1
|
Bumbak F, Bower JB, Zemmer SC, Inoue A, Pons M, Paniagua JC, Yan F, Ford J, Wu H, Robson SA, Bathgate RAD, Scott DJ, Gooley PR, Ziarek JJ. Stabilization of pre-existing neurotensin receptor conformational states by β-arrestin-1 and the biased allosteric modulator ML314. Nat Commun 2023; 14:3328. [PMID: 37286565 PMCID: PMC10247727 DOI: 10.1038/s41467-023-38894-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The neurotensin receptor 1 (NTS1) is a G protein-coupled receptor (GPCR) with promise as a drug target for the treatment of pain, schizophrenia, obesity, addiction, and various cancers. A detailed picture of the NTS1 structural landscape has been established by X-ray crystallography and cryo-EM and yet, the molecular determinants for why a receptor couples to G protein versus arrestin transducers remain poorly defined. We used 13CεH3-methionine NMR spectroscopy to show that binding of phosphatidylinositol-4,5-bisphosphate (PIP2) to the receptor's intracellular surface allosterically tunes the timescale of motions at the orthosteric pocket and conserved activation motifs - without dramatically altering the structural ensemble. β-arrestin-1 further remodels the receptor ensemble by reducing conformational exchange kinetics for a subset of resonances, whereas G protein coupling has little to no effect on exchange rates. A β-arrestin biased allosteric modulator transforms the NTS1:G protein complex into a concatenation of substates, without triggering transducer dissociation, suggesting that it may function by stabilizing signaling incompetent G protein conformations such as the non-canonical state. Together, our work demonstrates the importance of kinetic information to a complete picture of the GPCR activation landscape.
Collapse
Affiliation(s)
- Fabian Bumbak
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| | - James B Bower
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Skylar C Zemmer
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, 980-8578, Japan
| | - Miquel Pons
- Biomolecular NMR laboratory, Department of Inorganic and Organic Chemistry, Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Juan Carlos Paniagua
- Department of Materials Science and Physical Chemistry & Institute of Theoretical and Computational Chemistry (IQTCUB), Universitat de Barcelona (UB), 08028, Barcelona, Spain
| | - Fei Yan
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - James Ford
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
| | - Hongwei Wu
- Department of Chemistry, Indiana University, Bloomington, IN, 47405-7102, USA
- School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Scott A Robson
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA
| | - Ross A D Bathgate
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Scott
- The Florey Institute of Neuroscience and Mental Health and Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Paul R Gooley
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua J Ziarek
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
2
|
Gulezian E, Crivello C, Bednenko J, Zafra C, Zhang Y, Colussi P, Hussain S. Membrane protein production and formulation for drug discovery. Trends Pharmacol Sci 2021; 42:657-674. [PMID: 34270922 DOI: 10.1016/j.tips.2021.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Integral membrane proteins (MPs) are important drug targets across most fields of medicine, but historically have posed a major challenge for drug discovery due to difficulties in producing them in functional forms. We review the state of the art in drug discovery strategies using recombinant multipass MPs, and outline methods to successfully express, stabilize, and formulate them for small-molecule and monoclonal antibody therapeutics development. Advances in structure-based drug design and high-throughput screening are allowing access to previously intractable targets such as ion channels and transporters, propelling the field towards the development of highly specific therapies targeting desired conformations.
Collapse
Affiliation(s)
- Ellen Gulezian
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | | | - Janna Bednenko
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Claudia Zafra
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Yihui Zhang
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Paul Colussi
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA
| | - Sunyia Hussain
- TetraGenetics Inc., 91 Mystic Street, Arlington, MA 02474, USA.
| |
Collapse
|
3
|
Mobbs JI, Belousoff MJ, Harikumar KG, Piper SJ, Xu X, Furness SGB, Venugopal H, Christopoulos A, Danev R, Wootten D, Thal DM, Miller LJ, Sexton PM. Structures of the human cholecystokinin 1 (CCK1) receptor bound to Gs and Gq mimetic proteins provide insight into mechanisms of G protein selectivity. PLoS Biol 2021; 19:e3001295. [PMID: 34086670 PMCID: PMC8208569 DOI: 10.1371/journal.pbio.3001295] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/16/2021] [Accepted: 05/19/2021] [Indexed: 01/08/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are critical regulators of cellular function acting via heterotrimeric G proteins as their primary transducers with individual GPCRs capable of pleiotropic coupling to multiple G proteins. Structural features governing G protein selectivity and promiscuity are currently unclear. Here, we used cryo-electron microscopy (cryo-EM) to determine structures of the cholecystokinin (CCK) type 1 receptor (CCK1R) bound to the CCK peptide agonist, CCK-8 and 2 distinct transducer proteins, its primary transducer Gq, and the more weakly coupled Gs. As seen with other Gq/11-GPCR complexes, the Gq-α5 helix (αH5) bound to a relatively narrow pocket in the CCK1R core. Surprisingly, the backbone of the CCK1R and volume of the G protein binding pocket were essentially equivalent when Gs was bound, with the Gs αH5 displaying a conformation that arises from "unwinding" of the far carboxyl-terminal residues, compared to canonically Gs coupled receptors. Thus, integrated changes in the conformations of both the receptor and G protein are likely to play critical roles in the promiscuous coupling of individual GPCRs.
Collapse
MESH Headings
- Cholecystokinin/metabolism
- Cholesterol/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/chemistry
- GTP-Binding Protein alpha Subunits, Gq-G11/metabolism
- GTP-Binding Protein alpha Subunits, Gq-G11/ultrastructure
- GTP-Binding Protein alpha Subunits, Gs/chemistry
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- GTP-Binding Protein alpha Subunits, Gs/ultrastructure
- HEK293 Cells
- Humans
- Models, Molecular
- Protein Binding
- Receptors, Cholecystokinin/chemistry
- Receptors, Cholecystokinin/metabolism
- Receptors, Cholecystokinin/ultrastructure
- Signal Transduction
Collapse
Affiliation(s)
- Jesse I. Mobbs
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Matthew J. Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Kaleeckal G. Harikumar
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Sarah J. Piper
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Sebastian G. B. Furness
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Hari Venugopal
- Ramaciotti Centre for Cryo-Electron Microscopy, Monash University, Clayton, Victoria, Australia
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - David M. Thal
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Patrick M. Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
4
|
Dijkman PM, Muñoz-García JC, Lavington SR, Kumagai PS, dos Reis RI, Yin D, Stansfeld PJ, Costa-Filho AJ, Watts A. Conformational dynamics of a G protein-coupled receptor helix 8 in lipid membranes. SCIENCE ADVANCES 2020; 6:eaav8207. [PMID: 32851152 PMCID: PMC7428336 DOI: 10.1126/sciadv.aav8207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 07/02/2020] [Indexed: 05/21/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and pharmaceutically most important class of membrane proteins encoded in the human genome, characterized by a seven-transmembrane helix architecture and a C-terminal amphipathic helix 8 (H8). In a minority of GPCR structures solved to date, H8 either is absent or adopts an unusual conformation. The controversial existence of H8 of the class A GPCR neurotensin receptor 1 (NTS1) has been examined here for the nonthermostabilized receptor in a functionally supporting membrane environment using electron paramagnetic resonance, molecular dynamics simulations, and circular dichroism. Lipid-protein interactions with phosphatidylserine and phosphatidylethanolamine lipids, in particular, stabilize the residues 374 to 390 of NTS1 into forming a helix. Furthermore, introduction of a helix-breaking proline residue in H8 elicited an increase in ß-arrestin-NTS1 interactions observed in pull-down assays, suggesting that the structure and/or dynamics of H8 might play an important role in GPCR signaling.
Collapse
Affiliation(s)
- Patricia M. Dijkman
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Juan C. Muñoz-García
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Steven R. Lavington
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Patricia Suemy Kumagai
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, C.P. 369, São Carlos SP 13560-970, Brazil
| | - Rosana I. dos Reis
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel Yin
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Phillip J. Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Antonio José Costa-Filho
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto SP 14040-901, Brazil
| | - Anthony Watts
- Biomembrane Structure Unit, Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- Corresponding author.
| |
Collapse
|
5
|
Small-scale approach for precrystallization screening in GPCR X-ray crystallography. Nat Protoc 2019; 15:144-160. [PMID: 31784719 DOI: 10.1038/s41596-019-0259-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/28/2019] [Indexed: 12/25/2022]
Abstract
G protein-coupled receptors (GPCRs) are important pharmaceutical targets. Knowledge of their 3D structures is critical to understanding mechanisms of drug action. Low cellular expression, purification yield, and in vitro instability are substantial hurdles to the successful determination of GPCR structure. Intense effort is required to optimize a receptor's protein sequence and purification procedure, increasing the complexity of the precrystallization process. Here, we present a procedure for a small-scale precrystallization screen that involves detecting GPCR expression levels in Spodoptera frugiperda (Sf9) culture by flow cytometry and evaluating GPCR stability by size-exclusion chromatography and UV absorbance measurements. The example procedure uses the smallest volumes of Sf9 cell culture that will yield sufficient quantities of purified protein for intrinsic UV absorbance analysis and is amenable to medium throughput with the same constructs and conditions that would be scaled up for crystallization trials. The protocol takes 8 d to complete and requires expertise in cell culture, protein purification, and chromatography.
Collapse
|
6
|
Gupta K, Tölzer C, Sari-Ak D, Fitzgerald DJ, Schaffitzel C, Berger I. MultiBac: Baculovirus-Mediated Multigene DNA Cargo Delivery in Insect and Mammalian Cells. Viruses 2019; 11:E198. [PMID: 30813511 PMCID: PMC6466381 DOI: 10.3390/v11030198] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/22/2022] Open
Abstract
The baculovirus/insect cell system (BICS) is widely used in academia and industry to produce eukaryotic proteins for many applications, ranging from structure analysis to drug screening and the provision of protein biologics and therapeutics. Multi-protein complexes have emerged as vital catalysts of cellular function. In order to unlock the structure and mechanism of these essential molecular machines and decipher their function, we developed MultiBac, a BICS particularly tailored for heterologous multigene transfer and multi-protein complex production. Baculovirus is unique among common viral vectors in its capacity to accommodate very large quantities of heterologous DNA and to faithfully deliver this cargo to a host cell of choice. We exploited this beneficial feature to outfit insect cells with synthetic DNA circuitry conferring new functionality during heterologous protein expression, and developing customized MultiBac baculovirus variants in the process. By altering its tropism, recombinant baculovirions can be used for the highly efficient delivery of a customized DNA cargo in mammalian cells and tissues. Current advances in synthetic biology greatly facilitate the construction or recombinant baculoviral genomes for gene editing and genome engineering, mediated by a MultiBac baculovirus tailored to this purpose. Here, recent developments and exploits of the MultiBac system are presented and discussed.
Collapse
Affiliation(s)
- Kapil Gupta
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Christine Tölzer
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Duygu Sari-Ak
- European Molecular Biology Laboratory EMBL, 71 Avenue des Martyrs, 38000 Grenoble, France.
| | | | - Christiane Schaffitzel
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| | - Imre Berger
- School of Biochemistry, Biomedical Sciences, University of Bristol, 1 Tankard's Close, Bristol BS8 1TD, UK.
- Bristol Synthetic Biology Centre BrisSynBio, University of Bristol, 4 Tyndall Ave, Bristol BS8 1TQ, UK.
| |
Collapse
|