1
|
Chai R, Guo J, Geng Y, Huang S, Wang H, Yao X, Li T, Qiu L. The Influence of Homologous Arm Length on Homologous Recombination Gene Editing Efficiency Mediated by SSB/CRISPR-Cas9 in Escherichia coli. Microorganisms 2024; 12:1102. [PMID: 38930484 PMCID: PMC11205466 DOI: 10.3390/microorganisms12061102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
The precise editing of genes mediated by CRISPR-Cas9 necessitates the application of donor DNA with appropriate lengths of homologous arms and fragment sizes. Our previous development, SSB/CRISPR-Cas9, has demonstrated high efficiency in homologous recombination and non-homologous end joining gene editing within bacteria. In this study, we optimized the lengths and sizes of homologous arms of the donor DNA within this system. Two sets of donor DNA constructs were generated: one set comprised donors with only 10-100 bp homologous arms, while the other set included donors with homologous arms ranging from 10-100 bp, between which was a tetracycline resistance expression cassette (1439 bp). These donor constructs were transformed into Escherichia coli MG1655 cells alongside pCas-SSB/pTargetF-lacZ. Notably, when the homologous arms ranged from 10 to 70 bp, the transformation efficiency of non-selectable donors was significantly higher than that of selectable donors. However, within the range of 10-100 bp homologous arm lengths, the homologous recombination rate of selectable donors was significantly higher than that of non-selectable donors, with the gap narrowing as the homologous arm length increased. For selectable donor DNA with homologous arm lengths of 10-60 bp, the homologous recombination rate increased linearly, reaching a plateau when the homologous arm length was between 60-100 bp. Conversely, for non-selectable donor DNA, the homologous recombination rate increased linearly with homologous arm lengths of 10-90 bp, plateauing at 90-100 bp. Editing two loci simultaneously with 100 bp homologous arms, whether selectable or non-selectable, showed no difference in transformation or homologous recombination rates. Editing three loci simultaneously with 100 bp non-selectable homologous arms resulted in a 45% homologous recombination rate. These results suggest that efficient homologous recombination gene editing mediated by SSB/CRISPR-Cas9 can be achieved using donor DNA with 90-100 bp non-selectable homologous arms or 60-100 bp selectable homologous arms.
Collapse
Affiliation(s)
- Ran Chai
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| | - Jiaxiang Guo
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Yue Geng
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Shuai Huang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Haifeng Wang
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Xinding Yao
- School of Environmental Engineering, Yellow River Conservancy Technical Institute, Henan Engineering Technology Research Center of Green Coating Materials, Kaifeng 475004, China; (R.C.)
| | - Tao Li
- College of Applied Engineering, Henan University of Science and Technology, Sanmenxia 472000, China
| | - Liyou Qiu
- College of Life Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, China
| |
Collapse
|
2
|
Vojnovic S, Aleksic I, Ilic-Tomic T, Stevanovic M, Nikodinovic-Runic J. Bacillus and Streptomyces spp. as hosts for production of industrially relevant enzymes. Appl Microbiol Biotechnol 2024; 108:185. [PMID: 38289383 PMCID: PMC10827964 DOI: 10.1007/s00253-023-12900-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 02/01/2024]
Abstract
The application of enzymes is expanding across diverse industries due to their nontoxic and biodegradable characteristics. Another advantage is their cost-effectiveness, reflected in reduced processing time, water, and energy consumption. Although Gram-positive bacteria, Bacillus, and Streptomyces spp. are successfully used for production of industrially relevant enzymes, they still lag far behind Escherichia coli as hosts for recombinant protein production. Generally, proteins secreted by Bacillus and Streptomyces hosts are released into the culture medium; their native conformation is preserved and easier recovery process enabled. Given the resilience of both hosts in harsh environmental conditions and their spore-forming capability, a deeper understanding and broader use of Bacillus and Streptomyces as expression hosts could significantly enhance the robustness of industrial bioprocesses. This mini-review aims to compare two expression hosts, emphasizing their specific advantages in industrial surroundings such are chemical, detergent, textile, food, animal feed, leather, and paper industries. The homologous sources, heterologous hosts, and molecular tools used for the production of recombinant proteins in these hosts are discussed. The potential to use both hosts as biocatalysts is also evaluated. Undoubtedly, Bacillus and Streptomyces spp. as production hosts possess the potential to take on a more substantial role, providing superior (bio-based) process robustness and flexibility. KEY POINTS: • Bacillus and Streptomyces spp. as robust hosts for enzyme production. • Industrially relevant enzyme groups for production in alternative hosts highlighted. • Molecular biology techniques are enabling easier utilization of both hosts.
Collapse
Affiliation(s)
- Sandra Vojnovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| | - Ivana Aleksic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Tatjana Ilic-Tomic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Milena Stevanovic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia
| | - Jasmina Nikodinovic-Runic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042, Belgrade 152, Serbia.
| |
Collapse
|
3
|
Lv X, Li Y, Xiu X, Liao C, Xu Y, Liu Y, Li J, Du G, Liu L. CRISPR genetic toolkits of classical food microorganisms: Current state and future prospects. Biotechnol Adv 2023; 69:108261. [PMID: 37741424 DOI: 10.1016/j.biotechadv.2023.108261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/25/2023]
Abstract
Production of food-related products using microorganisms in an environmentally friendly manner is a crucial solution to global food safety and environmental pollution issues. Traditional microbial modification methods rely on artificial selection or natural mutations, which require time for repeated screening and reproduction, leading to unstable results. Therefore, it is imperative to develop rapid, efficient, and precise microbial modification technologies. This review summarizes recent advances in the construction of gene editing and metabolic regulation toolkits based on the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated proteins (CRISPR-Cas) systems and their applications in reconstructing food microorganism metabolic networks. The development and application of gene editing toolkits from single-site gene editing to multi-site and genome-scale gene editing was also introduced. Moreover, it presented a detailed introduction to CRISPR interference, CRISPR activation, and logic circuit toolkits for metabolic network regulation. Moreover, the current challenges and future prospects for developing CRISPR genetic toolkits were also discussed.
Collapse
Affiliation(s)
- Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chao Liao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Liu Y, Cheng H, Li H, Zhang Y, Wang M. A Programmable CRISPR/Cas9 Toolkit Improves Lycopene Production in Bacillus subtilis. Appl Environ Microbiol 2023; 89:e0023023. [PMID: 37272803 PMCID: PMC10305015 DOI: 10.1128/aem.00230-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 06/06/2023] Open
Abstract
Bacillus subtilis has been widely used and generally recognized as a safe host for the production of recombinant proteins, high-value chemicals, and pharmaceuticals. Thus, its metabolic engineering attracts significant attention. Nevertheless, the limited availability of selective markers makes this process difficult and time-consuming, especially in the case of multistep biosynthetic pathways. Here, we employ CRISPR/Cas9 technology to build an easy cloning toolkit that addresses commonly encountered obstacles in the metabolic engineering of B. subtilis, including the chromosomal integration locus, promoter, terminator, and guide RNA (gRNA) target. Six promoters were characterized, and the promoter strengths ranged from 0.9- to 23-fold that of the commonly used strong promoter P43. We characterized seven terminators in B. subtilis, and the termination efficiencies (TEs) of the seven terminators are all more than 90%. Six gRNA targets were designed upstream of the promoter and downstream of the terminator. Using a green fluorescent protein (GFP) reporter, we confirmed integration efficiency with the single-locus integration site is up to 100%. We demonstrated the applicability of this toolkit by optimizing the expression of a challenging but industrially important product, lycopene. By heterologous expression of the essential genes for lycopene synthesis on the B. subtilis genome, a total of 13 key genes involved in the lycopene biosynthetic pathway were manipulated. Moreover, our findings showed that the gene cluster ispG-idi-dxs-ispD could positively affect the production of lycopene, while the cluster dxr-ispE-ispF-ispH had a negative effect on lycopene production. Hence, our multilocus integration strategy can facilitate the pathway assembly for production of complex chemicals and pharmaceuticals in B. subtilis. IMPORTANCE We present a toolkit that allows for rapid cloning procedures and one-step subcloning to move from plasmid-based expression to stable chromosome integration and expression in a production strain in less than a week. The utility of the customized tool was demonstrated by integrating the MEP (2C-methyl-d-erythritol-4-phosphate) pathway, part of the pentose phosphate pathway (PPP), and the hetero-lycopene biosynthesis genes by stable expression in the genome. The tool could be useful to engineer B. subtilis strains through diverse recombination events and ultimately improve its potential and scope of industrial application as biological chassis.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haijiao Cheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haoni Li
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yingzhe Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
5
|
Kolasinliler G, Aagre MM, Akkale C, Kaya HB. The use of CRISPR-Cas-based systems in bacterial cell factories. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
6
|
Ferrando J, Filluelo O, Zeigler DR, Picart P. Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system. Microb Cell Fact 2023; 22:21. [PMID: 36721198 PMCID: PMC9890709 DOI: 10.1186/s12934-023-02032-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Despite recent advances in genetic engineering tools for effectively regulating and manipulating genes, efficient simultaneous multigene insertion methods have not been established in Bacillus subtilis. To date, multilocus integration systems in B. subtilis, which is one of the main industrial enzyme producers and a GRAS (generally regarded as safe) microbial host, rely on iterative rounds of plasmid construction for sequential insertions of genes into the B. subtilis chromosome, which is tedious and time consuming. RESULTS In this study, we present development and proof-of-concept of a novel CRISPR-Cas9-based genome-editing strategy for the colorimetric detection of one-step multiple gene insertion in B. subtilis. First, up to three copies of the crtMN operon from Staphylococcus aureus, encoding a yellow pigment, were incorporated at three ectopic sites within the B. subtilis chromosome, rendering engineered strains able to form yellow colonies. Second, a single CRISPR-Cas9-based plasmid carrying a highly specific single guide RNA (sgRNA) targeting crtMN operon and a changeable editing template was constructed to facilitate simultaneous insertion of multiple gene-copies through homology-directed repair (HDR). Upon transformation of engineered strains with engineered plasmids, strains harboring up to three gene copies integrated into the chromosome formed white colonies because of the removal of the crtMN operon, clearly distinguishable from yellow colonies harboring undesired genetic modifications. As a result, construction of a plasmid-less, marker-free, high-expression stable producer B. subtilis strain can be completed in only seven days, demonstrating the potential that the implementation of this technology may bring for biotechnology purposes. CONCLUSIONS The novel technology expands the genome-editing toolset for B. subtilis and means a substantial improvement over current methodology, offering new application possibilities that we envision should significantly boost the development of B. subtilis as a chassis in the field of synthetic biology.
Collapse
Affiliation(s)
- Jordi Ferrando
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | - Oriana Filluelo
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| | | | - Pere Picart
- grid.5841.80000 0004 1937 0247Microbiology Section, Department of Biology, Healthcare and Environment, Faculty of Pharmacy and Food Sciences, Universitat de Barcelona, Barcelona, Catalonia Spain
| |
Collapse
|
7
|
Song Y, He S, Jopkiewicz A, Setroikromo R, van Merkerk R, Quax WJ. Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. J Appl Microbiol 2022; 133:2280-2298. [PMID: 35797344 PMCID: PMC9796756 DOI: 10.1111/jam.15704] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been developed into a precise and efficient genome editing tool. Since its discovery as an adaptive immune system in prokaryotes, it has been applied in many different research fields including biotechnology and medical sciences. The high demand for rapid, highly efficient and versatile genetic tools to thrive in bacteria-based cell factories accelerates this process. This review mainly focuses on significant advancements of the CRISPR system in Bacillus subtilis, including the achievements in gene editing, and on problems still remaining. Next, we comprehensively summarize this genetic tool's up-to-date development and utilization in other Bacillus species, including B. licheniformis, B. methanolicus, B. anthracis, B. cereus, B. smithii and B. thuringiensis. Furthermore, we describe the current application of CRISPR tools in phages to increase Bacillus hosts' resistance to virulent phages and phage genetic modification. Finally, we suggest potential strategies to further improve this advanced technique and provide insights into future directions of CRISPR technologies for rendering Bacillus species cell factories more effective and more powerful.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern ChinaInstitute of Microbiology, Guangdong Acadamy of SciencesGuangzhouChina
| | - Siqi He
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Anita Jopkiewicz
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| |
Collapse
|
8
|
Xin Q, Chen Y, Chen Q, Wang B, Pan L. Development and application of a fast and efficient CRISPR-based genetic toolkit in Bacillus amyloliquefaciens LB1ba02. Microb Cell Fact 2022; 21:99. [PMID: 35643496 PMCID: PMC9148480 DOI: 10.1186/s12934-022-01832-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Bacillus amyloliquefaciens is generally recognized as food safe (GRAS) microbial host and important enzyme-producing strain in the industry. B.amyloliquefaciens LB1ba02 is a production strain suitable for secreting mesophilic α-amylase in the industry. Nevertheless, due to the low transformation efficiency and restriction-modification system, the development of its CRISPR tool lags far behind other species and strains from the genus Bacillus. This work was undertaken to develop a fast and efficient gene-editing tool in B.amyloliquefaciens LB1ba02. RESULTS In this study, we fused the nuclease-deficient mutant Cas9n (D10A) of Cas9 with activation-induced cytidine deaminase (AID) and developed a fast and efficient base editing system for the first time in B. amyloliquefaciens LB1ba02. The system was verified by inactivating the pyrF gene coding orotidine 5'-phosphate decarboxylase and the mutant could grow normally on M9 medium supplemented with 5-fluoroorotic acid (5-FOA) and uridine (U). Our base editing system has a 6nt editing window consisting of an all-in-one temperature-sensitive plasmid that facilitates multiple rounds of genome engineering in B. amyloliquefaciens LB1ba02. The total editing efficiency of this method reached 100% and it achieved simultaneous editing of three loci with an efficiency of 53.3%. In addition, based on the base editing CRISPR/Cas9n-AID system, we also developed a single plasmid CRISPR/Cas9n system suitable for rapid gene knockout and integration. The knockout efficiency for a single gene reached 93%. Finally, we generated 4 genes (aprE, nprE, wprA, and bamHIR) mutant strain, LB1ba02△4. The mutant strain secreted 1.25-fold more α-amylase into the medium than the wild-type strain. CONCLUSIONS The CRISPR/Cas9n-AID and CRISPR/Cas9n systems developed in this work proved to be a fast and efficient genetic manipulation tool in a restriction-modification system and poorly transformable strain.
Collapse
Affiliation(s)
- Qinglong Xin
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Yudan Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Qianlin Chen
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China
| | - Bin Wang
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| | - Li Pan
- School of Biology and Biological Engineering, Guangzhou Higher Education Mega Centre, South China University of Technology, Panyu District, Guangzhou, 510006, Guangdong, People's Republic of China.
| |
Collapse
|
9
|
Ning Y, Yang H, Weng P, Wu Z. Zymogram Analysis and Identification of the Extracellular Proteases from Bacillus velezensis SW5. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Zocca VFB, Corrêa GG, Lins MRDCR, de Jesus VN, Tavares LF, Amorim LADS, Kundlatsch GE, Pedrolli DB. The CRISPR toolbox for the gram-positive model bacterium Bacillus subtilis. Crit Rev Biotechnol 2021; 42:813-826. [PMID: 34719304 DOI: 10.1080/07388551.2021.1983516] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CRISPR has revolutionized the way we engineer genomes. Its simplicity and modularity have enabled the development of a great number of tools to edit genomes and to control gene expression. This powerful technology was first adapted to Bacillus subtilis in 2016 and has been intensely upgraded since then. Many tools have been successfully developed to build a CRISPR toolbox for this Gram-positive model and important industrial chassis. The toolbox includes tools, such as double-strand and single-strand cutting CRISPR for point mutation, gene insertion, and gene deletion up to 38 kb. Moreover, catalytic dead Cas proteins have been used for base editing, as well as for the control of gene expression (CRISPRi and CRISPRa). Many of these tools have been used for multiplex CRISPR with the most successful one targeting up to six loci simultaneously for point mutation. However, tools for efficient multiplex CRISPR for other functionalities are still missing in the toolbox. CRISPR engineering has already resulted in efficient protein and metabolite-producing strains, demonstrating its great potential. In this review, we cover all the important additions made to the B. subtilis CRISPR toolbox since 2016, and strain developments fomented by the technology.
Collapse
Affiliation(s)
- Vitoria Fernanda Bertolazzi Zocca
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Graciely Gomes Corrêa
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Milca Rachel da Costa Ribeiro Lins
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Victor Nunes de Jesus
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Leonardo Ferro Tavares
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Laura Araujo da Silva Amorim
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Guilherme Engelberto Kundlatsch
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Danielle Biscaro Pedrolli
- Department of Bioprocess Engineering and Biotechnology, School of Pharmaceutical Sciences, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
11
|
Konur S, Mierla L, Fellermann H, Ladroue C, Brown B, Wipat A, Twycross J, Dun BP, Kalvala S, Gheorghe M, Krasnogor N. Toward Full-Stack In Silico Synthetic Biology: Integrating Model Specification, Simulation, Verification, and Biological Compilation. ACS Synth Biol 2021; 10:1931-1945. [PMID: 34339602 DOI: 10.1021/acssynbio.1c00143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present the Infobiotics Workbench (IBW), a user-friendly, scalable, and integrated computational environment for the computer-aided design of synthetic biological systems. It supports an iterative workflow that begins with specification of the desired synthetic system, followed by simulation and verification of the system in high-performance environments and ending with the eventual compilation of the system specification into suitable genetic constructs. IBW integrates modeling, simulation, verification, and biocompilation features into a single software suite. This integration is achieved through a new domain-specific biological programming language, the Infobiotics Language (IBL), which tightly combines these different aspects of in silico synthetic biology into a full-stack integrated development environment. Unlike existing synthetic biology modeling or specification languages, IBL uniquely blends modeling, verification, and biocompilation statements into a single file. This allows biologists to incorporate design constraints within the specification file rather than using decoupled and independent formalisms for different in silico analyses. This novel approach offers seamless interoperability across different tools as well as compatibility with SBOL and SBML frameworks and removes the burden of doing manual translations for standalone applications. We demonstrate the features, usability, and effectiveness of IBW and IBL using well-established synthetic biological circuits.
Collapse
Affiliation(s)
- Savas Konur
- Department of Computer Science, University of Bradford, Bradford, BD7 1DP, U.K
| | - Laurentiu Mierla
- Department of Computer Science, University of Bradford, Bradford, BD7 1DP, U.K
| | - Harold Fellermann
- Interdisciplinary Computing and Complex Biosystems Research Group, Newcastle University, Newcastle, NE1 7RU, U.K
| | - Christophe Ladroue
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, U.K
| | - Bradley Brown
- Interdisciplinary Computing and Complex Biosystems Research Group, Newcastle University, Newcastle, NE1 7RU, U.K
| | - Anil Wipat
- Interdisciplinary Computing and Complex Biosystems Research Group, Newcastle University, Newcastle, NE1 7RU, U.K
| | - Jamie Twycross
- School of Computer Science, University of Nottingham, Nottingham, NG8 1BB, U.K
| | - Boyang Peter Dun
- Department of Computer Science, Stanford University, Stanford, California 94305, United States
| | - Sara Kalvala
- Department of Computer Science, University of Warwick, Coventry, CV4 7AL, U.K
| | - Marian Gheorghe
- Department of Computer Science, University of Bradford, Bradford, BD7 1DP, U.K
| | - Natalio Krasnogor
- Interdisciplinary Computing and Complex Biosystems Research Group, Newcastle University, Newcastle, NE1 7RU, U.K
| |
Collapse
|
12
|
Appelbaum M, Schweder T. Metabolic Engineering of
Bacillus
– New Tools, Strains, and Concepts. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Cui W, Lin Q, Hu R, Han L, Cheng Z, Zhang L, Zhou Z. Data-Driven and in Silico-Assisted Design of Broad Host-Range Minimal Intrinsic Terminators Adapted for Bacteria. ACS Synth Biol 2021; 10:1438-1450. [PMID: 34015924 DOI: 10.1021/acssynbio.1c00050] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Efficient transcription termination relying on intrinsic terminators is critical to maintain cell fitness by avoiding unwanted read-through in bacteria. Natural intrinsic terminator (NIT) typically appears in mRNA as a hairpin followed by approximately eight conserved uridines (U-tract) at the 3' terminus. Owing to their simple structure, small size, and protein independence, assorted NITs have been redesigned as robust tools to construct gene circuits. However, most NITs exert functions to adapt to their physiological requirements rather than the demand for building synthetic gene circuits, rendering uncertain working performance when they are constructed intact in synthetic gene circuits. Here, rather than modifying NITs, we established a data-driven and in silico-assisted (DISA) design framework to forward engineer minimal intrinsic terminators (MITs). By comprehensively analyzing 75 natural intrinsic terminators from Bacillus subtilis, we revealed that two pivotal features, the length of the U-tract and the thermodynamics of the terminator hairpin, were involved in the sequence-activity relationship (SAR) of termination efficiency (TE). As per the SAR, we leveraged DISA to fabricate an array of MITs composed of in silico-assisted designed minimal hairpins and fixed U-tracts. Most of these MITs exhibited high TE in diverse Gram-positive and Gram-negative bacteria. In contrast, the TEs of the NITs were highly varied in different hosts. Moreover, TEs of MITs were flexibly tuned over a wide range by modulating the length of the U-tract. Overall, these results demonstrate an efficient framework to forward design functional and broad host-range terminators independent of tedious and iterative screening of mutagenesis libraries of natural terminators.
Collapse
Affiliation(s)
- Wenjing Cui
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiao Lin
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ruichun Hu
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Laichuang Han
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhongyi Cheng
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Linpei Zhang
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (MOE), School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu 226500, China
| |
Collapse
|
14
|
Song Y, He S, Abdallah II, Jopkiewicz A, Setroikromo R, van Merkerk R, Tepper PG, Quax WJ. Engineering of Multiple Modules to Improve Amorphadiene Production in Bacillus subtilis Using CRISPR-Cas9. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:4785-4794. [PMID: 33877851 PMCID: PMC8154554 DOI: 10.1021/acs.jafc.1c00498] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Engineering strategies to improve terpenoids' production in Bacillus subtilis mainly focus on 2C-methyl-d-erythritol-4-phosphate (MEP) pathway overexpression. To systematically engineer the chassis strain for higher amorphadiene (precursor of artemisinin) production, a clustered regularly interspaced short palindromic repeat-Cas9 (CRISPR-Cas9) system was established in B. subtilis to facilitate precise and efficient genome editing. Then, this system was employed to engineer three more modules to improve amorphadiene production, including the terpene synthase module, the branch pathway module, and the central metabolic pathway module. Finally, our combination of all of the useful strategies within one strain significantly increased extracellular amorphadiene production from 81 to 116 mg/L after 48 h flask fermentation without medium optimization. For the first time, we attenuated the FPP-derived competing pathway to improve amorphadiene biosynthesis and investigated how the TCA cycle affects amorphadiene production in B. subtilis. Overall, this study provides a universal strategy for further increasing terpenoids' production in B. subtilis by comprehensive and systematic metabolic engineering.
Collapse
Affiliation(s)
- Yafeng Song
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Siqi He
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ingy I. Abdallah
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- Department
of Pharmacognosy, Faculty of Pharmacy, Alexandria
University, 21521 Alexandria, Egypt
| | - Anita Jopkiewicz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Rita Setroikromo
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ronald van Merkerk
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Pieter G. Tepper
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Wim J. Quax
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
15
|
Hartz P, Gehl M, König L, Bernhardt R, Hannemann F. Development and application of a highly efficient CRISPR-Cas9 system for genome engineering in Bacillus megaterium. J Biotechnol 2021; 329:170-179. [PMID: 33600891 DOI: 10.1016/j.jbiotec.2021.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/11/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022]
Abstract
Bacillus megaterium has become increasingly important for the biotechnological production of valuable compounds of industrial and pharmaceutical importance. Despite recent advances in rational strain design of B. megaterium, these studies have been largely impaired by the lack of molecular tools that are not state-of-the-art for comprehensive genome engineering approaches. In the current work, we describe the adaptation of the CRISPR-Cas9 vector pJOE8999 to enable efficient genome editing in B. megaterium. Crucial modifications comprise the exchange of promoter elements and associated ribosomal binding sites as well as the implementation of a 5-fluorouracil based counterselection system to facilitate proper plasmid curing. In addition, the functionality and performance of the new CRISPR-Cas9 vector pMOE was successfully evaluated by chromosomal disruption studies of the endogenous β-galactosidase gene (BMD_2126) and demonstrated an outstanding efficiency of 100 % based on combinatorial pheno- and genotype analyses. Furthermore, pMOE was applied for the genomic deletion of a steroid esterase gene (BMD_2256) that was identified among several other candidates as the gene encoding the esterase, which prevented accumulation of pharmaceutically important glucocorticoid esters. Recombinant expression of the bacterial chloramphenicol acetyltransferase 1 gene (cat1) in the resulting esterase deficient B. megaterium strain ultimately yielded C21-acetylated as well as novel C21-esterified derivates of cortisone.
Collapse
Affiliation(s)
- Philip Hartz
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Manuel Gehl
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany; Present address: Microbial Protein Structure Group, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg, Germany
| | - Lisa König
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Rita Bernhardt
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany
| | - Frank Hannemann
- Department of Biochemistry, Saarland University, Campus Building B2.2, 66123 Saarbrücken, Germany.
| |
Collapse
|
16
|
Fragment Exchange Plasmid Tools for CRISPR/Cas9-Mediated Gene Integration and Protease Production in Bacillus subtilis. Appl Environ Microbiol 2020; 87:AEM.02090-20. [PMID: 33097498 PMCID: PMC7755240 DOI: 10.1128/aem.02090-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022] Open
Abstract
We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host. Since its discovery as part of the bacterial adaptative immune system, CRISPR/Cas has emerged as the most promising tool for targeted genome editing over the past few years. Various tools for genome editing in Bacillus subtilis have recently been developed, expanding and simplifying its potential development as an industrial species. A collection of vectors compatible with high-throughput (HTP) fragment exchange (FX) cloning for heterologous expression in Escherichia coli and Bacillus was previously developed. This vector catalogue was through this work supplemented with editing plasmids for genome engineering in Bacillus by adapting two CRISPR/Cas plasmids to the cloning technology. The customized tools allow versatile editing at any chosen genomic position (single-plasmid strategy) or at a fixed genomic locus (double-plasmid strategy). The single-plasmid strategy was validated by deleting the spoIIAC gene, which has an essential role in sporulation. Using the double-plasmid strategy, we demonstrate the quick transition from plasmid-based subtilisin expression to the stable integration of the gene into the amyE locus of a seven-protease-deficient KO7 strain. The newly engineered B. subtilis strain allowed the successful production of a functional enzyme. The customized tools provide improvements to the cloning procedure, should be useful for versatile genomic engineering, and contribute to a cloning platform for a quick transition from HTP enzyme expression to production through the fermentation of industrially relevant B. subtilis and related strains. IMPORTANCE We complemented a cloning platform with new editing plasmids that allow a quick transition from high-throughput cloning and the expression of new enzymes to the stable integration of genes for the production of enzymes through B. subtilis fermentation. We present two systems for the effective assembly cloning of any genome-editing cassette that shortens the engineering procedure to obtain the final editing constructs. The utility of the customized tools is demonstrated by disrupting Bacillus’ capacity to sporulate and by introducing the stable expression of subtilisin. The tools should be useful to engineer B. subtilis strains by a variety of recombination events to ultimately improve the application range of this industry-relevant host.
Collapse
|
17
|
Challenges of in vitro genome editing with CRISPR/Cas9 and possible solutions: A review. Gene 2020; 753:144813. [DOI: 10.1016/j.gene.2020.144813] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 05/23/2020] [Indexed: 12/20/2022]
|
18
|
Yu S, Price MA, Wang Y, Liu Y, Guo Y, Ni X, Rosser SJ, Bi C, Wang M. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Bacillus subtilis. ACS Synth Biol 2020; 9:1781-1789. [PMID: 32551562 DOI: 10.1021/acssynbio.0c00151] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Base editing technology based on clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) is a recent addition to the family of CRISPR technologies. Compared with the traditional CRISPR/Cas9 technology, it does not rely on DNA double strand break and homologous recombination, and can realize gene inactivation and point mutation more quickly and simply. Herein, we first developed a base editing method for genome editing in Bacillus subtilis utilizing CRISPR/dCas9 (a fully nuclease-deficient mutant of Cas9 from S. pyogenes) and activation-induced cytidine deaminase (AID). This method achieved three and four loci simultaneous editing with editing efficiency up to 100% and 50%, respectively. Our base editing system in B. subtilis has a 5 nt editing window, which is similar to previously reported base editing in other microorganisms. We demonstrated that the plasmid curing rate is almost 100%, which is advantageous for multiple rounds of genome engineering in B. subtilis. Finally, we applied multiplex genome editing to generate a B. subtilis 168 mutant strain with eight inactive extracellular protease genes in just two rounds of base editing and plasmid curing, suggesting that it is a powerful tool for gene manipulation in B. subtilis and industrial applications in the future.
Collapse
Affiliation(s)
- Sili Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Marcus A. Price
- Centre for Synthetic and Systems Biology and UK Centre for Mammalian Synthetic Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Yu Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yang Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Susan J. Rosser
- Centre for Synthetic and Systems Biology and UK Centre for Mammalian Synthetic Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Changhao Bi
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
19
|
Price MA, Cruz R, Bryson J, Escalettes F, Rosser SJ. Expanding and understanding the CRISPR toolbox for
Bacillus subtilis
with MAD7 and dMAD7. Biotechnol Bioeng 2020; 117:1805-1816. [DOI: 10.1002/bit.27312] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/15/2020] [Accepted: 02/19/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Marcus A. Price
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and BiotechnologyUniversity of Edinburgh Edinburgh UK
| | - Rita Cruz
- Molecular Biology DepartmentIngenza Ltd., Roslin Innovation Centre Roslin UK
| | - James Bryson
- School of Biological Sciences, UK Centre for Mammalian Synthetic BiologyUniversity of Edinburgh Edinburgh UK
| | - Franck Escalettes
- Molecular Biology DepartmentIngenza Ltd., Roslin Innovation Centre Roslin UK
| | - Susan J. Rosser
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and BiotechnologyUniversity of Edinburgh Edinburgh UK
- School of Biological Sciences, UK Centre for Mammalian Synthetic BiologyUniversity of Edinburgh Edinburgh UK
- Centre for Synthetic and Systems Biology and UK Centre for Mammalian Synthetic Biology, School of Biological SciencesUniversity of Edinburgh UK
| |
Collapse
|
20
|
Ribeiro LF, Amarelle V, Alves LDF, Viana de Siqueira GM, Lovate GL, Borelli TC, Guazzaroni ME. Genetically Engineered Proteins to Improve Biomass Conversion: New Advances and Challenges for Tailoring Biocatalysts. Molecules 2019; 24:molecules24162879. [PMID: 31398877 PMCID: PMC6719137 DOI: 10.3390/molecules24162879] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 01/02/2023] Open
Abstract
Protein engineering emerged as a powerful approach to generate more robust and efficient biocatalysts for bio-based economy applications, an alternative to ecologically toxic chemistries that rely on petroleum. On the quest for environmentally friendly technologies, sustainable and low-cost resources such as lignocellulosic plant-derived biomass are being used for the production of biofuels and fine chemicals. Since most of the enzymes used in the biorefinery industry act in suboptimal conditions, modification of their catalytic properties through protein rational design and in vitro evolution techniques allows the improvement of enzymatic parameters such as specificity, activity, efficiency, secretability, and stability, leading to better yields in the production lines. This review focuses on the current application of protein engineering techniques for improving the catalytic performance of enzymes used to break down lignocellulosic polymers. We discuss the use of both classical and modern methods reported in the literature in the last five years that allowed the boosting of biocatalysts for biomass degradation.
Collapse
Affiliation(s)
- Lucas Ferreira Ribeiro
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| | - Vanesa Amarelle
- Department of Microbial Biochemistry and Genomics, Biological Research Institute Clemente Estable, Montevideo, PC 11600, Uruguay
| | - Luana de Fátima Alves
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | | | - Gabriel Lencioni Lovate
- Department of Biochemistry and Immunology, Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil
| | - Tiago Cabral Borelli
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil
| | - María-Eugenia Guazzaroni
- Department of Biology, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
| |
Collapse
|