1
|
Jothi R, Kamaladevi A, Muthuramalingam P, Malligarjunan N, Karutha Pandian S, Gowrishankar S. Untargeted metabolomics uncovers prime pathways linked to antibacterial action of citral against bacterial vaginosis-causing Gardnerella vaginalis: An in vitro and in vivo study. Heliyon 2024; 10:e27983. [PMID: 38545203 PMCID: PMC10966606 DOI: 10.1016/j.heliyon.2024.e27983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 11/11/2024] Open
Abstract
Global increase in recurrence of bacterial vaginosis (BV) and worrisome rise in antimicrobial resistance pose an urgent call for new/novel antibacterial agents. In light of the circumstance, the present study demonstrates the in vitro and in vivo antibacterial activity of a phytochemical citral, with a particular emphasis to elucidate its mechanistic action against Gardnerella vaginalis -a potential cause of BV. Out of 21 phytochemicals screened initially against G. vaginalis, citral was envisaged to be a phenomenal antibacterial agent showing MIC and MBC at 128 μg/mL. Citral's rapid killing ability was revealed by a time-killing kinetics assay supported by CFU, signifying that it completely killed the given inoculum of planktonic G. vaginalis cells within 60 min. Further, citral was found to exhibit 1 min contact-killing efficacy together with mature-biofilm disintegrating ability at increasing MICs. To further understand the molecular action of citral, in vitro investigations such as ROS estimation, PI staining and intracellular protein release assay were performed, which demonstrated that citral deteriorated the membrane integrity of G. vaginalis. Galleria mellonella, a simple invertebrate model used to evaluate citral's non-toxic and antibacterial activity in vivo, demonstrates that citral completely restored the larvae from G. vaginalis infection. The metabolite level investigation using LC-MS revealed that citral had negative impact on biotin metabolism (via., biotin), spermidine metabolism (via., 5'-methylthioadenosine and spermidine) and nucleotide metabolism (via., guanine, adenine and uridine). Since that biotin is associated with seven different metabolic pathways, it is conceivable that citral could target biotin biosynthesis or its metabolism and as a result, disrupt other metabolic pathways, such as lipid and fatty acid synthesis, which is essential for the creation of cell membranes. Thus, the current study is the first of its kind to delineate the promising in vitro and in vivo antibacterial efficacy of citral and decipher its plausible antibacterial action mechanism through metabolomic approach, which concomitantly emphasizes citral as a viable natural therapeutic alternative to manage and control BV.
Collapse
Affiliation(s)
- Ravi Jothi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Arumugam Kamaladevi
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | - Pandiyan Muthuramalingam
- Division of Horticultural Science, College of Agriculture and Life Sciences, Gyeongsang National University, Jinju, 52725, South Korea
| | - Nambiraman Malligarjunan
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| | | | - Shanmugaraj Gowrishankar
- Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, 630 003, Tamil Nadu, India
| |
Collapse
|
2
|
Zahra Q, Gul J, Shah AR, Yasir M, Karim AM. Antibiotic resistance genes prevalence prediction and interpretation in beaches affected by urban wastewater discharge. One Health 2023; 17:100642. [PMID: 38024281 PMCID: PMC10665162 DOI: 10.1016/j.onehlt.2023.100642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Background The annual death toll of over 1.2 million worldwide is attributed to infections caused by resistant bacteria, driven by the significant impact of antibiotic misuse and overuse in spreading these bacteria and their associated antibiotic resistance genes (ARGs). While limited data suggest the presence of ARGs in beach environments, efficient prediction tools are needed for monitoring and detecting ARGs to ensure public health safety. This study aims to develop interpretable machine learning methods for predicting ARGs in beach waters, addressing the challenge of black-box models and enhancing our understanding of their internal mechanisms. Methods In this study, we systematically collected beach water samples and subsequently isolated bacteria from these samples using various differential and selective media supplemented with different antibiotics. Resistance profiles of bacteria were determined by using Kirby-Bauer disk diffusion method. Further, ARGs were enumerated by using the quantitative polymerase chain reaction (qPCR) to detect and quantify ARGs. The obtained qPCR data and hydro-meteorological were used to create an ML model with high prediction performance and we further used two explainable artificial intelligence (xAI) model-agnostic interpretation methods to describe the internal behavior of ML model. Results Using qPCR, we detected blaCTX-M, blaNDM, blaCMY, blaOXA, blatetX, blasul1, and blaaac(6'-Ib-cr) in the beach waters. Further, we developed ML prediction models for blaaac(6'-Ib-cr), blasul1, and blatetX using the hydro-metrological and qPCR-derived data and the models demonstrated strong performance, with R2 values of 0.957, 0.997, and 0.976, respectively. Conclusions Our findings show that environmental factors, such as water temperature, precipitation, and tide, are among the important predictors of the abundance of resistance genes at beaches.
Collapse
Affiliation(s)
- Qandeel Zahra
- Azra Naheed Medical College, Lahore 54000, Punjab, Pakistan
| | - Jawaria Gul
- Al-Nafees Medical College & Hospital, Islamabad 44000, Pakistan
| | - Ali Raza Shah
- Azra Naheed Medical College, Lahore 54000, Punjab, Pakistan
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Asad Mustafa Karim
- Department of Oriental Medicine and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, South Korea
| |
Collapse
|
3
|
Burak D, Rahman MA, Seo DC, Byun JY, Han J, Lee SE, Cho SH. In Situ Metal Deposition on Perhydropolysilazane-Derived Silica for Structural Color Surfaces with Antiviral Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54143-54156. [PMID: 37942676 DOI: 10.1021/acsami.3c12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Structural coloration has recently sparked considerable attention on the laboratory and industrial scale. Structural colors can create vivid, saturated, and long-lasting colors on metallic surfaces for optical filters, digital displays, and surface decoration. This study used an all-solution, low-cost method, free of a specific setup procedure, to fabricate structural colors of a multilayered metal-dielectric structure based on interference effects within a Fabry-Perot cavity. The insulating (dielectric) layer was produced from perhydropolysilazane, an inorganic silicon-containing polymer, from which hydrogen was liberated during conversion into silica and applied in situ to reduce metallic nanoparticles on the silica surface. This simple manufacturing technique contributes to the fabrication of large, high-quality surfaces, which could potentially be employed for surface decoration. The fabricated surfaces also exhibited excellent hydrophobic properties with contact angles up to 137°, endowing them with self-cleaning properties. In addition, the antiviral and antibacterial impact of the silver (Ag)/silica (SiO2)/stainless steel (SUS) film was also examined, as Ag has been reported to have antimicrobial and, recently, antiviral properties. According to three independently conducted antiviral assays, the fluorescence expression of virus-infected cells, PCR analysis, and modified tissue culture infectious dose assay, the film inhibited lentivirus by 75, 97, and 99% when exposed to the virus for 20 min, 1 h, and 20 min, respectively. Furthermore, the film had exceptional antibacterial activity with no colony growth observed for 24 and 12 h of inoculation. It is thus conceivable that these structural color-based films can be used to not only decorate metal surfaces with aesthetic colors but also limit virus and bacterium propagation successfully.
Collapse
Affiliation(s)
- Darya Burak
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology (Nanomaterials Science and Engineering), University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Md Abdur Rahman
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Dong-Chan Seo
- Research Animal Resources Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Ji Young Byun
- Extreme Materials Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Joonsoo Han
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - Seung Eun Lee
- Research Animal Resources Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
| | - So-Hye Cho
- Materials Architecturing Research Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seoul 02792, Republic of Korea
- Division of Nano & Information Technology (Nanomaterials Science and Engineering), University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
4
|
Coxe T, Azad RK. Silicon versus Superbug: Assessing Machine Learning's Role in the Fight against Antimicrobial Resistance. Antibiotics (Basel) 2023; 12:1604. [PMID: 37998806 PMCID: PMC10669088 DOI: 10.3390/antibiotics12111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
In his 1945 Nobel Prize acceptance speech, Sir Alexander Fleming warned of antimicrobial resistance (AMR) if the necessary precautions were not taken diligently. As the growing threat of AMR continues to loom over humanity, we must look forward to alternative diagnostic tools and preventive measures to thwart looming economic collapse and untold mortality worldwide. The integration of machine learning (ML) methodologies within the framework of such tools/pipelines presents a promising avenue, offering unprecedented insights into the underlying mechanisms of resistance and enabling the development of more targeted and effective treatments. This paper explores the applications of ML in predicting and understanding AMR, highlighting its potential in revolutionizing healthcare practices. From the utilization of supervised-learning approaches to analyze genetic signatures of antibiotic resistance to the development of tools and databases, such as the Comprehensive Antibiotic Resistance Database (CARD), ML is actively shaping the future of AMR research. However, the successful implementation of ML in this domain is not without challenges. The dependence on high-quality data, the risk of overfitting, model selection, and potential bias in training data are issues that must be systematically addressed. Despite these challenges, the synergy between ML and biomedical research shows great promise in combating the growing menace of antibiotic resistance.
Collapse
Affiliation(s)
- Tallon Coxe
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| | - Rajeev K. Azad
- Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA;
- BioDiscovery Institute, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
5
|
Heller AA, Geiger MK, Spence DM. A 3D-printed multi-compartment device that enables dynamic PK/PD profiles of antibiotics. Anal Bioanal Chem 2023; 415:6135-6144. [PMID: 37612458 DOI: 10.1007/s00216-023-04899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Pathogens develop resistance to various drugs while under the selective pressure of antibiotics resulting in the emergence of bacterial strains that are resistant to multiple treatment options. Unfortunately, the resistance to antibiotics has also been accompanied by a reduction in the development of novel antibiotics to combat various pathogens. Current diagnostic tools, which are used in parts of the early developmental process of antibiotics, primarily consist of static susceptibility tests that do not resemble the pharmacokinetics of the therapy in vivo. Here, we designed and 3D-printed cubical inserts with membranes on two of the cube faces that allow diffusion of a molecule across two planes. These inserts are used with a 3D-printed device to create a two-compartment model to mimic the pharmacokinetics of a molecule in humans from multiple types of administration. Fluorescein was used to characterize the device and the diffusion of molecules from a flowing channel, through a membrane in the first plane (representing the primary compartment in vivo, or plasma), followed by measurement in the second compartment (that represents the interstitial fluid). The dynamic, two-compartment model was tested using both gram-positive and gram-negative bacterial strains in the secondary compartment. The ATP/OD600 (a measure of antibiotic activity) of a kanamycin-resistant E. coli strain challenged with the antibiotic levofloxacin increased after reaching an effective concentration of the antibiotic at 2 h, equating to a secondary compartment concentration of 3.5 ± 1.3 µM levofloxacin. The ATP/OD600 of a chloramphenicol-resistant B. subtilis strain challenged with the antibiotic levofloxacin remained steady or increased slightly after reaching an effective concentration of the antibiotic. The earliest statistical difference was detected 3 h after the start of the PK curve, which corresponds with a secondary compartment concentration of 4.8 ± 1.8 µM levofloxacin. Our results demonstrate that a fabricated 2-compartment model (1) provides realistic PK values to those published from in vivo studies and (2) can be used to determine antibiotic pharmacodynamics.
Collapse
Affiliation(s)
- Andrew A Heller
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Sciences & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Morgan K Geiger
- Institute for Quantitative Health Sciences & Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Dana M Spence
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA.
- Institute for Quantitative Health Sciences & Engineering, Michigan State University, East Lansing, MI, 48824, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
6
|
Ye J, Hou F, Chen G, Zhong T, Xue J, Yu F, Lai Y, Yang Y, Liu D, Tian Y, Huang J. Novel copper-containing ferrite nanoparticles exert lethality to MRSA by disrupting MRSA cell membrane permeability, depleting intracellular iron ions, and upregulating ROS levels. Front Microbiol 2023; 14:1023036. [PMID: 36846790 PMCID: PMC9947852 DOI: 10.3389/fmicb.2023.1023036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Objective The widespread use of antibiotics has inevitably led to the emergence of multidrug-resistant bacterial strains, such as methicillin-resistant Staphylococcus aureus (MRSA), making treatment of this infection a serious challenge. This study aimed to explore new treatment strategies for MRSA infection. Methods The structure of Fe3O4 NPs with limited antibacterial activity was optimized, and the Fe2+ ↔ Fe3+ electronic coupling was eliminated by replacing 1/2 Fe2+ with Cu2+. A new type of copper-containing ferrite nanoparticles (hereinafter referred to as Cu@Fe NPs) that fully retained oxidation-reduction activity was synthesized. First, the ultrastructure of Cu@Fe NPs was examined. Then, antibacterial activity was determined by testing the minimum inhibitory concentration (MIC) and safety for use as an antibiotic agent. Next, the mechanisms underlying the antibacterial effects of Cu@Fe NPs were investigated. Finally, mice models of systemic and localized MRSA infections was established for in vivo validation. Results It was found that Cu@Fe NPs exhibited excellent antibacterial activity against MRSA with MIC of 1 μg/mL. It effectively inhibited the development of MRSA resistance and disrupted the bacterial biofilms. More importantly, the cell membranes of MRSA exposed to Cu@Fe NPs underwent significant rupture and leakage of the cell contents. Cu@Fe NPs also significantly reduced the iron ions required for bacterial growth and contributed to excessive intracellular accumulation of exogenous reactive oxygen species (ROS). Therefore, these findings may important for its antibacterial effect. Furthermore, Cu@Fe NPs treatment led to a significant reduction in colony forming units within intra-abdominal organs, such as the liver, spleen, kidney, and lung, in mice with systemic MRSA infection, but not for damaged skin in those with localized MRSA infection. Conclusion The synthesized nanoparticles has an excellent drug safety profile, confers high resistant to MRSA, and can effectively inhibit the progression of drug resistance. It also has the potential to exert anti-MRSA infection effects systemically in vivo. In addition, our study revealed a unique multifaceted antibacterial mode of Cu@Fe NPs: (1) an increase in cell membrane permeability, (2) depletion of Fe ions in cells, (3) generation of ROS in cells. Overall, Cu@Fe NPs may be potential therapeutic agents for MRSA infections.
Collapse
Affiliation(s)
- Jinhua Ye
- Analytical Laboratory of Basic Medical College, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangpeng Hou
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China,Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Guanyu Chen
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, United States
| | - Tianyu Zhong
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Junxia Xue
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital of Tongji University, Shanghai, China
| | - Yi Lai
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yingjie Yang
- Center for Immunology, Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, Jiangxi, China
| | - Dedong Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yuantong Tian
- Pharmacology Department, Gannan Medical University, Ganzhou, Jiangxi, China,*Correspondence: Yuantong Tian, ✉
| | - Junyun Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China,Junyun Huang, ✉
| |
Collapse
|
7
|
Harhala M, Gembara K, Miernikiewicz P, Owczarek B, Kaźmierczak Z, Majewska J, Nelson DC, Dąbrowska K. DNA Dye Sytox Green in Detection of Bacteriolytic Activity: High Speed, Precision and Sensitivity Demonstrated With Endolysins. Front Microbiol 2021; 12:752282. [PMID: 34759903 PMCID: PMC8575126 DOI: 10.3389/fmicb.2021.752282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/24/2021] [Indexed: 12/03/2022] Open
Abstract
Introduction: Increasing number of deaths from multi-drug resistant bacterial infections has caused both the World Health Organization and the Centers for Disease Control and Prevention to repeatedly call for development of new, non-traditional antibacterial treatments. Antimicrobial enzymes, including those derived from bacteriophages, known as endolysins or enzybiotics, are considered promising solutions among the emerging therapies. These naturally occurring proteins specifically destroy bacterial cell walls (peptidoglycan) and as such, are capable of killing several logs of bacteria within minutes. Some endolysins cause lysis of a wide range of susceptible bacteria, including both Gram-positive and Gram-negative organisms, whereas other endolysins are species- or even strain-specific. To make wide use of endolysins as antibacterial agents, some basic research issues remain to be clarified or addressed. Currently available methods for testing endolysin kinetics are indirect, require large numbers of bacteria, long incubation times and are affected by technical problems or limited reproducibility. Also, available methods are focused more on enzymatic activity rather than killing efficiency which is more relevant from a medical perspective. Results: We show a novel application of a DNA dye, SYTOX Green. It can be applied in comprehensive, real-time and rapid measurement of killing efficiency, lytic activity, and susceptibility of a bacterial population to lytic enzymes. Use of DNA dyes shows improved reaction times, higher sensitivity in low concentrations of bacteria, and independence of bacterial growth. Our data show high precision in lytic activity and enzyme efficiency measurements. This solution opens the way to the development of new, high throughput, precise measurements and tests in variety of conditions, thus unlocking new possibilities in development of novel antimicrobials and analysis of bacterial samples.
Collapse
Affiliation(s)
- Marek Harhala
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Katarzyna Gembara
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Paulina Miernikiewicz
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Barbara Owczarek
- Bacteriophage Laboratory, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Zuzanna Kaźmierczak
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| | - Joanna Majewska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Krystyna Dąbrowska
- Laboratory of Phage Molecular Biology, Department of Phage Therapy, Hirszfeld Institute of Immunology and Experimental Therapy, Wrocław, Poland.,Research and Development Centre, Regional Specialist Hospital in Wrocław, Wrocław, Poland
| |
Collapse
|
8
|
Sun J, Liu X, Lyu C, Hu Y, Zou D, He YS, Lu J. Synergistic antibacterial effect of graphene-coated titanium loaded with levofloxacin. Colloids Surf B Biointerfaces 2021; 208:112090. [PMID: 34507071 DOI: 10.1016/j.colsurfb.2021.112090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022]
Abstract
In this study, graphene coating was introduced to the modified titanium surface to prevent bacterial infection in oral implants. We modified the titanium surface through SLA and silanization treatment and then coated the surface with graphene. The structure and surface properties were characterized by XPS and SEM. Graphene-coated titanium sheet was incubated with bacteria to test the antibacterial property, which was enhanced by adsorption and release of levofloxacin. We further implanted the graphene-coated titanium sheet loaded with levofloxacin into rabbits to test the antibacterial properties in vivo. The graphene coating exhibited inherent antibacterial properties through membrane stress and the generation of reactive oxygen species (ROS). When loaded with levofloxacin, the graphene coating exhibited a synergistic antibacterial effect and effectively prevented bacterial infections following the implantation. The graphene coating is promising to improve the antibacterial functions of oral implant surfaces to prevent bacterial infection.
Collapse
Affiliation(s)
- Jiayue Sun
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xuling Liu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chengqi Lyu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yinghan Hu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Derong Zou
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yu-Shi He
- Shanghai Electrochemical Energy Devices Research Center, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jiayu Lu
- Department of Stomatology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
9
|
Laure NN, Dawan J, Ahn J. Effects of Incubation Time and Inoculation Level on the Stabilities of Bacteriostatic and Bactericidal Antibiotics against Salmonella Typhimurium. Antibiotics (Basel) 2021; 10:1019. [PMID: 34439069 PMCID: PMC8388968 DOI: 10.3390/antibiotics10081019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
This study was designed to evaluate the stability of chloramphenicol, erythromycin, tetracycline, cephalothin, ciprofloxacin, and tobramycin against antibiotic-sensitive Salmonella Typhimurium (ASST) and antibiotic-resistant S. Typhimurium (ARST) during the broth microdilution assay. The antimicrobial activity in association with antibiotic stability was measured by using antibiotic susceptibility, time-delayed inoculation, time-extended incubation, and inoculum effect assays. The loss of the antimicrobial activity of cephalothin against ASST exposed to 1 MIC was observed for the 10 h delayed inoculation. The antimicrobial activities of tetracycline and ciprofloxacin against ASST and ARST exposed to ½ MIC were significantly decreased after the 10 h delayed inoculation. All antibiotics used in this study, except for ciprofloxacin, showed the considerable losses of antimicrobial activities against ASST and ARST after 40 h of incubation at 37 °C when compared to the 20 h of incubation during AST. Compared to the standard inoculum level (6 log CFU/mL), the MIC0.1 values of bactericidal antibiotics, ciprofloxacin and tobramycin against ASST were increased by more than 4-fold at the high inoculum level of 9 log CFU/mL. This would provide practical information for better understanding the clinical efficacy of the currently used antibiotics by considering the antibiotic stability during incubation time at different inoculum levels.
Collapse
Affiliation(s)
- Nana Nguefang Laure
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Jirapat Dawan
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
- Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea
| |
Collapse
|
10
|
Fe-doped TiO2/Kaolinite as an Antibacterial Photocatalyst under Visible Light Irradiation. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10325.293-301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this work, undoped and Fe-doped TiO2 immobilized on kaolinite surface was successfully synthesized by sol-gel method with various Fe concentrations (0.05, 0.125, and 0.25 wt%). The effects of Fe doping into TiO2 lattice were thoroughly investigated by a diffuse reflectance UV-visible (DRS) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The optical band gap of undoped and Fe-doped TiO2/kaolinite is red shifted with respect to the incorporation of Fe3+ into the structure of TiO2 resulted band gap. The FTIR spectra shows a shift of peak at the wave number at 586 cm−1 and 774 cm−1 which is attribute of the Fe−O vibration as an indication of the formation of Fe-TiO2 bonds. Incorporation of Fe3+ cation into the TiO2 lattice replacing the Ti4+ ions, which induced a perturbation in anatase crystal structure, causes the change in the distance spacing of the crystal lattices dhkl(101) of 8.9632 to 7.9413. The enhanced photocatalytic performance was observed for Fe-doped TiO2/kaolinite compared with TiO2/kaolinite with respect to Escherichia coli growth inhibition in solution media under visible light irradiation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
11
|
Recent Development of Rapid Antimicrobial Susceptibility Testing Methods through Metabolic Profiling of Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10030311. [PMID: 33803002 PMCID: PMC8002737 DOI: 10.3390/antibiotics10030311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022] Open
Abstract
Due to the inappropriate use and overuse of antibiotics, the emergence and spread of antibiotic-resistant bacteria are increasing and have become a major threat to human health. A key factor in the treatment of bacterial infections and slowing down the emergence of antibiotic resistance is to perform antimicrobial susceptibility testing (AST) of infecting bacteria rapidly to prescribe appropriate drugs and reduce the use of broad-spectrum antibiotics. Current phenotypic AST methods based on the detection of bacterial growth are generally reliable but are too slow. There is an urgent need for new methods that can perform AST rapidly. Bacterial metabolism is a fast process, as bacterial cells double about every 20 to 30 min for fast-growing species. Moreover, bacterial metabolism has shown to be related to drug resistance, so a comparison of differences in microbial metabolic processes in the presence or absence of antimicrobials provides an alternative approach to traditional culture for faster AST. In this review, we summarize recent developments in rapid AST methods through metabolic profiling of bacteria under antibiotic treatment.
Collapse
|
12
|
Doppler imaging detects bacterial infection of living tissue. Commun Biol 2021; 4:178. [PMID: 33568744 PMCID: PMC7876006 DOI: 10.1038/s42003-020-01550-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/25/2020] [Indexed: 01/17/2023] Open
Abstract
Living 3D in vitro tissue cultures, grown from immortalized cell lines, act as living sentinels as pathogenic bacteria invade the tissue. The infection is reported through changes in the intracellular dynamics of the sentinel cells caused by the disruption of normal cellular function by the infecting bacteria. Here, the Doppler imaging of infected sentinels shows the dynamic characteristics of infections. Invasive Salmonella enterica serovar Enteritidis and Listeria monocytogenes penetrate through multicellular tumor spheroids, while non-invasive strains of Escherichia coli and Listeria innocua remain isolated outside the cells, generating different Doppler signatures. Phase distributions caused by intracellular transport display Lévy statistics, introducing a Lévy-alpha spectroscopy of bacterial invasion. Antibiotic treatment of infected spheroids, monitored through time-dependent Doppler shifts, can distinguish drug-resistant relative to non-resistant strains. This use of intracellular Doppler spectroscopy of living tissue sentinels opens a new class of microbial assay with potential importance for studying the emergence of antibiotic resistance. Honggu Choi et al. use biodynamic Doppler imaging to monitor bacterial infection of 3D living tissue and describe changes in the intracellular motions of living host tissue induced by early-stage infection. This work demonstrates the potential for the clinical use of this method to test for antibiotic-resistant infections.
Collapse
|
13
|
Ihssen J, Jovanovic N, Sirec T, Spitz U. Real-time monitoring of extracellular ATP in bacterial cultures using thermostable luciferase. PLoS One 2021; 16:e0244200. [PMID: 33481792 PMCID: PMC7822345 DOI: 10.1371/journal.pone.0244200] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/05/2020] [Indexed: 02/08/2023] Open
Abstract
Adenosine triphosphate (ATP) is one of the most important indicators of cell viability. Extracellular ATP (eATP) is commonly detected in cultures of both eukaryotic and prokaryotic cells but is not the focus of current scientific research. Although ATP release has traditionally been considered to mainly occur as a consequence of cell destruction, current evidence indicates that ATP leakage also occurs during the growth phase of diverse bacterial species and may play an important role in bacterial physiology. ATP can be conveniently measured with high sensitivity in luciferase-based bioluminescence assays. However, wild-type luciferases suffer from low stability, which limit their use. Here we demonstrate that an engineered, thermostable luciferase is suitable for real-time monitoring of ATP release by bacteria, both in broth culture and on agar surfaces. Different bacterial species show distinct patterns of eATP accumulation and decline. Real-time monitoring of eATP allows for the estimation of viable cell number by relating luminescence onset time to initial cell concentration. Furthermore, the method is able to rapidly detect the effect of antibiotics on bacterial cultures as Ampicillin sensitive strains challenged with beta lactam antibiotics showed strongly increased accumulation of eATP even in the absence of growth, as determined by optical density. Patterns of eATP determined by real-time luminescence measurement could be used to infer the minimal inhibitory concentration of Ampicillin. Compared to conventional antibiotic susceptibility testing, the method presented here is faster and more sensitive, which is essential for better treatment outcomes and reducing the risk of inducing antibiotic resistance. Real-time eATP bioluminescence assays are suitable for different cell types, either prokaryotic or eukaryotic, thus, permitting their application in diverse fields of research. It can be used for example in the study of the role of eATP in physiology and pathophysiology, for monitoring microbial contamination or for antimicrobial susceptibility testing in clinical diagnostics.
Collapse
Affiliation(s)
| | - Nina Jovanovic
- Faculty of Biology, Department of Biochemistry and Molecular Biology, Institute of Physiology and Biochemistry, University of Belgrade, Belgrade, Serbia
| | - Teja Sirec
- Carbosynth Limited, Axis House, Compton, Berkshire, United Kingdom
- * E-mail:
| | | |
Collapse
|
14
|
Sysel AM, Dunphy MJ, Bauer JA. Antimicrobial properties of diethylamine NONOate, a nitric oxide donor, against Escherichia coli: a pilot study. J Antibiot (Tokyo) 2021; 74:260-265. [PMID: 33361779 PMCID: PMC7767638 DOI: 10.1038/s41429-020-00397-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/29/2023]
Abstract
The emergence of SARS-CoV-2, the causative agent of COVID-19, highlights the increasing need for new and effective antiviral and antimicrobial agents. The FDA has recently banned several active ingredients used in hand sanitizers, including triclosan and benzethonium chloride. Nitric oxide (NO) is involved in the innate immune response and is a major component of macrophage-mediated attack on foreign viruses and bacteria. The specific aim of this study was to assess the antibacterial effects of 2-(N,N-diethylamino)-diazenolate-2-oxide (DEA-NONOate) against Escherichia coli (E. coli). A bacterial growth assay was compared to an adenosine triphosphate (ATP) activity assay at various time points to assess effects of DEA-NONOate on E. coli growth. A UV/Vis spectrophotometer was used to determine concentration of E. coli by measuring optical density (OD) at 630 nm. A luminescent assay was used to measure ATP activity correlating to viable cells. DEA-NONOate at a concentration of 65 mM was able to inhibit the growth of E. coli with the same efficacy as 1 μg ml-1 concentration of ciprofloxacin. Both the OD and ATP assays demonstrated a 99.9% reduction in E. coli. Both a 1 μg ml-1 concentration of ciprofloxacin and a 65 mM concentration of DEA-NONOate achieved 99.9% inhibition of E. coli, verified using both optical density measurement of bacterial cultures in 96 well plates and a luminescent ATP activity assay. The bactericidal effects of DEA-NONOate against E. coli is proof-of-concept to pursue evaluation of nitric oxide-based formulations as antimicrobial and antiviral agents as hand sanitizers.
Collapse
Affiliation(s)
- Annette M. Sysel
- grid.427858.4Bauer Research Foundation, Inc, North Canton, OH USA ,Nitric Oxide Services, LLC, North Canton, OH USA
| | - Michael J. Dunphy
- Nitric Oxide Services, LLC, North Canton, OH USA ,grid.412869.0Walsh University, North Canton, OH USA
| | - Joseph A. Bauer
- grid.427858.4Bauer Research Foundation, Inc, North Canton, OH USA ,Nitric Oxide Services, LLC, North Canton, OH USA
| |
Collapse
|
15
|
Varghese A, Ray S, Verma T, Nandi D. Multicellular String-Like Structure Formation by Salmonella Typhimurium Depends on Cellulose Production: Roles of Diguanylate Cyclases, YedQ and YfiN. Front Microbiol 2021; 11:613704. [PMID: 33381103 PMCID: PMC7769011 DOI: 10.3389/fmicb.2020.613704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bacteria face diverse stresses in the environment and, sometimes, respond by forming multi-cellular structures, e.g., biofilms. Here, we report a novel macroscopic and multi-cellular structure formed by Salmonella Typhimurium, which resembles small strings. These string-like structures, ∼1 cm long, are induced under some stress conditions: iron deprivation by 2,2-Bipyridyl or low amounts of antibiotics or ethanol in minimal media. However, cells in strings revert back to planktonic growth upon return to nutrient rich media. Compared to planktonic cells, strings are more resistant to antibiotics and oxidative stress. Also, strains lacking csgD or rpoS, which are defective in the classical rdar biofilm formation, form strings. Furthermore, some biofilm inducing conditions do not result in strings and vice-versa, demonstrating that strings are not related to classical CsgD-dependent biofilms. Cells in a string are held together by cellulose and a strain lacking bcsA, which is defective in cellulose production, does not form strings. In addition, reductive stress conditions such as dithiothreitol (DTT) or mutations in the Disulfide bonding system (DSB) also give rise to strings. The amounts of c-di-GMP are increased upon string formation and studies with single and double deletion strains of the diguanylate cyclases, yedQ (STM1987) primarily and yfiN (STM2672) partly, revealed their importance for string formation. This is the first study showcasing the ability of Salmonella to produce high amounts of cellulose in liquid culture, instead of an interface, in a CsgD-independent manner. The relevance and possible applications of strings in the production of bacterial cellulose and bioremediation are discussed.
Collapse
Affiliation(s)
- Alan Varghese
- Undergraduate program, Indian Institute of Science, Bengaluru, India
| | - Semanti Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Taru Verma
- Centre for Biosystems science and engineering, Indian Institute of Science, Bengaluru, India
| | - Dipankar Nandi
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
16
|
Yim G, Kim CY, Kang S, Min DH, Kang K, Jang H. Intrinsic Peroxidase-Mimicking Ir Nanoplates for Nanozymatic Anticancer and Antibacterial Treatment. ACS APPLIED MATERIALS & INTERFACES 2020; 12:41062-41070. [PMID: 32830481 DOI: 10.1021/acsami.0c10981] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The study of inorganic nanozymes to overcome the disadvantages of bio-enzymes, such as the requirement of optimized reaction conditions and lack of durability against environmental factors, is one of the most significant research topics at present. In this work, we comprehensively analyzed the intrinsic peroxidase-like activity of Ir-based nanoparticles, the biological and nanozymatic potentials of which have not yet been explored. These particles were synthesized by the galvanic replacement of Ag nanoplates with Ir. Through the confirmed peroxidase-like activity and hydrogen peroxide decomposition with free radical generation facilitated by these particles, the antibacterial and anticancer effects were successfully verified in vitro. The nanozyme-based therapeutic effect observed at concentrations at which these nanoparticles do not show cytotoxicity suggests that it is possible to achieve more precise and selective local treatment with these particles. The observed highly efficient peroxidase-like activity of these nanoparticles is attributed to the partially mixed composition of Ir-Ag-IrO2 formed through the galvanic replacement reaction in the synthetic process.
Collapse
Affiliation(s)
- Gyeonghye Yim
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| | - Chan Yeon Kim
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Gyeonggi, Republic of Korea
| | - Seounghun Kang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 08826, Republic of Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Gyeonggi, Republic of Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, 20 Gwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
17
|
Pala L, Sirec T, Spitz U. Modified Enzyme Substrates for the Detection of Bacteria: A Review. Molecules 2020; 25:E3690. [PMID: 32823590 PMCID: PMC7465704 DOI: 10.3390/molecules25163690] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
The ability to detect, identify and quantify bacteria is crucial in clinical diagnostics, environmental testing, food security settings and in microbiology research. Recently, the threat of multidrug-resistant bacterial pathogens pushed the global scientific community to develop fast, reliable, specific and affordable methods to detect bacterial species. The use of synthetically modified enzyme substrates is a convenient approach to detect bacteria in a specific, economic and rapid manner. The method is based on the use of specific enzyme substrates for a given bacterial marker enzyme, conjugated to a signalogenic moiety. Following enzymatic reaction, the signalophor is released from the synthetic substrate, generating a specific and measurable signal. Several types of signalophors have been described and are defined by the type of signal they generate, such as chromogenic, fluorogenic, luminogenic, electrogenic and redox. Signalophors are further subdivided into groups based on their solubility in water, which is key in defining their application on solid or liquid media for bacterial culturing. This comprehensive review describes synthetic enzyme substrates and their applications for bacterial detection, showing their mechanism of action and their synthetic routes.
Collapse
Affiliation(s)
| | | | - Urs Spitz
- Biosynth Carbosynth, Axis House, High Street, Compton, Berkshire RG20 6NL, UK; (L.P.); (T.S.)
| |
Collapse
|