1
|
Ekmekçioğlu Ö, Battal M, Bostancı Ö, Yılmaz Özgüven B. The Impact of Metabolic 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Parameters on the Prognosis of Resectable Pancreatic Adenocarcinoma. Mol Imaging Radionucl Ther 2023; 32:35-41. [PMID: 36818599 PMCID: PMC9950685 DOI: 10.4274/mirt.galenos.2022.93823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Objectives 18F-fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) is a useful staging method in pancreatic cancer. The prognosis of pancreatic adenocarcinoma is affected by the tumor stage and resectable state. Maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of primary tumors are related to prognostic parameters in pancreatic cancer. This study compared 18F-FDG PET/CT findings with prognostic factors and overall survival of patients with pancreatic cancer. Methods Patients with pancreatic adenocarcinoma, referred to our department between 2015 and 2022 for staging, were retrospectively evaluated. Head-to mid-thigh PET/CT images were obtained 1 h after 18F-FDG injection. Demographic data, survival, and clinical and pathological findings of 39 patients, who underwent surgery after PET/CT imaging, were collected. All primary tumor MTV, SUVmax, background SUVmax, and TLG data have were measured. Results The images of 39 patients (24 women and 15 men) with a mean age of 66.62±9.60 years were evaluated. The mean SUVmax, MTV 40%, and TLG of the primary tumors in the pancreatic tissue were 6.28±2.33, 19.33±9.77, and 66.56±45.99, respectively. The average survival after disease diagnosis was 18.97±11.47 (2-55) months. MTV and TLG were significantly higher in patients who died during our study. SUVmax has a significant effect on mortality. Conclusion 18F-FDG PET/CT metabolic parameters of SUVmax, MTV, and TLG could help predicting the prognosis of pancreatic cancer preoperatively and follow-up in patients with resectable tumors. Additionally, in our study group tumor grade and perineural invasion significantly affected overall survival.
Collapse
Affiliation(s)
- Özgül Ekmekçioğlu
- University of Health Sciences Turkey, Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Nuclear Medicine, İstanbul, Turkey
| | - Muharrem Battal
- University of Health Sciences Turkey, Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Hepatobiliary Surgery, İstanbul, Turkey
| | - Özgür Bostancı
- University of Health Sciences Turkey, Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Hepatobiliary Surgery, İstanbul, Turkey
| | - Banu Yılmaz Özgüven
- University of Health Sciences Turkey, Şişli Hamidiye Etfal Training and Research Hospital, Clinic of Pathology, İstanbul, Turkey
| |
Collapse
|
2
|
Pang XX, Xie L, Yao WJ, Liu XX, Pan B, Chen N. Advancements of molecular imaging and radiomics in pancreatic carcinoma. World J Radiol 2023; 15:10-19. [PMID: 36721672 PMCID: PMC9884334 DOI: 10.4329/wjr.v15.i1.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Despite the recent progress of medical technology in the diagnosis and treatment of tumors, pancreatic carcinoma remains one of the most malignant tumors, with extremely poor prognosis partly due to the difficulty in early and accurate imaging evaluation. This paper focuses on the research progress of magnetic resonance imaging, nuclear medicine molecular imaging and radiomics in the diagnosis of pancreatic carcinoma. We also briefly described the achievements of our team in this field, to facilitate future research and explore new technologies to optimize diagnosis of pancreatic carcinoma.
Collapse
Affiliation(s)
- Xiao-Xi Pang
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Liang Xie
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Wen-Jun Yao
- Department of Radiology, The Second affiliated hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Xiu-Xia Liu
- Department of Nuclear Medicine, The Second Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Bo Pan
- PET/CT Center, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui Province, China
| | - Ni Chen
- Department of Nuclear Medicine, School of Basic Medicine Anhui Medical University, Hefei 230032, Anhui Province, China
| |
Collapse
|
3
|
Abdelrahman AM, Goenka AH, Alva-Ruiz R, Yonkus JA, Leiting JL, Graham RP, Merrell KW, Thiels CA, Hallemeier CL, Warner SG, Haddock MG, Grotz TE, Tran NH, Smoot RL, Ma WW, Cleary SP, McWilliams RR, Nagorney DM, Halfdanarson TR, Kendrick ML, Truty MJ. FDG-PET Predicts Neoadjuvant Therapy Response and Survival in Borderline Resectable/Locally Advanced Pancreatic Adenocarcinoma. J Natl Compr Canc Netw 2022; 20:1023-1032.e3. [PMID: 36075389 DOI: 10.6004/jnccn.2022.7041] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/03/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neoadjuvant therapy (NAT) is used in borderline resectable/locally advanced (BR/LA) pancreatic ductal adenocarcinoma (PDAC). Anatomic imaging (CT/MRI) poorly predicts response, and biochemical (CA 19-9) markers are not useful (nonsecretors/nonelevated) in many patients. Pathologic response highly predicts survival post-NAT, but is only known postoperatively. Because metabolic imaging (FDG-PET) reveals primary tumor viability, this study aimed to evaluate our experience with preoperative FDG-PET in patients with BR/LA PDAC in predicting NAT response and survival. METHODS We reviewed all patients with resected BR/LA PDAC who underwent NAT with FDG-PET within 60 days of resection. Pre- and post-NAT metabolic (FDG-PET) and biochemical (CA 19-9) responses were dichotomized in addition to pathologic responses. We compared post-NAT metabolic and biochemical responses as preoperative predictors of pathologic responses and recurrence-free survival (RFS) and overall survival (OS). RESULTS We identified 202 eligible patients. Post-NAT, 58% of patients had optimization of CA 19-9 levels. Major metabolic and pathologic responses were present in 51% and 38% of patients, respectively. Median RFS and OS times were 21 and 48.7 months, respectively. Metabolic response was superior to biochemical response in predicting pathologic response (area under the curve, 0.86 vs 0.75; P<.001). Metabolic response was the only univariate preoperative predictor of OS (odds ratio, 0.25; 95% CI, 0.13-0.40), and was highly correlated (P=.001) with pathologic response as opposed to biochemical response alone. After multivariate adjustment, metabolic response was the single largest independent preoperative predictor (P<.001) for pathologic response (odds ratio, 43.2; 95% CI, 16.9-153.2), RFS (hazard ratio, 0.37; 95% CI, 0.2-0.6), and OS (hazard ratio, 0.21; 95% CI, 0.1-0.4). CONCLUSIONS Among patients with post-NAT resected BR/LA PDAC, FDG-PET highly predicts pathologic response and survival, superior to biochemical responses alone. Given the poor ability of anatomic imaging or biochemical markers to assess NAT responses in these patients, FDG-PET is a preoperative metric of NAT efficacy, thereby allowing potential therapeutic alterations and surgical treatment decisions. We suggest that FDG-PET should be an adjunct and recommended modality during the NAT phase of care for these patients.
Collapse
Affiliation(s)
| | - Ajit H Goenka
- Division of Nuclear Medicine Radiology, Department of Radiology
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | - Jennifer A Yonkus
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | | | - Rondell P Graham
- Division of Anatomic Pathology, Department of Laboratory Medicine and Pathology
| | | | | | | | - Susanne G Warner
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | | | - Travis E Grotz
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | - Nguyen H Tran
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Rory L Smoot
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | - Wen Wee Ma
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Sean P Cleary
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | - Robert R McWilliams
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - David M Nagorney
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| | | | | | - Mark J Truty
- Division of Hepatobiliary and Pancreas Surgery, Department of Surgery
| |
Collapse
|
4
|
Pu Y, Wang C, Zhao S, Xie R, Zhao L, Li K, Yang C, Zhang R, Tian Y, Tan L, Li J, Li S, Chen L, Sun H. The clinical application of 18F-FDG PET/CT in pancreatic cancer: a narrative review. Transl Cancer Res 2021; 10:3560-3575. [PMID: 35116659 PMCID: PMC8799156 DOI: 10.21037/tcr-21-169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/20/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is one of the worst prognoses of all malignant tumors, with an annual incidence near its annual mortality rate. To improve the prognosis of patients with pancreatic cancer, it is essential to diagnose and evaluate pancreatic cancer early. Imaging examinations play an essential role in tumor detection, staging, and surgical resection assessment and can provide reliable evidence for the diagnosis and treatment of pancreatic cancer. Currently, imaging techniques commonly used for pancreatic cancer include endoscopic ultrasound (EUS), conventional ultrasound, magnetic resonance imaging (MRI), multidetector spiral computed tomography (MDCT), positron emission tomography/computed tomography (PET/CT), and others PET/CT is a new imaging device composed of PET and CT. 18F-Fluorodeoxyglucose (18F-FDG) is a commonly used tracer in the clinic. Cancer cells are more robust than other ordinary cells in that they can ingest glucose, and the structure of glucose is similar to the structure of 18F-FDG. Therefore, after the injection of 18F-FDG, 18F-FDG in tumor cells appears very thick during PET scanning. Therefore, PET/CT can determine the metabolic capacity and anatomical position of pancreatic tumor cells in the body accurately diagnose the patient's condition and tumor location. It plays a vital role in early diagnosis and accurate staging, predicts survival, and monitors therapeutic effectiveness and pancreatic cancer recurrence. Although 18F-FDG PET/CT has limitations in identifying inflammatory diseases and tumors, it still has good development potential. This article reviews the clinical application of 18F-FDG PET/CT in pancreatic cancer.
Collapse
Affiliation(s)
- Yongzhu Pu
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Chun Wang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Sheng Zhao
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Ran Xie
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Lei Zhao
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Kun Li
- Department of Radiology, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Conghui Yang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Rui Zhang
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Yadong Tian
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Lixian Tan
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Jindan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Shujuan Li
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Long Chen
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| | - Hua Sun
- Department of PET/CT Center, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Cancer Center of Yunnan Province, Kunming, China
| |
Collapse
|
5
|
Arnone A, Laudicella R, Caobelli F, Guglielmo P, Spallino M, Abenavoli E, Martini AL, Filice R, Comis AD, Cuzzocrea M, Linguanti F, Evangelista L, Alongi P. Clinical Impact of 18F-FDG PET/CT in the Diagnostic Workup of Pancreatic Ductal Adenocarcinoma: A Systematic Review. Diagnostics (Basel) 2020; 10:diagnostics10121042. [PMID: 33287195 PMCID: PMC7761738 DOI: 10.3390/diagnostics10121042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
In this review, the performance of fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in the diagnostic workup of pancreatic ductal adenocarcinoma (PDAC) is evaluated. A comprehensive literature search up to September 2020 was performed, selecting studies with the presence of: sample size ≥10 patients and index test (i.e., “FDG” or “18F-FDG” AND “pancreatic adenocarcinoma” or “pancreas cancer” AND “PET” or “positron emission tomography”). The methodological quality was evaluated using the revised quality assessment of diagnostic accuracy studies (QUADAS-2) tool and presented according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines. Basic data (authors, year of publication, country and study design), patients’ characteristics (number of enrolled subjects and age), disease phase, type of treatment and grading were retrieved. Forty-six articles met the adopted research criteria. The articles were divided according to the considered clinical context. Namely, besides conventional anatomical imaging, such as computed tomography (CT) and magnetic resonance imaging (MRI), molecular imaging with FDG PET/CT is an important tool in PDAC, for all disease stages. Further prospective studies will be necessary to confirm the cost-effectiveness of such imaging techniques by testing its real potential improvement in the clinical management of PDAC.
Collapse
Affiliation(s)
- Annachiara Arnone
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
- Correspondence:
| | - Riccardo Laudicella
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (A.D.C.)
| | - Federico Caobelli
- Clinic of Radiology & Nuclear Medicine, University Hospital Basel, University of Basel, 4031 Basel, Switzerland;
| | - Priscilla Guglielmo
- Nuclear Medicine Division, University Hospital of Parma, 43126 Parma, Italy;
| | - Marianna Spallino
- Nuclear Medicine Unit, ASST “Papa Giovanni XXIII”, 24127 Bergamo, Italy;
| | - Elisabetta Abenavoli
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
| | - Anna Lisa Martini
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
| | - Rossella Filice
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (A.D.C.)
| | - Alessio Danilo Comis
- Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, Nuclear Medicine Unit, University of Messina, 98125 Messina, Italy; (R.L.); (R.F.); (A.D.C.)
| | - Marco Cuzzocrea
- Nuclear Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Flavia Linguanti
- Nuclear Medicine Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Florence, Italy; (E.A.); (A.L.M.); (F.L.)
| | - Laura Evangelista
- Nuclear Medicine Unit, Department of Medicine, Padova University Hospital, Via Giustiniani 2, 35128 Padova, Italy;
| | - Pierpaolo Alongi
- Unit of Nuclear Medicine, Fondazione Istituto G.Giglio, 90015 Cefalù, Italy;
| |
Collapse
|
6
|
Ma S, Liu Y. Diagnostic value of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in sublingual and submandibular salivary gland tumors. Mol Clin Oncol 2020; 13:27. [PMID: 32765874 DOI: 10.3892/mco.2020.2097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 04/22/2020] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to compare the diagnostic accuracy of fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) with that of conventional imaging studies (CIS), such as CT or magnetic resonance imaging (MRI), in the clinical diagnosis and staging of submandibular and sublingual salivary gland tumors. In addition, the data obtained were used to evaluate the significance of maximum standardized uptake value (SUVmax) in diagnosing benign or malignant lesions. For the present study, 18 patients with submandibular or sublingual neoplasms underwent F-18 FDG PET/CT imaging with accompanying CT or MRI. The diagnostic values from 43 F-18 FDG PET/CT scans and 28 CIS of the 18 patients were compared to the gold standard histopathological and/or cytopathological diagnosis. The results demonstrated that the diagnostic accuracy for predicting primary tumors was similar between F-18 FDG PET/CT and CIS. By contrast, PET/CT imaging was more accurate in detecting lymph node metastasis compared with CT or MRI (95.4 vs. 66.7%). F-18 FDG PET/CT had a sensitivity of 88.9% and a specificity of 97.1%, whereas CT or MRI had a sensitivity of 54.5% and a specificity of 75.0%. F-18 FDG PET/CT also enabled screening for distant metastasis, as observed in 10 cases in the present study. Furthermore, there were no significant differences in SUVmax between benign or malignant salivary gland lesions, as high glucose metabolism was also observed in benign tumors. In conclusion, F-18 FDG PET/CT provides more accurate diagnostic information for the evaluation of submandibular and sublingual salivary gland tumors as compared with CIS in terms of lymph node and distant metastasis.
Collapse
Affiliation(s)
- Sirui Ma
- Division of General Surgery, Department of Surgery, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| | - Yiyan Liu
- Division of Nuclear Medicine, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Barnes CA, Aldakkak M, Clarke CN, Christians KK, Bucklan D, Holt M, Tolat P, Ritch PS, George B, Hall WA, Erickson BA, Evans DB, Tsai S. Value of Pretreatment 18F-fluorodeoxyglucose Positron Emission Tomography in Patients With Localized Pancreatic Cancer Treated With Neoadjuvant Therapy. Front Oncol 2020; 10:500. [PMID: 32363161 PMCID: PMC7180175 DOI: 10.3389/fonc.2020.00500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background:18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) imaging is not routine in patients with localized pancreatic cancer (PC). We evaluated the prognostic value of PET/CT in patients who received neoadjuvant therapy. Methods: Patients with localized PC underwent pretreatment PET/CT with or without posttreatment (preop) PET/CT. Maximum standardized uptake values (SUV) were classified as high or low based on a cut point of 7.5 at diagnosis (SUVdx) and 3.5 after neoadjuvant therapy (preoperative; SUVpreop). Preop carbohydrate antigen 19-9 (CA19-9) was classified as normal ( ≤ 35 U/mL) or elevated. Results: Pretreatment PET/CT imaging was performed on 201 consecutive patients; SUVdx was high in 98 (49%) and low in 103 (51%). Preop PET/CT was available in 104 (52%) of the 201 patients; SUVpreop was high in 60 (58%) and low in 44 (42%). Following neoadjuvant therapy, preop CA19-9 was normal in 90 (45%) patients and elevated in 111 (55%). Median overall survival (OS) of all patients was 27 months; 33 months for the 103 patients with a low SUVdx and 22 months for the 98 patients with a high SUVdx (p = 0.03). Median OS for patients with low SUVdx/normal preop CA19-9, high SUVdx/normal preop CA19-9, low SUVdx/elevated preop CA19-9, and high SUVdx/elevated preop CA19-9 were 66, 34, 23, and 17 months, respectively (p < 0.0001). OS was 44 months for the 148 (74%) patients who completed all intended neoadjuvant therapy and surgery and 13 months for the 53 (26%) who did not undergo surgery (p < 0.001). Conclusion: Pretreatment PET/CT avidity and preop CA19-9 are clinically significant prognostic markers in patients with PC.
Collapse
Affiliation(s)
- Chad A Barnes
- LaBahn Pancreatic Cancer Program, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- LaBahn Pancreatic Cancer Program, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Callisia N Clarke
- LaBahn Pancreatic Cancer Program, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kathleen K Christians
- LaBahn Pancreatic Cancer Program, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Daniel Bucklan
- Department of Radiology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Holt
- Department of Radiology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Parag Tolat
- Department of Radiology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Paul S Ritch
- Department of Medicine, Division of Hematology and Oncology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ben George
- Department of Medicine, Division of Hematology and Oncology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - William A Hall
- Department of Radiation Oncology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Beth A Erickson
- Department of Radiation Oncology, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Douglas B Evans
- LaBahn Pancreatic Cancer Program, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- LaBahn Pancreatic Cancer Program, Department of Surgery, The Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|