1
|
Franco-Enzástiga Ú, Inturi NN, Natarajan K, Mwirigi JM, Mazhar K, Schlachetzki JC, Schumacher M, Price TJ. Epigenomic landscape of the human dorsal root ganglion: sex differences and transcriptional regulation of nociceptive genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.27.587047. [PMID: 38586055 PMCID: PMC10996669 DOI: 10.1101/2024.03.27.587047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Gene expression is influenced by chromatin architecture via controlled access of regulatory factors to DNA. To better understand gene regulation in the human dorsal root ganglion (hDRG) we used bulk and spatial transposase-accessible chromatin technology followed by sequencing (ATAC-seq). Using bulk ATAC-seq, we detected that in females diverse differentially accessible chromatin regions (DARs) mapped to the X chromosome and in males to autosomal genes. EGR1/3 and SP1/4 transcription factor binding motifs were abundant within DARs in females, and JUN, FOS and other AP-1 factors in males. To dissect the open chromatin profile in hDRG neurons, we used spatial ATAC-seq. The neuron cluster showed higher chromatin accessibility in GABAergic, glutamatergic, and interferon-related genes in females, and in Ca2+- signaling-related genes in males. Sex differences in transcription factor binding sites in neuron-proximal barcodes were consistent with the trends observed in bulk ATAC-seq data. We validated that EGR1 expression is biased to female hDRG compared to male. Strikingly, XIST, the long-noncoding RNA responsible for X inactivation, hybridization signal was found to be highly dispersed in the female neuronal but not non-neuronal nuclei suggesting weak X inactivation in female hDRG neurons. Our findings point to baseline epigenomic sex differences in the hDRG that likely underlie divergent transcriptional responses that determine mechanistic sex differences in pain.
Collapse
Affiliation(s)
- Úrzula Franco-Enzástiga
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikhil N. Inturi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Keerthana Natarajan
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Juliet M. Mwirigi
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Khadija Mazhar
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Johannes C.M. Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0651, USA
| | - Mark Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| | - Theodore J. Price
- Center for Advanced Pain Studies, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
2
|
Xu Z, Lee MC, Sheehan K, Fujii K, Rabl K, Rader G, Varney S, Sharma M, Eilers H, Kober K, Miaskowski C, Levine JD, Schumacher MA. Chemotherapy for pain: reversing inflammatory and neuropathic pain with the anticancer agent mithramycin A. Pain 2024; 165:54-74. [PMID: 37366593 PMCID: PMC10723648 DOI: 10.1097/j.pain.0000000000002972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/08/2023] [Accepted: 04/25/2023] [Indexed: 06/28/2023]
Abstract
ABSTRACT The persistence of inflammatory and neuropathic pain is poorly understood. We investigated a novel therapeutic paradigm by targeting gene networks that sustain or reverse persistent pain states. Our prior observations found that Sp1-like transcription factors drive the expression of TRPV1, a pain receptor, that is blocked in vitro by mithramycin A (MTM), an inhibitor of Sp1-like factors. Here, we investigate the ability of MTM to reverse in vivo models of inflammatory and chemotherapy-induced peripheral neuropathy (CIPN) pain and explore MTM's underlying mechanisms. Mithramycin reversed inflammatory heat hyperalgesia induced by complete Freund adjuvant and cisplatin-induced heat and mechanical hypersensitivity. In addition, MTM reversed both short-term and long-term (1 month) oxaliplatin-induced mechanical and cold hypersensitivity, without the rescue of intraepidermal nerve fiber loss. Mithramycin reversed oxaliplatin-induced cold hypersensitivity and oxaliplatin-induced TRPM8 overexpression in dorsal root ganglion (DRG). Evidence across multiple transcriptomic profiling approaches suggest that MTM reverses inflammatory and neuropathic pain through broad transcriptional and alternative splicing regulatory actions. Mithramycin-dependent changes in gene expression following oxaliplatin treatment were largely opposite to and rarely overlapped with changes in gene expression induced by oxaliplatin alone. Notably, RNAseq analysis revealed MTM rescue of oxaliplatin-induced dysregulation of mitochondrial electron transport chain genes that correlated with in vivo reversal of excess reactive oxygen species in DRG neurons. This finding suggests that the mechanism(s) driving persistent pain states such as CIPN are not fixed but are sustained by ongoing modifiable transcription-dependent processes.
Collapse
Affiliation(s)
- Zheyun Xu
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Man-Cheung Lee
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kayla Sheehan
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Keisuke Fujii
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
- Department of Anesthesiology, Wakayama Medical University, Wakayama, Japan
| | - Katalin Rabl
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriella Rader
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Scarlett Varney
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Manohar Sharma
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Helge Eilers
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| | - Kord Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Christine Miaskowski
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, CA, United States
| | - Jon D. Levine
- Division of Neuroscience, Departments of Medicine and Oral and Maxillofacial Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark A. Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Schumacher MA. Peripheral Neuroinflammation and Pain: How Acute Pain Becomes Chronic. Curr Neuropharmacol 2024; 22:6-14. [PMID: 37559537 PMCID: PMC10716877 DOI: 10.2174/1570159x21666230808111908] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 08/11/2023] Open
Abstract
The number of individuals suffering from severe chronic pain and its social and financial impact is staggering. Without significant advances in our understanding of how acute pain becomes chronic, effective treatments will remain out of reach. This mini review will briefly summarize how critical signaling pathways initiated during the early phases of peripheral nervous system inflammation/ neuroinflammation establish long-term modifications of sensory neuronal function. Together with the recruitment of non-neuronal cellular elements, nociceptive transduction is transformed into a pathophysiologic state sustaining chronic peripheral sensitization and pain. Inflammatory mediators, such as nerve growth factor (NGF), can lower activation thresholds of sensory neurons through posttranslational modification of the pain-transducing ion channels transient-receptor potential TRPV1 and TRPA1. Performing a dual role, NGF also drives increased expression of TRPV1 in sensory neurons through the recruitment of transcription factor Sp4. More broadly, Sp4 appears to modulate a nociceptive transcriptome including TRPA1 and other genes encoding components of pain transduction. Together, these findings suggest a model where acute pain evoked by peripheral injury-induced inflammation becomes persistent through repeated cycles of TRP channel modification, Sp4-dependent overexpression of TRP channels and ongoing production of inflammatory mediators.
Collapse
Affiliation(s)
- Mark A Schumacher
- Department of Anesthesia and Perioperative Care and the UCSF Pain and Addiction Research Center, University of California, San Francisco, California, 94143 USA
| |
Collapse
|
4
|
Ruiz-Cantero MC, Cortés-Montero E, Jain A, Montilla-García Á, Bravo-Caparrós I, Shim J, Sánchez-Blázquez P, Woolf CJ, Baeyens JM, Cobos EJ. The sigma-1 receptor curtails endogenous opioid analgesia during sensitization of TRPV1 nociceptors. Br J Pharmacol 2023; 180:1148-1167. [PMID: 36478100 DOI: 10.1111/bph.16003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Peripheral sensitization contributes to pathological pain. While prostaglandin E2 (PGE2) and nerve growth factor (NGF) sensitize peptidergic C-nociceptors (TRPV1+), glial cell line-derived neurotrophic factor (GDNF) sensitizes non-peptidergic C-neurons (IB4+). The sigma-1 receptor (sigma-1R) is a Ca2+ -sensing chaperone known to modulate opoid analgesia. This receptor binds both to TRPV1 and the μ opioid receptor, although the functional repercussions of these physical interactions in peripheral sensitization are unknown. EXPERIMENTAL APPROACH We tested the effects of sigma-1 antagonism on PGE2-, NGF-, and GDNF-induced mechanical and heat hyperalgesia in mice. We used immunohistochemistry to determine the presence of endomorphin-2, an endogenous μ receptor agonist, on dorsal root ganglion (DRG) neurons. Recombinant proteins were used to study the interactions between sigma-1R, μ- receptor, and TRPV1. We used calcium imaging to study the effects of sigma-1 antagonism on PGE2-induced sensitization of TRPV1+ nociceptors. KEY RESULTS Sigma1 antagonists reversed PGE2- and NGF-induced hyperalgesia but not GDNF-induced hyperalgesia. Endomorphin-2 was detected on TRPV1+ but not on IB4+ neurons. Peripheral opioid receptor antagonism by naloxone methiodide or administration of an anti-endomorphin-2 antibody to a sensitized paw reversed the antihyperalgesia induced by sigma-1 antagonists. Sigma-1 antagonism transfers sigma-1R from TRPV1 to μ receptors, suggesting that sigma-1R participate in TRPV1-μ receptor crosstalk. Moreover, sigma-1 antagonism reversed, in a naloxone-sensitive manner, PGE2-induced sensitization of DRG neurons to the calcium flux elicited by capsaicin, the prototypic TRPV1 agonist. CONCLUSION AND IMPLICATIONS Sigma-1 antagonism harnesses endogenous opioids produced by TRPV1+ neurons to reduce hyperalgesia by increasing μ receptor activity.
Collapse
Affiliation(s)
- M Carmen Ruiz-Cantero
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Elsa Cortés-Montero
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Aakanksha Jain
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Ángeles Montilla-García
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Inmaculada Bravo-Caparrós
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain
| | - Jaehoon Shim
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - Pilar Sánchez-Blázquez
- Department of Translational Neurosciences, Neuropharmacology, Cajal Institute, CSIC, Madrid, Spain
| | - Clifford J Woolf
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - José M Baeyens
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain
| | - Enrique J Cobos
- Department of Pharmacology, Faculty of Medicine, University of Granada, Granada, Spain.,Institute of Neuroscience, Biomedical Research Center, University of Granada, Granada, Spain.,Biosanitary Research Institute ibs. GRANADA, Granada, Spain.,Teófilo Hernando Institute for Drug Discovery, Madrid, Spain
| |
Collapse
|
5
|
Xiao J, Tian X, Jin S, He Y, Song M, Zou H. CELF1 promotes matrix metalloproteinases gene expression at transcriptional level in lens epithelial cells. BMC Ophthalmol 2022; 22:122. [PMID: 35287612 PMCID: PMC8922852 DOI: 10.1186/s12886-022-02344-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/24/2022] [Indexed: 11/10/2022] Open
Abstract
Background RNA binding proteins (RBPs)-mediated regulation plays important roles in many eye diseases, including the canonical RBP CELF1 in cataract. While the definite molecular regulatory mechanisms of CELF1 on cataract still remain elusive. Methods In this study, we overexpressed CELF1 in human cultured lens epithelial SRA01/04 cells and applied whole transcriptome sequencing (RNA-seq) method to analyze the global differences mediated by CELF1. We then analyzed public RNA-seq and CELF1-RNA interactome data to decipher the underlying mechanisms. Results The results showed that transcriptome profile was globally changed by CELF1 overexpression (CELF1-OE). Functional analysis revealed CELF1 specifically increased the expression of genes in extracellular matrix disassembly, extracellular matrix organization, and proteolysis, which could be classified into matrix metalloproteinases (MMPs) family. This finding was also validated by RT-qPCR and public mouse early embryonic lens data. Integrating analysis with public CELF1-RNA interactome data revealed that no obvious CELF1-binding peak was found on the transcripts of these genes, indicating an indirectly regulatory role of CELF1 in lens epithelial cells. Conclusions Our study demonstrated that CELF1-OE promotes transcriptional level of MMP genes; and this regulation may be completed by other ways except for binding to RNA targets. These results suggest that CELF1-OE is implicated in the development of lens, which is associated with cataract and expands our understanding of CELF1 regulatory roles as an RNA binding protein. Supplementary Information The online version contains supplementary material available at 10.1186/s12886-022-02344-8.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Xin Tian
- Department of Pediatrics, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Siyan Jin
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Yanhui He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - Meijiao Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China
| | - He Zou
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun city, Jilin province, China.
| |
Collapse
|
6
|
Li W, Li J, Yang Y. Recognition of the Possible miRNA-mRNA Controlling Network in Stroke by Bioinformatics Examination. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:6745282. [PMID: 34938355 PMCID: PMC8687781 DOI: 10.1155/2021/6745282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 11/05/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Based on the latest research of WHO, it has been revealed that more than 15 million people suffer from stroke every year worldwide. Of these 15 million people, 6 million succumb to death, and 5 million get permanently disabled. This is the prime reason for the substantial economic burden on all parts of the world. METHODS These data have been obtained from the GEO database, and the GEO2R tool was used to find out the differentially expressed miRNAs (DEMs) between the stroke and normal patients' blood. FunRich and miRNet were considered to find potential upstream transcription factors and downstream target genes of candidate EMRs. Next, we use GO annotation and KEGG pathway enrichment. Target genes were analyzed with the help of the R software. Then, the STRING database and Cytoscape software were used to conduct PPI and DEM-hub gene networks. Finally, GSE58294 was used to estimate the hub gene expressions. RESULTS Six DEMs in total were selected out from GSE95204 and GSE117064 datasets. 663 DEMs' target genes were predicted, and NRF1, EGR1, MYC, YY1, E2F1, SP4, and SP1 were predicted as an upstream transcription factor for DEMs' target genes. Target genes of DEMs were primarily augmented in the PI3K-Akt signaling pathway and p53 signaling pathway. The network construction of DEM hygiene is potentially modulated by hsa-miR-3591-5p, hsa-miR-548as-3p, hsa-miR-206, and hsa-miR-4503 hub genes which were found among the top 10 of the hub genes. Among the top 10 hub genes, justification of CTNNB1, PTEN, ESR1, CCND1, KRAS, AKT1, CCND2, CDKN1B, and MYCN was constant with that in the GSE58294 dataset. CONCLUSION In summary, our research first constructs the miRNA-mRNA network in stroke, which probably renders an awakening purview into the pathogenesis and cure of stroke.
Collapse
Affiliation(s)
- Wei Li
- Emergency Department of Benxi Central Hospital, Benxi City, Liaoning Province 117000, China
| | - Jian Li
- Department of Thyroid Head and Neck Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province 110801, China
| | - Yong Yang
- Emergency Department of Benxi Central Hospital, Benxi City, Liaoning Province 117000, China
| |
Collapse
|
7
|
Chaix R, Fagny M, Cosin-Tomás M, Alvarez-López M, Lemee L, Regnault B, Davidson RJ, Lutz A, Kaliman P. Differential DNA methylation in experienced meditators after an intensive day of mindfulness-based practice: Implications for immune-related pathways. Brain Behav Immun 2020; 84:36-44. [PMID: 31733290 PMCID: PMC7010561 DOI: 10.1016/j.bbi.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
The human methylome is dynamically influenced by psychological stress. However, its responsiveness to stress management remains underexplored. Meditation practice has been shown to significantly reduce stress level, among other beneficial neurophysiological outcomes. Here, we evaluated the impact of a day of intensive meditation practice (t2-t1 = 8 h) on the methylome of peripheral blood mononuclear cells in experienced meditators (n = 17). In parallel, we assessed the influence of a day of leisure activities in the same environment on the methylome of matched control subjects with no meditation experience (n = 17). DNA methylation profiles were analyzed using the Illumina 450 K beadchip array. We fitted for each methylation site a linear model for multi-level experiments which adjusts the variation between t1 and t2 for baseline differences. No significant baseline differences in methylation profiles was detected between groups. In the meditation group, we identified 61 differentially methylated sites (DMS) after the intervention. These DMS were enriched in genes mostly associated with immune cell metabolism and ageing and in binding sites for several transcription factors involved in immune response and inflammation, among other functions. In the control group, no significant change in methylation level was observed after the day of leisure activities. These results suggest that a short meditation intervention in trained subjects may rapidly influence the epigenome at sites of potential relevance for immune function and provide a better understanding of the dynamics of the human methylome over short time windows.
Collapse
Affiliation(s)
- R Chaix
- Unité d'Eco-anthropologie (EA), Museum National d'Histoire Naturelle, CNRS, Université Paris Diderot, 75016 Paris, France.
| | - M Fagny
- Génétique Quantitative et Évolution, Evolution - Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | - M Cosin-Tomás
- Department of Human Genetics, McGill University, Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - M Alvarez-López
- Unitat de Farmacologia, Facultat de Farmàcia, Institut de Biomedicina, Universitat de Barcelona (IBUB), Nucli Universitari de Pedralbes, Barcelone, Spain
| | - L Lemee
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Plateforme Biomics, Institut Pasteur, Paris, France
| | - B Regnault
- Plate-forme de Génotypage des Eucaryotes, Pôle Biomics, Institut Pasteur, Paris, France; Biology of Infection Unit, Inserm U1117. Pathogen Discovery Laboratory, Institut Pasteur, Paris, France
| | - R J Davidson
- Center for Healthy Minds, University of Wisconsin-Madison, USA
| | - A Lutz
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, Lyon 1 University, Lyon, France
| | - P Kaliman
- Center for Healthy Minds, University of Wisconsin-Madison, USA; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain.
| |
Collapse
|