environ Microbiol 2019; 21:4852-4874. [PMID: 31667948 PMCID: PMC6916341 DOI: 10.1111/1462-2920.14846] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a soil‐borne fungus that causes vascular wilt on numerous plants worldwide. The fungus survives in the soil for up to 14 years by producing melanized microsclerotia. The protective function of melanin in abiotic stresses is well documented. Here, we found that the V. dahliae tetraspan transmembrane protein VdSho1, a homolog of the Saccharomyces cerevisiae Sho1, acts as an osmosensor, and is required for plant penetration and melanin biosynthesis. The deletion mutant ΔSho1 was incubated on a cellophane membrane substrate that mimics the plant epidermis, revealing that the penetration of ΔSho1 strain was reduced compared to the wild‐type strain. Furthermore, VdSho1 regulates melanin biosynthesis by a signalling mechanism requiring a kinase‐kinase signalling module of Vst50‐Vst11‐Vst7. Strains, ΔVst50, ΔVst7 and ΔVst11 also displayed defective penetration and melanin production like the ΔSho1 strain. Defects in penetration and melanin production in ΔSho1 were restored by overexpression of Vst50, suggesting that Vst50 lies downstream of VdSho1 in the regulatory pathway governing penetration and melanin biosynthesis. Data analyses revealed that the transmembrane portion of VdSho1 was essential for both membrane penetration and melanin production. This study demonstrates that Vst50‐Vst11‐Vst7 module regulates VdSho1‐mediated plant penetration and melanin production in V. dahliae, contributing to virulence.
Collapse
Affiliation(s)
- Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- Department of Plant Pathology, University of California, Davis, c/o United States Agricultural Research Station, Salinas, California, 93905, USA
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Song
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Ping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Krishna V Subbarao
- United States Department of Agriculture, Agricultural Research Service, Salinas, California, 93905, USA
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture, Beijing, 100193, China
| |
Collapse
|
11
|
Hantke V, Wang C, Skellam EJ, Cox RJ. Function of pathway specific regulators in the ACE1 and pyrichalasin H biosynthetic gene clusters. RSC Adv 2019; 9:35797-35802. [PMID: 35528102 PMCID: PMC9074748 DOI: 10.1039/c9ra07028a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/28/2019] [Indexed: 11/21/2022] Open
Abstract
Ectopic expression of BC1 which encodes a putative pathway specific transcription factor from the ACE1 biosynthetic gene cluster of the rice pathogen Pyricularia oryzae Guy11 did not lead to the production of ACE1-related compounds. However the known compound hinnulin A was formed. A putative partial gene cluster potentially involved in the biosynthesis of hinnulin A and DHN melanin was validated by RT-PCR and a possible biosynthetic pathway is proposed. Ectopic expression of pyiR which encodes a pathway specific transcription factor from the pyrichalasin H biosynthetic gene cluster in Magnaporthe grisea NI980 led to the apparent up-regulation of the pyi cluster and a 3-fold increase in pyrichalasin production under standard fermentation conditions, but did not lead to the formation of new compounds.
Collapse
Affiliation(s)
- Verena Hantke
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Chongqing Wang
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Elizabeth J Skellam
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| |
Collapse
|
12
|
Sarkar D, Rovenich H, Jeena G, Nizam S, Tissier A, Balcke GU, Mahdi LK, Bonkowski M, Langen G, Zuccaro A. The inconspicuous gatekeeper: endophytic Serendipita vermifera acts as extended plant protection barrier in the rhizosphere. THE NEW PHYTOLOGIST 2019; 224:886-901. [PMID: 31074884 DOI: 10.1111/nph.15904] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/26/2019] [Indexed: 05/21/2023]
Abstract
In nature, beneficial and pathogenic fungi often simultaneously colonise plants. Despite substantial efforts to understand the composition of natural plant-microbe communities, the mechanisms driving such multipartite interactions remain largely unknown. Here we address how the interaction between the beneficial root endophyte Serendipita vermifera and the pathogen Bipolaris sorokiniana affects fungal behaviour and determines barley host responses using a gnotobiotic soil-based split-root system. Fungal confrontation in soil resulted in induction of B. sorokiniana genes involved in secondary metabolism and a significant repression of genes encoding putative effectors. In S. vermifera, genes encoding hydrolytic enzymes were strongly induced. This antagonistic response was not activated during the tripartite interaction in barley roots. Instead, we observed a specific induction of S. vermifera genes involved in detoxification and redox homeostasis. Pathogen infection but not endophyte colonisation resulted in substantial host transcriptional reprogramming and activation of defence. In the presence of S. vermifera, pathogen infection and disease symptoms were significantly reduced despite no marked alterations of the plant transcriptional response. The activation of stress response genes and concomitant repression of putative effector gene expression in B. sorokiniana during confrontation with the endophyte suggest a reduction of the pathogen's virulence potential before host plant infection.
Collapse
Affiliation(s)
- Debika Sarkar
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Hanna Rovenich
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Ganga Jeena
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Shadab Nizam
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Gerd U Balcke
- Department of Cell and Metabolic Biology, Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| | - Lisa K Mahdi
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Michael Bonkowski
- Institute of Zoology, Terrestrial Ecology, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Gregor Langen
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| | - Alga Zuccaro
- Botanical Institute, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674, Cologne, Germany
| |
Collapse
|
13
|
Antifungal Agents in Agriculture: Friends and Foes of Public Health. Biomolecules 2019; 9:biom9100521. [PMID: 31547546 PMCID: PMC6843326 DOI: 10.3390/biom9100521] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/12/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022] Open
Abstract
Fungal diseases have been underestimated worldwide but constitute a substantial threat to several plant and animal species as well as to public health. The increase in the global population has entailed an increase in the demand for agriculture in recent decades. Accordingly, there has been worldwide pressure to find means to improve the quality and productivity of agricultural crops. Antifungal agents have been widely used as an alternative for managing fungal diseases affecting several crops. However, the unregulated use of antifungals can jeopardize public health. Application of fungicides in agriculture should be under strict regulation to ensure the toxicological safety of commercialized foods. This review discusses the use of antifungals in agriculture worldwide, the need to develop new antifungals, and improvement of regulations regarding antifungal use.
Collapse
|