1
|
Dale II J, Harberson MT, Hill JW. From Parental Behavior to Sexual Function: Recent Advances in Oxytocin Research. CURRENT SEXUAL HEALTH REPORTS 2024; 16:119-130. [PMID: 39224135 PMCID: PMC11365839 DOI: 10.1007/s11930-024-00386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 09/04/2024]
Abstract
Purpose of Review Oxytocin plays many diverse roles in physiological and behavioral processes, including social activity, parental nurturing, stress responses, and sexual function. In this narrative review, we provide an update on the most noteworthy recent findings in this fascinating field. Recent Findings The development of techniques such as serial two-photon tomography and fiber photometry have provided a window into oxytocin neuroanatomy and real-time neuronal activity during social interactions. fMRI and complementary mapping techniques offer new insights into oxytocin's influence on brain activity and connectivity. Indeed, oxytocin has recently been found to influence the acquisition of maternal care behaviors and to mediate the influence of social touch on brain development and social interaction. Additionally, oxytocin plays a crucial role in male sexual function, affecting erectile activity and ejaculation, while its role in females remains controversial. Recent studies also highlight oxytocin's interaction with other neuropeptides, such as melanin-concentrating hormone, serotonin, and arginine vasopressin, influencing social and affective behaviors. Finally, an update is provided on the status of clinical trials involving oxytocin as a therapeutic intervention. Summary The exploration of oxytocin's complexities and its interplay with other neuropeptides holds promise for targeted treatment in various health and disease contexts. Overall, these findings contribute to the discovery of new and specific pathways to allow therapeutic targeting of oxytocin to treat disorders.
Collapse
Affiliation(s)
- Joseph Dale II
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
- Department of Biology, University of Toledo College of Medicine, Toledo, OH USA
| | - Mitchell T. Harberson
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
| | - Jennifer W. Hill
- Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Toledo, OH USA
- Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, OH USA
- Department of Obstetrics and Gynecology, University of Toledo College of Medicine, Toledo, OH USA
| |
Collapse
|
2
|
Ford CL, McDonough AA, Horie K, Young LJ. Melanocortin agonism in a social context selectively activates nucleus accumbens in an oxytocin-dependent manner. Neuropharmacology 2024; 247:109848. [PMID: 38253222 PMCID: PMC10923148 DOI: 10.1016/j.neuropharm.2024.109848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/18/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Social deficits are debilitating features of many psychiatric disorders, including autism. While time-intensive behavioral therapy is moderately effective, there are no pharmacological interventions for social deficits in autism. Many studies have attempted to treat social deficits using the neuropeptide oxytocin for its powerful neuromodulatory abilities and influence on social behaviors and cognition. However, clinical trials utilizing supplementation paradigms in which exogenous oxytocin is chronically administered independent of context have failed. An alternative treatment paradigm suggests pharmacologically activating the endogenous oxytocin system during behavioral therapy to enhance the efficacy of therapy by facilitating social learning. To this end, melanocortin receptor agonists like Melanotan II (MTII), which induces central oxytocin release and accelerates formation of partner preference, a form of social learning, in prairie voles, are promising pharmacological tools. To model pharmacological activation of the endogenous oxytocin system during behavioral therapy, we administered MTII prior to social interactions between male and female voles. We assessed its effect on oxytocin-dependent activity in brain regions subserving social learning using Fos expression as a proxy for neuronal activation. In non-social contexts, MTII only activated hypothalamic paraventricular nucleus, a primary site of oxytocin synthesis. However, during social interactions, MTII selectively increased oxytocin-dependent activation of nucleus accumbens, a site critical for social learning. These results suggest a mechanism for the MTII-induced acceleration of partner preference formation observed in previous studies. Moreover, they are consistent with the hypothesis that pharmacologically activating the endogenous oxytocin system with a melanocortin agonist during behavioral therapy has potential to facilitate social learning.
Collapse
Affiliation(s)
- Charles L Ford
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA.
| | - Anna A McDonough
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Kengo Horie
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Silvio O. Conte Center for Oxytocin and Social Cognition, Emory National Primate Research Center, Atlanta, GA, 30329, USA; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
3
|
Gupta N, Gupta M. Off-label psychopharmacological interventions for autism spectrum disorders: strategic pathways for clinicians. CNS Spectr 2024; 29:10-25. [PMID: 37539695 DOI: 10.1017/s1092852923002389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The prevalence of autism spectrum disorder (ASD) continues to see a trend upward with a noticeable increase to 1 in 36 children less than 8 years of age in the recent MMWR. There are many factors linked to the substantially increased burden of seeking mental health services, and clinically these individuals are likely to present for impairments associated with co-occurring conditions. The advances in cutting-edge research and the understanding of co-occurring conditions in addition to psychosocial interventions have provided a window of opportunity for psychopharmacological interventions given the limited availability of therapeutics for core symptomatology. The off-label psychopharmacological treatments for these co-occurring conditions are central to clinical practice. However, the scattered evidence remains an impediment for practitioners to systematically utilize these options. The review collates the crucial scientific literature to provide stepwise treatment alternatives for individuals with ASD; with an aim to lead practitioners in making informed and shared decisions. There are many questions about the safety and tolerability of off-label medications; however, it is considered the best practice to utilize the available empirical data in providing psychoeducation for patients, families, and caregivers. The review also covers experimental medications and theoretical underpinnings to enhance further experimental studies. In summary, amidst the growing clinical needs for individuals with ASD and the lack of approved clinical treatments, the review addresses these gaps with a practical guide to appraise the risk and benefits of off-label medications.
Collapse
Affiliation(s)
| | - Mayank Gupta
- Southwood Psychiatric Hospital, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Qiu Z, Luo D, Yin H, Chen Y, Zhou Z, Zhang J, Zhang L, Xia J, Xie J, Sun Q, Xu W. Lactiplantibacillus plantarum N-1 improves autism-like behavior and gut microbiota in mouse. Front Microbiol 2023; 14:1134517. [PMID: 37007488 PMCID: PMC10060657 DOI: 10.3389/fmicb.2023.1134517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionThe gut-brain axis has been widely recognized in autism spectrum disorder (ASD), and probiotics are considered to potentially benefit the rescuing of autism-like behaviors. As a probiotic strain, Lactiplantibacillus plantarumN-1(LPN-1) was utilized to investigate its effects on gut microbiota and autism-like behaviors in ASD mice constructed by maternal immune activation (MIA).MethodsAdult offspring of MIA mice were given LPN-1 at the dosage of 2 × 109 CFU/g for 4 weeks before subject to the behavior and gut microbiota evaluation.ResultsThe behavioral tests showed that LPN-1 intervention was able to rescue autism-like behaviors in mice, including anxiety and depression. In which the LPN-1 treatment group increased the time spent interacting with strangers in the three-chamber test, their activity time and distance in the central area increased in the open field test, and their immobility time decreased when hanging their tails. Moreover, the supplementation of LPN-1 reversed the intestinal flora structure of ASD mice by enhancing the relative abundance of the pivotal microorganisms of Allobaculum and Oscillospira, while reducing those harmful ones like Sutterella at the genus level.DiscussionThese results suggested that LPN-1 supplementation may improve autism-like behaviors, possibly via regulating the gut microbiota.
Collapse
Affiliation(s)
- Zhongqing Qiu
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Dongmei Luo
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Heng Yin
- Chengdu Third People’s Hospital, Chengdu, China
| | - Yajun Chen
- Chengdu Third People’s Hospital, Chengdu, China
| | - Zhiwei Zhou
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
| | - Linzhu Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jinrong Xia
- Chengdu Third People’s Hospital, Chengdu, China
| | - Jiang Xie
- Chengdu Third People’s Hospital, Chengdu, China
- *Correspondence: Jiang Xie,
| | - Qun Sun
- Key Laboratory of Bio-resources and Eco-Environment, The Ministry of the Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- Qun Sun,
| | - Wenming Xu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
- Reproductive Endocrinology and Regulation Laboratory West China Second University Hospital, Sichuan University, Chengdu, China
- Wenming Xu,
| |
Collapse
|
5
|
Grieb ZA, Cross EA, Albers HE. Alpha-melanocyte-stimulating hormone (αMSH) modulates the rewarding properties of social interactions in an oxytocin receptor-dependent manner in Syrian hamsters (Mesocricetus Auratus). Physiol Behav 2022; 252:113828. [PMID: 35500727 PMCID: PMC10858742 DOI: 10.1016/j.physbeh.2022.113828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/20/2022] [Accepted: 04/28/2022] [Indexed: 10/18/2022]
Abstract
A reduction in the rewarding properties of social interactions is frequently a key contributor to neuropsychiatric disorders. Although much remains to be learned about the neural mechanisms governing social reward, numerous studies have found that oxytocin can enhance the salience of rewarding social interactions. As a result, oxytocin has been suggested as a pharmacotherapy for disorders characterized by a dampening of social motivation. However, exogenous oxytocin does not cross the blood-brain barrier effectively, which has led to the investigation of alternative approaches to induce central oxytocin release, such as pharmaceuticals targeting melanocortins. Although oxytocin treatment is widely viewed to increase social reward, there is also recent evidence that high concentrations of oxytocin can decrease social reward. In the present study we tested the hypothesis that alpha-melanocyte-stimulating hormone (αMSH) influences the rewarding properties of social interactions by acting on oxytocin receptors. Male and female Syrian hamsters were given intracerebroventricular infusions of saline, αMSH, or a cocktail containing αMSH and an oxytocin receptor antagonist during social conditioning with a same-sex hamster and then tested for a conditioned place preference. αMSH decreased preference for the socially-paired chamber compared to saline treatment, and administration of the oxytocin antagonist concurrent with αMSH administration returned subjects' preference to control levels. Importantly, αMSH treatments did not affect any measures of body composition or the specific social behaviors displayed during conditioning. These data suggest that melanocortin-targeting drugs should be administered carefully to avoid the possibility of decreasing the rewarding properties of social interactions.
Collapse
Affiliation(s)
- Zachary A Grieb
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, United States.
| | - Erica A Cross
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, United States
| | - H Elliott Albers
- Neuroscience Institute, 880 Petit Science Center, Georgia State University, Atlanta, GA 30303, United States
| |
Collapse
|
6
|
Neuromotor Development in the Shank3 Mouse Model of Autism Spectrum Disorder. Brain Sci 2022; 12:brainsci12070872. [PMID: 35884680 PMCID: PMC9313282 DOI: 10.3390/brainsci12070872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 02/01/2023] Open
Abstract
Although autism spectrum disorder (ASD) is mainly characterized by developmental delay in social and communication skills, it has been shown that neuromotor deficits are an early component of ASD. The neuromotor development of B6.129-Shank3tm2Gfng/J (Shank3B−/−) mice as an animal model of autism has not been analyzed yet. The aim of this study was to compare the early neuromotor development of Shank3B−/− to wild-type mice. The mice underwent a multitude of neurodevelopmental tests and observations from postnatal day 1 (PND = 1) to weaning. Shank3B−/− mice opened their eyes later than their wild-type litter mates (p < 0.01). Shank3B−/− mice were also slower in the negative geotaxis test from PND = 13 to PND = 16 (p < 0.001) in both sexes. The results of this study indicate neurodevelopmental deficits in Shank3B−/− mice. The test is partially dependent on truncal motor control, and these lines of evidence suggest a phenotype of developmental hypotonia, which corresponds with the phenotypes seen in patients with Phelan-McDermid Syndrome. There was no observable effect of sex in any of the tests. There were no observed differences in upper and lower incisor eruption, ear unfolding, air righting, surface righting and ear twitch reflexes. Further studies should prove whether the delay in neuromotor development is linked to social or communication deficits, and thus, whether it may serve as an early indicator of autistic-like phenotype in mice.
Collapse
|
7
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Gigliucci V, Teutsch J, Woodbury-Smith M, Luoni M, Busnelli M, Chini B, Banerjee A. Region-Specific KCC2 Rescue by rhIGF-1 and Oxytocin in a Mouse Model of Rett Syndrome. Cereb Cortex 2021; 32:2885-2894. [PMID: 34791112 DOI: 10.1093/cercor/bhab388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/17/2023] Open
Abstract
Rett syndrome (RTT) is characterized by dysfunction in neuronal excitation/inhibition (E/I) balance, potentially impacting seizure susceptibility via deficits in K+/Cl- cotransporter 2 (KCC2) function. Mice lacking the Methyl-CpG binding protein 2 (MeCP2) recapitulate many symptoms of RTT, and recombinant human insulin-like growth factor-1 (rhIGF-1) restores KCC2 expression and E/I balance in MeCP2 KO mice. However, clinical trial outcomes of rhIGF-1 in RTT have been variable, and increasing its therapeutic efficacy is highly desirable. To this end, the neuropeptide oxytocin (OXT) is promising, as it also critically modulates KCC2 function during early postnatal development. We measured basal KCC2 expression levels in MeCP2 KO mice and identified 3 key frontal brain regions showing KCC2 alterations in young adult mice, but not in postnatal P10 animals. We hypothesized that deficits in an IGF-1/OXT signaling crosstalk modulating KCC2 may occur in RTT during postnatal development. Consistently, we detected alterations of IGF-1 receptor and OXT receptor levels in those brain areas. rhIGF-1 and OXT treatments in KO mice rescued KCC2 expression in a region-specific and complementary manner. These results suggest that region-selective combinatorial pharmacotherapeutic strategies could be most effective at normalizing E/I balance in key brain regions subtending the RTT pathophysiology.
Collapse
Affiliation(s)
| | - Jasper Teutsch
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Marc Woodbury-Smith
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom
| | - Mirko Luoni
- Stem Cells and Neurogenesis Unit, San Raffaele Scientific Institute, Milan, Italy
| | - Marta Busnelli
- Institute of Neuroscience, CNR, Milan, Italy.,NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Bice Chini
- Institute of Neuroscience, CNR, Milan, Italy.,NeuroMi Milan Center for Neuroscience, Milan, Italy
| | - Abhishek Banerjee
- Neuroscience Theme, Biosciences Institute, Newcastle University, United Kingdom.,Brain Research Institute, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Hong TI, Hwang KS, Choi TI, Kleinau G, Scheerer P, Bang JK, Jung SH, Kim CH. Zebrafish Bioassay for Screening Therapeutic Candidates Based on Melanotrophic Activity. Int J Mol Sci 2021; 22:9313. [PMID: 34502223 PMCID: PMC8431389 DOI: 10.3390/ijms22179313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
In this study, we used the zebrafish animal model to establish a bioassay by which physiological efficacy differential of alpha-melanocyte-stimulating hormone (α-MSH) analogues could be measured by melanosome dispersion in zebrafish larvae. Brain-skin connection research has purported the interconnectedness between the nervous system and skin physiology. Accordingly, the neuropeptide α-MSH is a key regulator in several physiological processes, such as skin pigmentation in fish. In mammals, α-MSH has been found to regulate motivated behavior, appetite, and emotion, including stimulation of satiety and anxiety. Several clinical and animal model studies of autism spectrum disorder (ASD) have already demonstrated the effectiveness of α-MSH in restoring the social deficits of autism. Therefore, we sought to analyze the effect of synthetic and naturally-occurring α-MSH variants amongst different species. Our results showed that unique α-MSH derivatives from several fish species produced differential effects on the degree of melanophore dispersion. Using α-MSH human form as a standard, we could identify derivatives that induced greater physiological effects; particularly, the synthetic analogue melanotan-II (MT-II) exhibited a higher capacity for melanophore dispersion than human α-MSH. This was consistent with previous findings in an ASD mouse model demonstrating the effectiveness of MT-II in improving ASD behavioral symptoms. Thus, the melanophore assay may serve as a useful screening tool for therapeutic candidates for novel drug discovery.
Collapse
Affiliation(s)
- Ted I. Hong
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| | - Kyu-Seok Hwang
- Drug Discovery Platform Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea;
| | - Tae-Ik Choi
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (G.K.); (P.S.)
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, D-10117 Berlin, Germany; (G.K.); (P.S.)
| | - Jeong Kyu Bang
- Division of Magnetic Resonance, Korea Basic Science Institute, Ochang, Cheongju 28119, Korea;
| | - Seung-Hyun Jung
- Department of Applied Marine Bioresource Science, National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 34134, Korea; (T.I.H.); (T.-I.C.)
| |
Collapse
|
10
|
Pandina G, Ring RH, Bangerter A, Ness S. Current Approaches to the Pharmacologic Treatment of Core Symptoms Across the Lifespan of Autism Spectrum Disorder. Psychiatr Clin North Am 2020; 43:629-645. [PMID: 33126999 DOI: 10.1016/j.psc.2020.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.
Collapse
Affiliation(s)
- Gahan Pandina
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA.
| | | | - Abigail Bangerter
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| | - Seth Ness
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| |
Collapse
|
11
|
Wong JC, Shapiro L, Thelin JT, Heaton EC, Zaman RU, D'Souza MJ, Murnane KS, Escayg A. Nanoparticle encapsulated oxytocin increases resistance to induced seizures and restores social behavior in Scn1a-derived epilepsy. Neurobiol Dis 2020; 147:105147. [PMID: 33189882 DOI: 10.1016/j.nbd.2020.105147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 02/06/2023] Open
Abstract
Oxytocin (OT) has broad effects in the brain and plays an important role in cognitive, social, and neuroendocrine function. OT has also been identified as potentially therapeutic in neuropsychiatric disorders such as autism and depression, which are often comorbid with epilepsy, raising the possibility that it might confer protection against the behavioral and seizure phenotypes in epilepsy. Dravet syndrome (DS) is an early-life encephalopathy associated with prolonged and recurrent early-life febrile seizures (FSs), treatment-resistant afebrile epilepsy, and cognitive and behavioral deficits. De novo loss-of-function mutations in the voltage-gated sodium channel SCN1A are the main cause of DS, while genetic epilepsy with febrile seizures plus (GEFS+), also characterized by early-life FSs and afebrile epilepsy, is typically caused by inherited mutations that alter the biophysical properties of SCN1A. Despite the wide range of available antiepileptic drugs, many patients with SCN1A mutations do not achieve adequate seizure control or the amelioration of associated behavioral comorbidities. In the current study, we demonstrate that nanoparticle encapsulation of OT conferred robust and sustained protection against induced seizures and restored more normal social behavior in a mouse model of Scn1a-derived epilepsy. These results demonstrate the ability of a nanotechnology formulation to significantly enhance the efficacy of OT. This approach will provide a general strategy to enhance the therapeutic potential of additional neuropeptides in epilepsy and other neurological disorders.
Collapse
Affiliation(s)
- Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America.
| | - Lindsey Shapiro
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Jacquelyn T Thelin
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Elizabeth C Heaton
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| | - Rokon U Zaman
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Martin J D'Souza
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Kevin S Murnane
- Department of Pharmaceutical Sciences, Mercer University, Atlanta, GA, United States of America
| | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, United States of America
| |
Collapse
|
12
|
Maternal Immune Activation in Mice Only Partially Recapitulates the Autism Spectrum Disorders Symptomatology. Neuroscience 2020; 445:109-119. [PMID: 32445939 DOI: 10.1016/j.neuroscience.2020.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/03/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Prenatal viral/bacterial infections are considered risk factors for autism spectrum disorders (ASD) and rodent models of maternal immune activation (MIA) have been developed and extensively used in preclinical studies. Poly inosinic-cytidylic acid (Poly I:C) was injected in C57BL6/J dams to mimic a viral infection on gestational day 12.5; the experimental design includes 10/12 litters in each treatment group and data were analysed always considering the litter-effect; neonatal (spontaneous motor behaviour and ultrasonic vocalizations) and adult [open field, marble burying, social approach, fear conditioning, prepulse inhibition (PPI)] offspring of both sexes were tested. In vivo magnetic resonance imaging/spectroscopy (MRI-MRS) and high-performance liquid chromatography (HPLC) to quantify both aminoacid and/or neurotransmitter concentration in cortical and striatal regions were also carried out. In both sexes high levels of repetitive motor responses and sensory gating deficits in PPI were the more striking effects of Poly I:C, whereas no alteration of social responses were evidenced. Poly I:C treatment did not affect mean values, but, intriguingly, increased variability in the levels of four aminoacids (aspartate glycine and GABA) selectively in males. As a whole prenatal Poly I:C induced relevant long-term alterations in explorative-stereotyped motor responses and in sensory gating, sparing cognitive and social competences. When systematically assessing differences between male and female siblings within each litter, no significant sex differences were evident except for increased variability of four aminoacid levels in male brains. As a whole, prenatal Poly I:C paradigms appear to be a useful tool to investigate the profound and translationally-relevant effects of developmental immune activation on brain and behavioural development, not necessarily recapitulating the full ASD symptomatology.
Collapse
|
13
|
Pandina G, Ring RH, Bangerter A, Ness S. Current Approaches to the Pharmacologic Treatment of Core Symptoms Across the Lifespan of Autism Spectrum Disorder. Child Adolesc Psychiatr Clin N Am 2020; 29:301-317. [PMID: 32169264 DOI: 10.1016/j.chc.2019.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There are no approved medications for autism spectrum disorder (ASD) core symptoms. However, given the significant clinical need, children and adults with ASD are prescribed medication off label for core or associated conditions, sometimes based on limited evidence for effectiveness. Recent developments in the understanding of biologic basis of ASD have led to novel targets with potential to impact core symptoms, and several clinical trials are underway. Heterogeneity in course of development, co-occurring conditions, and age-related treatment response variability hampers study outcomes. Novel measures and approaches to ASD clinical trial design will help in development of effective pharmacologic treatments.
Collapse
Affiliation(s)
- Gahan Pandina
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA.
| | | | - Abigail Bangerter
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| | - Seth Ness
- Janssen Research & Development, LLC, 1125 Trenton Harbouron Road, Titusville, NJ 08560, USA
| |
Collapse
|
14
|
Fitzgibbon G, Mills KHG. The microbiota and immune-mediated diseases: Opportunities for therapeutic intervention. Eur J Immunol 2020; 50:326-337. [PMID: 31991477 DOI: 10.1002/eji.201948322] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/03/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022]
Abstract
A multitude of diverse microorganisms, termed the microbiota, reside in the gut, respiratory tract, skin, and genital tract of humans and other animals. Recent advances in metagenomic sequencing and bioinformatics have enabled detailed characterization of these vital microbial communities. Studies in animal models have uncovered vital previously unrecognized roles for the microbiota in normal function of the immune responses, and when perturbed, in the pathogenesis of diseases of the gastrointestinal tract and lungs, but also at distant sites in the body including the brain. The composition of gut and respiratory microbiota can influence systemic inflammatory responses that mediate asthma, allergy, inflammatory bowel disease, obesity-related diseases, and neurodevelopmental or neurodegenerative conditions. Experiments in mouse models as well as emerging clinical studies have revealed that therapeutic manipulation of the microbiota, using fecal microbiota transplantation, probiotics, or engineered probiotics represent effective nontoxic approaches for the treatment or prevention of Clostridium difficile infection, allergy, and autoimmune diseases and may enhance the efficacy of certain cancer immunotherapeutics. This review discusses how commensal bacteria can influence immune responses that mediate a range of human diseases and how the microbiota are being targeted to treat these diseases, especially those resistant to pharmacological therapies.
Collapse
Affiliation(s)
- Gillian Fitzgibbon
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Kingston H G Mills
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
15
|
Nygaard KR, Maloney SE, Dougherty JD. Erroneous inference based on a lack of preference within one group: Autism, mice, and the social approach task. Autism Res 2019; 12:1171-1183. [PMID: 31187603 DOI: 10.1002/aur.2154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
The Social Approach Task is commonly used to identify sociability deficits when modeling liability factors for autism spectrum disorder (ASD) in mice. It was developed to expand upon existing assays to examine distinct aspects of social behavior in rodents and has become a standard component of mouse ASD-relevant phenotyping pipelines. However, there is variability in the statistical analysis and interpretation of results from this task. A common analytical approach is to conduct within-group comparisons only, and then interpret a difference in significance levels as if it were a group difference, without any direct comparison. As an efficient shorthand, we named this approach EWOCs: Erroneous Within-group Only Comparisons. Here, we examined the prevalence of EWOCs and used simulations to test whether this approach could produce misleading inferences. Our review of Social Approach studies of high-confidence ASD genes revealed 45% of papers sampled used only this analytical approach. Through simulations, we then demonstrate how a lack of significant difference within one group often does not correspond to a significant difference between groups, and show this erroneous interpretation increases the rate of false positives up to 25%. Finally, we define a simple solution: use an index, like a social preference score, with direct statistical comparisons between groups to identify significant differences. We also provide power calculations to guide sample size in future studies. Overall, elimination of EWOCs and adoption of direct comparisons should result in more accurate, reliable, and reproducible data interpretations from the Social Approach Task across ASD liability models. Autism Res 2019, 12: 1171-1183. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: The Social Approach Task is widely used to assess social behavior in mice and is frequently used in studies modeling autism. However, reviewing published studies showed nearly half do not use correct comparisons to interpret these data. Using simulated and original data, we argue the correct statistical approach is a direct comparison of scores between groups. This simple solution should reduce false positives and improve consistency of results across studies.
Collapse
Affiliation(s)
- Kayla R Nygaard
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri
| | - Susan E Maloney
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri.,Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.,Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|