1
|
Jing S, Zhang Y, Zhao W, Li Y, Wen Y. The predictive value of peripheral blood cell mitochondrial gene expression in identifying the prognosis in pediatric sepsis at preschool age. Front Cell Infect Microbiol 2024; 14:1413103. [PMID: 39113822 PMCID: PMC11303305 DOI: 10.3389/fcimb.2024.1413103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Background Sepsis represents a severe manifestation of infection often accompanied by metabolic disorders and mitochondrial dysfunction. Notably, mitochondrial DNA copy number (mtDNA-CN) and the expression of specific mitochondrial genes have emerged as sensitive indicators of mitochondrial function. To investigate the utility of mitochondrial gene expression in peripheral blood cells for distinguishing severe infections and predicting associated outcomes, we conducted a prospective cohort study. Methods We established a prospective cohort comprising 74 patients with non-sepsis pneumonia and 67 cases of sepsis induced by respiratory infections, aging from 2 to 6 years old. We documented corresponding clinical data and laboratory information and collected blood samples upon initial hospital admission. Peripheral blood cells were promptly isolated, and both total DNA and RNA were extracted. We utilized absolute quantification PCR to assess mtDNA-CN, as well as the expression levels of mt-CO1, mt-ND1, and mt-ATP6. Subsequently, we extended these comparisons to include survivors and non-survivors among patients with sepsis using univariate and multivariate analyses. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic potential. Results The mtDNA-CN in peripheral blood cells was significantly lower in the sepsis group. Univariate analysis revealed a significant reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 in patients with sepsis. However, multivariate analysis did not support the use of mitochondrial function in peripheral blood cells for sepsis diagnosis. In the comparison between pediatric sepsis survivors and non-survivors, univariate analysis indicated a substantial reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 among non-survivors. Notably, total bilirubin (TB), mt-CO1, mt-ND1, and mt-ATP6 levels were identified as independent risk factors for sepsis-induced mortality. ROC curves were then established for these independent risk factors, revealing areas under the curve (AUCs) of 0.753 for TB (95% CI 0.596-0.910), 0.870 for mt-CO1 (95% CI 0.775-0.965), 0.987 for mt-ND1 (95% CI 0.964-1.000), and 0.877 for mt-ATP6 (95% CI 0.793-0.962). Conclusion MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.
Collapse
Affiliation(s)
- Siyuan Jing
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wanling Zhao
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yifei Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Emergency, Chengdu Women’s and Children’s Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Limmer A, Engler A, Kattner S, Gregorius J, Pattberg KT, Schulz R, Schwab J, Roth J, Vogl T, Krawczyk A, Witzke O, Zelinskyy G, Dittmer U, Brenner T, Berger MM. Patients with SARS-CoV-2-Induced Viral Sepsis Simultaneously Show Immune Activation, Impaired Immune Function and a Procoagulatory Disease State. Vaccines (Basel) 2023; 11:vaccines11020435. [PMID: 36851312 PMCID: PMC9960366 DOI: 10.3390/vaccines11020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND It is widely accepted that SARS-CoV-2 causes a dysregulation of immune and coagulation processes. In severely affected patients, viral sepsis may result in life endangering multiple organ dysfunction. Furthermore, most therapies for COVID-19 patients target either the immune system or coagulation processes. As the exact mechanism causing SARS-CoV-2-induced morbidity and mortality was unknown, we started an in-depth analysis of immunologic and coagulation processes. METHODS 127 COVID-19 patients were treated at the University Hospital Essen, Germany, between May 2020 and February 2022. Patients were divided according to their maximum COVID-19 WHO ordinal severity score (WHO 0-10) into hospitalized patients with a non-severe course of disease (WHO 4-5, n = 52) and those with a severe course of disease (WHO 6-10, n = 75). Non-infected individuals served as healthy controls (WHO 0, n = 42). Blood was analyzed with respect to cell numbers, clotting factors, as well as pro- and anti-inflammatory mediators in plasma. As functional parameters, phagocytosis and inflammatory responses to LPS and antigen-specific stimulation were determined in monocytes, granulocytes, and T cells using flow cytometry. FINDINGS In the present study, immune and coagulation systems were analyzed simultaneously. Interestingly, many severe COVID-19 patients showed an upregulation of pro-inflammatory mediators and at the same time clear signs of immunosuppression. Furthermore, severe COVID-19 patients not only exhibited a disturbed immune system, but in addition showed a pronounced pro-coagulation phenotype with impaired fibrinolysis. Therefore, our study adds another puzzle piece to the already complex picture of COVID-19 pathology implying that therapies in COVID-19 must be individualized. CONCLUSION Despite years of research, COVID-19 has not been understood completely and still no therapies exist, fitting all requirements and phases of COVID-19 disease. This observation is highly reminiscent to sepsis. Research in sepsis has been going on for decades, while the disease is still not completely understood and therapies fitting all patients are lacking as well. In both septic and COVID-19 patients, immune activation can be accompanied by immune paralysis, complicating therapeutic intervention. Accordingly, therapies that lower immune activation may cause detrimental effects in patients, who are immune paralyzed by viral infections or sepsis. We therefore suggest individualizing therapies and to broaden the spectrum of immunological parameters analyzed before therapy. Only if the immune status of a patient is understood, can a therapeutic intervention be successful.
Collapse
Affiliation(s)
- Andreas Limmer
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
- Department of Pediatric Cardiac Surgery, University Hospital Erlangen, 91054 Erlangen, Germany
- Correspondence:
| | - Andrea Engler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Simone Kattner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jonas Gregorius
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Kevin Thomas Pattberg
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Rebecca Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Jansje Schwab
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, 48149 Münster, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Oliver Witzke
- Department of Infectious Diseases, West German Centre of Infectious Diseases, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Gennadiy Zelinskyy
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Ulf Dittmer
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marc Moritz Berger
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
3
|
Park J, Kang E, Kang S, Kim D, Kim D, Park SJ, Jhang WK. Mitochondrial gene mutations in pediatric septic shock. Pediatr Res 2021; 90:1016-1022. [PMID: 33504965 DOI: 10.1038/s41390-020-01358-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 01/30/2023]
Abstract
BACKGROUND There has been a growing interest in the association between mitochondrial dysfunction and sepsis. However, most studies have focused on mitochondrial structural damage, functional aspects, or the clinical phenotypes in sepsis. The purpose of this study was to evaluate mitochondrial DNA (mtDNA) gene mutations in critically ill pediatric patients with septic shock. METHOD Thirteen patients with severe sepsis or septic shock admitted to the pediatric intensive care unit (PICU) of a tertiary children's hospital were enrolled in this prospective observational study. Clinical data from electronic medical records were obtained. Whole-blood samples were collected within 24 h of PICU admission to perform PBMC isolation, mtDNA extraction, and mtDNA sequencing using next-generation sequencing. RESULTS mtDNA sequencing revealed mutations in 9 of the 13 patients, presenting 27 point mutations overall, with 15 (55.6%) located in the locus related to adenosine triphosphate production and superoxide metabolism, including electron transport. CONCLUSION In this pilot study, significant numbers of mtDNA point mutations were detected in critically ill pediatric patients with septic shock. These mutations could provide promising evidence for mitochondrial dysfunction in sepsis and a basis for further large-scale studies. IMPACT This study is the first to examine mitochondrial DNA mutations in pediatric patients with septic shock using next-generation sequencing. A high frequency of mitochondrial DNA mutations was detected in these patients indicating an association with septic shock. This pilot study may provide a potential explanation for the association between mitochondrial dysfunction and septic shock on a genetic basis.
Collapse
Affiliation(s)
- Junsung Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Eunju Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seoon Kang
- Department of Convergence Medicine and Stem Cell Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Deokhoon Kim
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dahyun Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Seong Jong Park
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Won Kyoung Jhang
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Mao JY, Li DK, Zhang HM, Wang XT, Liu DW. Plasma mitochondrial DNA levels are associated with acute lung injury and mortality in septic patients. BMC Pulm Med 2021; 21:66. [PMID: 33632166 PMCID: PMC7905766 DOI: 10.1186/s12890-021-01437-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/12/2021] [Indexed: 01/04/2023] Open
Abstract
Background Mitochondrial DNA (mtDNA) is a critical activator of inflammation. Circulating mtDNA released causes lung injury in experimental models. We hypothesized that elevated plasma mtDNA levels are associated with acute lung injury (ALI) in septic patients. Methods We enrolled 66 patients with sepsis admitted to the Department of Critical Care Medicine of Peking Union Medical College Hospital between January 2019 and October 2019. Respiratory, hemodynamic and bedside echocardiographic parameters were recorded. Plasma mtDNA, procalcitonin, interleukin 6, and interleukin 8 levels were examined. Results Plasma mtDNA levels within 24 h after admission were significantly increased in the group of septic patients with ALI [5.01 (3.38–6.64) vs 4.13 (3.20–5.07) log copies/µL, p 0.0172]. mtDNA levels were independently associated with mortality (hazard ratio, 3.2052; 95% CI 1.1608–8.8500; p 0.0253) and ALI risk (odds ratio 2.7506; 95% CI 1.1647–6.4959; p 0.0210). Patients with high mtDNA levels had worse outcomes, and post hoc tests showed significant differences in 28-day survival rates. Increased mtDNA levels were seen in patients with abdominal infection. Conclusions Increased plasma mtDNA levels within 24 h after admission were significantly associated with ALI incidence and mortality in septic patients.
Collapse
Affiliation(s)
- Jia-Yu Mao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuaifuyuan Road, Dongcheng District, Beijing, 100730, China
| | - Dong-Kai Li
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuaifuyuan Road, Dongcheng District, Beijing, 100730, China
| | - Hong-Min Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuaifuyuan Road, Dongcheng District, Beijing, 100730, China
| | - Xiao-Ting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuaifuyuan Road, Dongcheng District, Beijing, 100730, China.
| | - Da-Wei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, 1 Shuaifuyuan Road, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
5
|
Rosa HS, Ajaz S, Gnudi L, Malik AN. A case for measuring both cellular and cell-free mitochondrial DNA as a disease biomarker in human blood. FASEB J 2020; 34:12278-12288. [PMID: 32729179 DOI: 10.1096/fj.202000959rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
Circulating mitochondrial DNA (mtDNA), widely studied as a disease biomarker, comprises of mtDNA located within mitochondria, indicative of mitochondrial function, and cell-free (cf) mtDNA linked to inflammation. The purpose of this study was to determine the ranges of, and relationship between, cellular and cf mtDNA in human blood. Whole blood from 23 controls (HC) and 20 patients with diabetes was separated into peripheral blood mononuclear cells (PBMCs), plasma, and serum. Total DNA was isolated and mtDNA copy numbers were determined using absolute quantification. Cellular mtDNA content in PBMCs was higher than in peripheral blood and a surprisingly high level of cf mtDNA was present in serum and plasma of HC, with no direct relationship between cellular and cf mtDNA content within individuals. Diabetes patients had similar levels of cellular mtDNA compared to healthy participants but a significantly higher cf mtDNA content. Furthermore, only in patients with diabetes, we observed a correlation between whole blood and plasma mtDNA levels, indicating that the relationship between cellular and cf mtDNA content is affected by disease status. In conclusion, when evaluating mtDNA in human blood as a biomarker of mitochondrial dysfunction, it is important to measure both cellular and cf mtDNA.
Collapse
Affiliation(s)
- Hannah S Rosa
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Saima Ajaz
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Luigi Gnudi
- School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Afshan N Malik
- Department of Diabetes, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
6
|
Busani S, De Biasi S, Nasi M, Paolini A, Venturelli S, Tosi M, Girardis M, Cossarizza A. Increased Plasma Levels of Mitochondrial DNA and Normal Inflammasome Gene Expression in Monocytes Characterize Patients With Septic Shock Due to Multidrug Resistant Bacteria. Front Immunol 2020; 11:768. [PMID: 32431703 PMCID: PMC7214691 DOI: 10.3389/fimmu.2020.00768] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/06/2020] [Indexed: 01/04/2023] Open
Abstract
Introduction: The activity and regulation of inflammasome is receiving increasing attention in septic shock. Moreover, there is a growing body of evidence suggesting that mitochondrial DNA (mtDNA) can play a role as biomarker of disease severity and even mortality both in adults and children in critically ill setting. However, no data are available on the amount of circulating mtDNA and inflammasome gene expression in multi-drug resistant (MDR) bacteria septic shock. For this reason, the aim of this study was to determine whether plasma mtDNA levels and inflammasome gene expression in monocytes could be related to severity in patients admitted to intensive care unit (ICU) with septic shock due to MDR pathogens. Materials and Methods: Peripheral blood mononuclear cells (PBMC) and plasma were isolated from up to 20 ml of venous blood by density gradient centrifugation in patients admitted to ICU with the diagnosis of septic shock due to MDR-bacteria. Then, CD14+ monocytes were sorted, and RNA and DNA were extracted. NLRP3, PYCARD, AIM2 and NAIP expression level was analyzed by RT-PCR. Plasma circulating mtDNA levels were quantified by digital droplet PCR. Basal and outcome characteristics of the patients were collected. Age-matched healthy subjects were chosen as controls. Results: Nineteen patients with septic shock and 20 healthy subjects were enrolled in the study. A small trend toward an increased expression of inflammasome genes was observed in septic shock patients, who also displayed a marked tendency to an increased expression of IL-18 and IL-1β genes. Circulating mtDNA levels were significantly higher in septic shock patients if compared to healthy subjects, and patients who died in ICU were characterized by higher level of mtDNA if compared to those who were dismissed after 7 days. No correlations were found between mtDNA and inflammasome level and other clinical variables. Conclusion: Despite many limitations, our data suggest that in patients with septic shock caused by MDR pathogens the expression of main inflammasome genes was comparable to that of healthy patients without infection. Furthermore, our data evidence a possible role of mtDNA as a prognostic marker of severity in septic shock from MDR.
Collapse
Affiliation(s)
- Stefano Busani
- Intensive Care Unit, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Milena Nasi
- Department of Surgical, Medical and Dental Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Annamaria Paolini
- Department of Surgical, Medical and Dental Morphological Sciences Related to Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Sophie Venturelli
- Intensive Care Unit, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Tosi
- Intensive Care Unit, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Girardis
- Intensive Care Unit, Policlinico di Modena, University of Modena and Reggio Emilia, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy.,National Institute for Cardiovascular Research - INRC, Bologna, Italy
| |
Collapse
|
7
|
Wang L, Zhou W, Wang K, He S, Chen Y. Predictive value of circulating plasma mitochondrial DNA for Sepsis in the emergency department: observational study based on the Sepsis-3 definition. BMC Emerg Med 2020; 20:25. [PMID: 32299369 PMCID: PMC7164211 DOI: 10.1186/s12873-020-00320-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/20/2020] [Indexed: 12/29/2022] Open
Abstract
Background The definition of sepsis is regularly updated; however, there is no standard diagnostic test. To improve diagnosis and prognostic prediction, the aim of this study was to determine the predictive value of circulating plasma mitochondrial DNA (mtDNA) levels in patients admitted to the emergency department (ED) with sepsis. Methods A total of 107 patients hospitalized from June 2018 to January 2019 were divided into the sepsis (n = 72) and septic shock (n = 35) groups based on the sepsis-3 definition. Clinical and laboratory data were measured within 24 h of admission. The mtDNA concentrations in clarified plasma were estimated by quantitative polymerase chain reaction. Binary logistic regression analysis and the receiver operating characteristic (ROC) curve were used to determine predictive value of mtDNA and other markers for sepsis outcome (28-day mortality). Results The median plasma mtDNA levels on admission were significantly higher in the septic shock patients than in the sepsis patients (134,252(IQR 70215–203,184) vs. 59,945(IQR 13274–95,319) copies/μL, P < 0.01), and were also higher in non-survivors than in survivors within 28 days (165,291(IQR 89919–272,228)vs. 63,025(IQR 17031–98,401)copies/μL, P < 0.01). Binary logistic regression showed that plasma lactate and mtDNA levels were independent risk factors for 28-day mortality [odds ratio (OR) 1.341, 95% confidence interval (CI) 1.035–1.736, P = 0.026 and OR 13.299, 95%CI 2.765–63.956, P = 0.001, respectively). The area under the ROC curve values for plasma mtDNA levels, lactate concentration, and their combined were 0.781 (p < 0.001, 95%CI 0.671–0.891), 0.733 (p < 0.001, 95%CI 0.635–0.832), and 0.799 (p < 0.001, 95%CI 0.698–0.901), respectively. The calibration test for the combined variable showed X2 of 2.559 and P = 0.923. Conclusion A higher plasma mtDNA level was associated with a poor prognosis of sepsis in the emergency room, and could serve as a predictor of sepsis for 28-day mortality.
Collapse
Affiliation(s)
- Lifeng Wang
- Department of Emergency, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhou
- Department of Emergency, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaiwen Wang
- Department of Rheumatology, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuangjun He
- Department of Emergency, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Chen
- Department of Emergency, South Campus, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|