1
|
Bairagi S, Abdollahifar MA, Atake OJ, Dust W, Wiebe S, Belev G, Chapman LD, Webb MA, Zhu N, Cooper DML, Eames BF. MRI overestimates articular cartilage thickness and volume compared to synchrotron radiation phase-contrast imaging. PLoS One 2023; 18:e0291757. [PMID: 37788257 PMCID: PMC10547194 DOI: 10.1371/journal.pone.0291757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 09/05/2023] [Indexed: 10/05/2023] Open
Abstract
Accurate evaluation of morphological changes in articular cartilage are necessary for early detection of osteoarthritis (OA). 3T magnetic resonance imaging (MRI) has highly sensitive contrast resolution and is widely used clinically to detect OA. However, synchrotron radiation phase-contrast imaging computed tomography (SR-PCI) can also provide contrast to tissue interfaces that do not have sufficient absorption differences, with the added benefit of very high spatial resolution. Here, MRI was compared with SR-PCI for quantitative evaluation of human articular cartilage. Medial tibial condyles were harvested from non-OA donors and from OA patients receiving knee replacement surgery. Both imaging methods revealed that average cartilage thickness and cartilage volume were significantly reduced in the OA group, compared to the non-OA group. When comparing modalities, the superior resolution of SR-PCI enabled more precise mapping of the cartilage surface relative to MRI. As a result, MRI showed significantly higher average cartilage thickness and cartilage volume, compared to SR-PCI. These data highlight the potential for high-resolution imaging of articular cartilage using SR-PCI as a solution for early OA diagnosis. Recognizing current limitations of using a synchrotron for clinical imaging, we discuss its nascent utility for preclinical models, particularly longitudinal studies of live animal models of OA.
Collapse
Affiliation(s)
- Suranjan Bairagi
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Mohammad-Amin Abdollahifar
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Oghenevwogaga J. Atake
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - William Dust
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sheldon Wiebe
- Department of Medical Imaging, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George Belev
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - L. Dean Chapman
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - M. Adam Webb
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - Ning Zhu
- Canadian Light Source Inc., Saskatoon, Saskatchewan, Canada
| | - David M. L. Cooper
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Lye TH, Gachouch O, Renner L, Elezkurtaj S, Cash H, Messroghli D, Raum K, Mamou J. Quantitative Ultrasound Assessment of Early Osteoarthritis in Human Articular Cartilage Using a High-Frequency Linear Array Transducer. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:1429-1440. [PMID: 35537895 PMCID: PMC9246887 DOI: 10.1016/j.ultrasmedbio.2022.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 06/01/2023]
Abstract
Quantitative ultrasound (QUS) assessment of osteoarthritis (OA) using high-frequency, research-grade single-element ultrasound systems has been reported. The objective of this ex vivo study was to assess the performance of QUS in detecting early OA using a high-frequency linear array transducer. Osteochondral plugs (n = 26) of human articular cartilage were scanned with ExactVu Micro-Ultrasound using an EV29L side-fire transducer. For comparison, the samples were also imaged with SAM200Ex, a custom 40-MHz scanning acoustic microscope with a single-element, focused transducer. Thirteen QUS parameters were derived from the ultrasound data. Magnetic resonance imaging (MRI) data, with T1 and T2 extracted as the quantitative parameters, were also acquired for comparison. Cartilage degeneration was graded from histology and correlated to all quantitative parameters. A maximum Spearman rank correlation coefficient (ρ) of 0.75 was achieved using a combination of ExactVu QUS parameters, while a maximum ρ of 0.62 was achieved using a combination of parameters from SAM200Ex. A maximum ρ of 0.75 was achieved using the T1 and T2 MRI parameters. This study illustrates the potential of a high-frequency linear array transducer to provide a convenient method for early OA screening with results comparable to those of research-grade single-element ultrasound and MRI.
Collapse
Affiliation(s)
- Theresa H Lye
- Frederic L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York, USA
| | - Omar Gachouch
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lisa Renner
- Centrum für Muskuloskeletale Chirurgie (CMSC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sefer Elezkurtaj
- Institut für Pathologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Hannes Cash
- Department of Urology, Otto-von-Guericke-University Magdeburg, Germany and PROURO, Berlin, Germany
| | - Daniel Messroghli
- Department of Internal Medicine and Cardiology, Deutsches Herzzentrum Berlin and Charite-Universitätsmedizin Berlin, Berlin, Germany
| | - Kay Raum
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jonathan Mamou
- Frederic L. Lizzi Center for Biomedical Engineering, Riverside Research, New York, New York, USA.
| |
Collapse
|
3
|
Birnbacher L, Braig EM, Pfeiffer D, Pfeiffer F, Herzen J. Quantitative X-ray phase contrast computed tomography with grating interferometry : Biomedical applications of quantitative X-ray grating-based phase contrast computed tomography. Eur J Nucl Med Mol Imaging 2021; 48:4171-4188. [PMID: 33846846 PMCID: PMC8566444 DOI: 10.1007/s00259-021-05259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022]
Abstract
The ability of biomedical imaging data to be of quantitative nature is getting increasingly important with the ongoing developments in data science. In contrast to conventional attenuation-based X-ray imaging, grating-based phase contrast computed tomography (GBPC-CT) is a phase contrast micro-CT imaging technique that can provide high soft tissue contrast at high spatial resolution. While there is a variety of different phase contrast imaging techniques, GBPC-CT can be applied with laboratory X-ray sources and enables quantitative determination of electron density and effective atomic number. In this review article, we present quantitative GBPC-CT with the focus on biomedical applications.
Collapse
Affiliation(s)
- Lorenz Birnbacher
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Eva-Maria Braig
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Franz Pfeiffer
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Julia Herzen
- Physics Department, Munich School of Bioengineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Geier B, Oetjen J, Ruthensteiner B, Polikarpov M, Gruber-Vodicka HR, Liebeke M. Connecting structure and function from organisms to molecules in small-animal symbioses through chemo-histo-tomography. Proc Natl Acad Sci U S A 2021; 118:e2023773118. [PMID: 34183413 PMCID: PMC8300811 DOI: 10.1073/pnas.2023773118] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Our understanding of metabolic interactions between small symbiotic animals and bacteria or parasitic eukaryotes that reside within their bodies is extremely limited. This gap in knowledge originates from a methodological challenge, namely to connect histological changes in host tissues induced by beneficial and parasitic (micro)organisms to the underlying metabolites. We addressed this challenge and developed chemo-histo-tomography (CHEMHIST), a culture-independent approach to connect anatomic structure and metabolic function in millimeter-sized symbiotic animals. CHEMHIST combines chemical imaging of metabolites based on mass spectrometry imaging (MSI) and microanatomy-based micro-computed X-ray tomography (micro-CT) on the same animal. Both high-resolution MSI and micro-CT allowed us to correlate the distribution of metabolites to the same animal's three-dimensional (3D) histology down to submicrometer resolutions. Our protocol is compatible with tissue-specific DNA sequencing and fluorescence in situ hybridization for the taxonomic identification and localization of the associated micro(organisms). Building CHEMHIST upon in situ imaging, we sampled an earthworm from its natural habitat and created an interactive 3D model of its physical and chemical interactions with bacteria and parasitic nematodes in its tissues. Combining MSI and micro-CT, we present a methodological groundwork for connecting metabolic and anatomic phenotypes of small symbiotic animals that often represent keystone species for ecosystem functioning.
Collapse
Affiliation(s)
- Benedikt Geier
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| | - Janina Oetjen
- MALDI Imaging Lab, University of Bremen, 28334 Bremen, Germany
| | | | - Maxim Polikarpov
- European Molecular Biology Laboratory, Hamburg Unit c/o Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | | | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany;
| |
Collapse
|
5
|
Pflieger I, Stolberg-Stolberg J, Foehr P, Kuntz L, Tübel J, Grosse CU, Burgkart R. Full biomechanical mapping of the ovine knee joint to determine creep-recovery, stiffness and thickness variation. Clin Biomech (Bristol, Avon) 2019; 67:1-7. [PMID: 31054436 DOI: 10.1016/j.clinbiomech.2019.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 03/21/2019] [Accepted: 04/23/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Clinical cartilage repair strategies can be tested using the sheep model as suggest by the European Medicines Agency. To characterize variation within the joint a full biomechanical mapping is necessary. The aim of this study is to establish a loading model, to map regional differences within the knee and determine reference areas for area specific replacement techniques. METHODS A porous indenter was selected to evaluate 22 defined test locations (femoral condyles, tibia plateau, patella, femoral groove) on ovine knees (n = 7). A high-dynamic force-controlled micro creep and creep-recovery indentation test system applied five loading (0.11 MPa) and unloading (5.6 kPa) cycles for 60 s each and recorded creep-recovery. Needle indentation was used to measure cartilage thickness and calculate total strain. FINDINGS Steady state behaviour was observed from the third cycle and further evaluated. Little variation of stiffness in N/mm was found within the patella (4.3SD0.5) and femoral groove (8.1SD0.7) compared to larger variations in the femur (7.9SD2.0) and tibia (7.5SD3.2). Creep indentation showed values of 14.5%(SD2.7%) for the patella and 17.4%(SD3%) for the femoral grove opposed to 13.4%(SD4.3%) for the femoral condyles and 21.8%(SD6.6%) for the tibia plateau. Similar trends were observed analysing creep-recovery. Values were normalized to cartilage thickness which ranged between 0.36 mm and 1.14 mm. INTERPRETATION Our setup allows a reliable evaluation of zonal differences. Homogenous biomechanical behaviour is found within the patella and femoral groove whereas significant biomechanical variation within the femoral condyles and tibia plateau indicates the need for site-specific cartilage repair products.
Collapse
Affiliation(s)
- Iris Pflieger
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; Department of Trauma Surgery, Trauma Center Murnau, Professor-Küntscher-Str. 8, 82418 Murnau, Germany
| | - Josef Stolberg-Stolberg
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Muenster, Albert-Schweitzer-Campus 1, Building W1, 48149 Muenster, Germany.
| | - Peter Foehr
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany; Chair of Non-destructive Testing, Technical University of Munich, Baumbachstr. 7, 81245 Munich, Germany
| | - Lara Kuntz
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Jutta Tübel
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| | - Christian U Grosse
- Chair of Non-destructive Testing, Technical University of Munich, Baumbachstr. 7, 81245 Munich, Germany
| | - Rainer Burgkart
- Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich, Ismaninger Straße 22, 81675 Munich, Germany
| |
Collapse
|