1
|
Russo A, Alessandrini M, El Baidouri M, Frei D, Galise TR, Gaidusch L, Oertel HF, Garcia Morales SE, Potente G, Tian Q, Smetanin D, Bertrand JAM, Onstein RE, Panaud O, Frey JE, Cozzolino S, Wicker T, Xu S, Grossniklaus U, Schlüter PM. Genome of the early spider-orchid Ophrys sphegodes provides insights into sexual deception and pollinator adaptation. Nat Commun 2024; 15:6308. [PMID: 39060266 PMCID: PMC11282089 DOI: 10.1038/s41467-024-50622-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Pollinator-driven evolution of floral traits is thought to be a major driver of angiosperm speciation and diversification. Ophrys orchids mimic female insects to lure male pollinators into pseudocopulation. This strategy, called sexual deception, is species-specific, thereby providing strong premating reproductive isolation. Identifying the genomic architecture underlying pollinator adaptation and speciation may shed light on the mechanisms of angiosperm diversification. Here, we report the 5.2 Gb chromosome-scale genome sequence of Ophrys sphegodes. We find evidence for transposable element expansion that preceded the radiation of the O. sphegodes group, and for gene duplication having contributed to the evolution of chemical mimicry. We report a highly differentiated genomic candidate region for pollinator-mediated evolution on chromosome 2. The Ophrys genome will prove useful for investigations into the repeated evolution of sexual deception, pollinator adaptation and the genomic architectures that facilitate evolutionary radiations.
Collapse
Affiliation(s)
- Alessia Russo
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| | - Mattia Alessandrini
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Moaine El Baidouri
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Daniel Frei
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Lara Gaidusch
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Hannah F Oertel
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Sara E Garcia Morales
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Qin Tian
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Dmitry Smetanin
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Joris A M Bertrand
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Renske E Onstein
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Olivier Panaud
- Université Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- CNRS, Laboratoire Génome et Développement des Plantes, UMR5096, Perpignan, France
- EMR269 MANGO, Institut de Recherche pour le Développement, Perpignan, France
| | - Jürg E Frey
- Department of Methods Development and Analytics, Agroscope, Wädenswil, Switzerland
| | | | - Thomas Wicker
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Shuqing Xu
- Institute of Organismic and Molecular Evolution, University of Mainz, Mainz, Germany
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland
| | - Philipp M Schlüter
- Department of Plant Evolutionary Biology, Institute of Biology, University of Hohenheim, Stuttgart, Germany.
- Department of Systematic and Evolutionary Botany and Zürich-Basel Plant Science Centre, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
2
|
Madrigal Y, Alzate JF, Pabón-Mora N. Evolution of major flowering pathway integrators in Orchidaceae. PLANT REPRODUCTION 2024; 37:85-109. [PMID: 37823912 PMCID: PMC11180029 DOI: 10.1007/s00497-023-00482-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/10/2023] [Indexed: 10/13/2023]
Abstract
The Orchidaceae is a mega-diverse plant family with ca. 29,000 species with a large variety of life forms that can colonize transitory habitats. Despite this diversity, little is known about their flowering integrators in response to specific environmental factors. During the reproductive transition in flowering plants a vegetative apical meristem (SAM) transforms into an inflorescence meristem (IM) that forms bracts and flowers. In model grasses, like rice, a flowering genetic regulatory network (FGRN) controlling reproductive transitions has been identified, but little is known in the Orchidaceae. In order to analyze the players of the FRGN in orchids, we performed comprehensive phylogenetic analyses of CONSTANS-like/CONSTANS-like 4 (COL/COL4), FLOWERING LOCUS D (FD), FLOWERING LOCUS C/FRUITFULL (FLC/FUL) and SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) gene lineages. In addition to PEBP and AGL24/SVP genes previously analyzed, here we identify an increase of orchid homologs belonging to COL4, and FUL gene lineages in comparison with other monocots, including grasses, due to orchid-specific gene lineage duplications. Contrariwise, local duplications in Orchidaceae are less frequent in the COL, FD and SOC1 gene lineages, which points to a retention of key functions under strong purifying selection in essential signaling factors. We also identified changes in the protein sequences after such duplications, variation in the evolutionary rates of resulting paralogous clades and targeted expression of isolated homologs in different orchids. Interestingly, vernalization-response genes like VERNALIZATION1 (VRN1) and FLOWERING LOCUS C (FLC) are completely lacking in orchids, or alternatively are reduced in number, as is the case of VERNALIZATION2/GHD7 (VRN2). Our findings point to non-canonical factors sensing temperature changes in orchids during reproductive transition. Expression data of key factors gathered from Elleanthus auratiacus, a terrestrial orchid in high Andean mountains allow us to characterize which copies are actually active during flowering. Altogether, our data lays down a comprehensive framework to assess gene function of a restricted number of homologs identified more likely playing key roles during the flowering transition, and the changes of the FGRN in neotropical orchids in comparison with temperate grasses.
Collapse
Affiliation(s)
- Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia
| | - Juan F Alzate
- Facultad de Medicina, Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
3
|
Aamir M, Shanmugam V, Dubey MK, Husain FM, Adil M, Ansari WA, Rai A, Sah P. Transcriptomic characterization of Trichoderma harzianum T34 primed tomato plants: assessment of biocontrol agent induced host specific gene expression and plant growth promotion. BMC PLANT BIOLOGY 2023; 23:552. [PMID: 37940862 PMCID: PMC10631224 DOI: 10.1186/s12870-023-04502-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 09/30/2023] [Indexed: 11/10/2023]
Abstract
In this study, we investigated the intricate interplay between Trichoderma and the tomato genome, focusing on the transcriptional and metabolic changes triggered during the late colonization event. Microarray probe set (GSE76332) was utilized to analyze the gene expression profiles changes of the un-inoculated control (tomato) and Trichoderma-tomato interactions for identification of the differentially expressed significant genes. Based on principal component analysis and R-based correlation, we observed a positive correlation between the two cross-comaparable groups, corroborating the existence of transcriptional responses in the host triggered by Trichoderma priming. The statistically significant genes based on different p-value cut-off scores [(padj-values or q-value); padj-value < 0.05], [(pcal-values); pcal-value < 0.05; pcal < 0.01; pcal < 0.001)] were cross compared. Through cross-comparison, we identified 156 common genes that were consistently significant across all probability thresholds, and showing a strong positive corelation between p-value and q-value in the selected probe sets. We reported TD2, CPT1, pectin synthase, EXT-3 (extensin-3), Lox C, and pyruvate kinase (PK), which exhibited upregulated expression, and Glb1 and nitrate reductase (nii), which demonstrated downregulated expression during Trichoderma-tomato interaction. In addition, microbial priming with Trichoderma resulted into differential expression of transcription factors related to systemic defense and flowering including MYB13, MYB78, ERF2, ERF3, ERF5, ERF-1B, NAC, MADS box, ZF3, ZAT10, A20/AN1, polyol sugar transporter like zinc finger proteins, and a novel plant defensin protein. The potential bottleneck and hub genes involved in this dynamic response were also identified. The protein-protein interaction (PPI) network analysis based on 25 topmost DEGS (pcal-value < 0.05) and the Weighted Correlation Gene Network Analysis (WGCNA) of the 1786 significant DEGs (pcal-value < 0.05) we reported the hits associated with carbohydrate metabolism, secondary metabolite biosynthesis, and the nitrogen metabolism. We conclude that the Trichoderma-induced microbial priming re-programmed the host genome for transcriptional response during the late colonization event and were characterized by metabolic shifting and biochemical changes specific to plant growth and development. The work also highlights the relevance of statistical parameters in understanding the gene regulatory dynamics and complex regulatory networks based on differential expression, co-expression, and protein interaction networks orchestrating the host responses to beneficial microbial interactions.
Collapse
Affiliation(s)
- Mohd Aamir
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi-110012, Delhi, India.
| | - V Shanmugam
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi-110012, Delhi, India
| | - Manish Kumar Dubey
- Department of Biotechnology, University Centre for Research & Development (UCRD), Chandigarh University, Punjab, 140413, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh-11451, Saudi Arabia
| | - Mohd Adil
- Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, B2N2R9, Canada
| | - Waquar Akhter Ansari
- Department of Botany, Centre for Advanced Study, Institute of Science, Banaras Hindu University, Varanasi, 221002, India
| | - Ashutosh Rai
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Uttar Pradesh, Banda, 210001, India
| | - Pankaj Sah
- Applied Sciences Department, College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences-Muscat, Al Janubyyah Street, PO Box 74, Muscat, 133, Sultanate of Oman
| |
Collapse
|
4
|
Lin ZY, Zhu GF, Lu CQ, Gao J, Li J, Xie Q, Wei YL, Jin JP, Wang FL, Yang FX. Functional conservation and divergence of SEPALLATA-like genes in floral development in Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2023; 14:1209834. [PMID: 37711312 PMCID: PMC10498475 DOI: 10.3389/fpls.2023.1209834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Cymbidium sinense is one of the most important traditional Chinese Orchids due to its unique and highly ornamental floral organs. Although the ABCDE model for flower development is well-established in model plant species, the precise roles of these genes in C. sinense are not yet fully understood. In this study, four SEPALLATA-like genes were isolated and identified from C. sinense. CsSEP1 and CsSEP3 were grouped into the AGL9 clade, while CsSEP2 and CsSEP4 were included in the AGL2/3/4 clade. The expression pattern of CsSEP genes showed that they were significantly accumulated in reproductive tissues and expressed during flower bud development but only mildly detected or even undetected in vegetative organs. Subcellular localization revealed that CsSEP1 and CsSEP4 were localized to the nucleus, while CsSEP2 and CsSEP3 were located at the nuclear membrane. Promoter sequence analysis predicted that CsSEP genes contained a number of hormone response elements (HREs) and MADS-box binding sites. The early flowering phenotype observed in transgenic Arabidopsis plants expressing four CsSEP genes, along with the expression profiles of endogenous genes, such as SOC1, LFY, AG, FT, SEP3 and TCPs, in both transgenic Arabidopsis and C. sinense protoplasts, suggested that the CsSEP genes played a regulatory role in the flowering transition by influencing downstream genes related to flowering. However, only transgenic plants overexpressing CsSEP3 and CsSEP4 caused abnormal phenotypes of floral organs, while CsSEP1 and CsSEP2 had no effect on floral organs. Protein-protein interaction assays indicated that CsSEPs formed a protein complex with B-class CsAP3-2 and CsSOC1 proteins, affecting downstream genes to regulate floral organs and flowering time. Our findings highlighted both the functional conservation and divergence of SEPALLATA-like genes in C. sinense floral development. These results provided a valuable foundation for future studies of the molecular network underlying floral development in C. sinense.
Collapse
Affiliation(s)
- Zeng-Yu Lin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chu-Qiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yong-Lu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian-Peng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng-Lan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
5
|
Valoroso MC, Lucibelli F, Aceto S. Orchid NAC Transcription Factors: A Focused Analysis of CUPULIFORMIS Genes. Genes (Basel) 2022; 13:genes13122293. [PMID: 36553560 PMCID: PMC9777940 DOI: 10.3390/genes13122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Plant transcription factors are involved in different developmental pathways. NAC transcription factors (No Apical Meristem, Arabidopsis thaliana Activating Factor, Cup-shaped Cotyledon) act in various processes, e.g., plant organ formation, response to stress, and defense mechanisms. In Antirrhinum majus, the NAC transcription factor CUPULIFORMIS (CUP) plays a role in determining organ boundaries and lip formation, and the CUP homologs of Arabidopsis and Petunia are involved in flower organ formation. Orchidaceae is one of the most species-rich families of angiosperms, known for its extraordinary diversification of flower morphology. We conducted a transcriptome and genome-wide analysis of orchid NACs, focusing on the No Apical Meristem (NAM) subfamily and CUP genes. To check whether the CUP homologs could be involved in the perianth formation of orchids, we performed an expression analysis on the flower organs of the orchid Phalaenopsis aphrodite at different developmental stages. The expression patterns of the CUP genes of P. aphrodite suggest their possible role in flower development and symmetry establishment. In addition, as observed in other species, the orchid CUP1 and CUP2 genes seem to be regulated by the microRNA, miR164. Our results represent a preliminary study of NAC transcription factors in orchids to understand the role of these genes during orchid flower formation.
Collapse
Affiliation(s)
- Maria Carmen Valoroso
- Department of Agricultural Sciences, University of Napoli Federico II, 80055 Portici, Italy
- Correspondence: (M.C.V.); (S.A.)
| | - Francesca Lucibelli
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, 80126 Napoli, Italy
- Correspondence: (M.C.V.); (S.A.)
| |
Collapse
|
6
|
Cheng H, Xie X, Ren M, Yang S, Zhao X, Mahna N, Liu Y, Xu Y, Xiang Y, Chai H, Zheng L, Ge H, Jia R. Characterization of Three SEPALLATA-Like MADS-Box Genes Associated With Floral Development in Paphiopedilum henryanum (Orchidaceae). FRONTIERS IN PLANT SCIENCE 2022; 13:916081. [PMID: 35693163 PMCID: PMC9178235 DOI: 10.3389/fpls.2022.916081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
Paphiopedilum (Orchidaceae) is one of the world's most popular orchids that is found in tropical and subtropical forests and has an enormous ornamental value. SEPALLATA-like (SEP-like) MADS-box genes are responsible for floral organ specification. In this study, three SEP-like MADS-box genes, PhSEP1, PhSEP2, and PhSEP3, were identified in Paphiopedilum henryanum. These genes were 732-916 bp, with conserved SEPI and SEPII motifs. Phylogenetic analysis revealed that PhSEP genes were evolutionarily closer to the core eudicot SEP3 lineage, whereas none of them belonged to core eudicot SEP1/2/4 clades. PhSEP genes displayed non-ubiquitous expression, which was detectable across all floral organs at all developmental stages of the flower buds. Furthermore, subcellular localization experiments revealed the localization of PhSEP proteins in the nucleus. Yeast two-hybrid assays revealed no self-activation of PhSEPs. The protein-protein interactions revealed that PhSEPs possibly interact with B-class DEFICIENS-like and E-class MADS-box proteins. Our study suggests that the three SEP-like genes may play key roles in flower development in P. henryanum, which will improve our understanding of the roles of the SEP-like MADS-box gene family and provide crucial insights into the mechanisms underlying floral development in orchids.
Collapse
Affiliation(s)
- Hao Cheng
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xiulan Xie
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Maozhi Ren
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Shuhua Yang
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xin Zhao
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nasser Mahna
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Yi Liu
- National Agricultural Science & Technology Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Yufeng Xu
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yukai Xiang
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hua Chai
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Liang Zheng
- Department of High-Performance Computing, National Supercomputing Center in Chengdu, Chengdu, China
| | - Hong Ge
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruidong Jia
- Key Laboratory of Biology and Genetic Improvement of Flower Crops (North China), Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Li Y, Zhang B, Yu H. Molecular genetic insights into orchid reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1841-1852. [PMID: 35104310 DOI: 10.1093/jxb/erac016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Orchids are members of the Orchidaceae, one of the largest families of flowering plants, and occupy a wide range of ecological habitats with highly specialized reproductive features. They exhibit unique developmental characteristics, such as generation of storage organs during flowering and spectacular floral morphological features, which contribute to their reproductive success in different habitats in response to various environmental cues. Here we review current understanding of the molecular genetic basis of orchid reproductive development, including flowering time control, floral patterning and flower color, with a focus on the orchid genes that have been functionally validated in plants. Furthermore, we summarize recent progress in annotating orchid genomes, and discuss how integration of high-quality orchid genome sequences with other advanced tools, such as the ever-improving multi-omics approaches and genome editing technologies as well as orchid-specific technical platforms, could open up new avenues to elucidate the molecular genetic basis of highly specialized reproductive organs and strategies in orchids.
Collapse
Affiliation(s)
- Yan Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Bin Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| | - Hao Yu
- Department of Biological Sciences, National University of Singapore, Singapore
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore
| |
Collapse
|
8
|
Ramírez-Ramírez JA, Madrigal Y, Alzate JF, Pabón-Mora N. Evolution and expression of the MADS-box flowering transition genes AGAMOUS-like 24/SHORT VEGETATIVE PHASE with emphasis in selected Neotropical orchids. Cells Dev 2021; 168:203755. [PMID: 34758403 DOI: 10.1016/j.cdev.2021.203755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/18/2022]
Abstract
In angiosperms the reproductive transition results in the transformation of a vegetative apical meristem (SAM) into an inflorescence meristem (IM), capable of forming floral meristems (FM). Two key players in the flowering transition are AGAMOUS-like 24 (AGL24) and SHORT VEGETATIVE PHASE (SVP). They are eudicot MADS-box paralogs performing opposite roles, as AGL24 positively regulates flowering while SVP represses the reproductive transition in Arabidopsis. We confirm that the Arabidopsis functional reference cannot be readily extrapolated to all eudicots as there are additional duplications of AGL24 in early divergent eudicots and core eudicots with significant sequence variation. In addition, we found that in monocots, two additional independent duplication events have resulted in at least three clades of AGL24/SVP homologs, some only found in Orchidaceae. Protein sequence analyses and comparative evolutionary rates point to higher rates of relaxed negative selection in the Core Eudicot AGL24 B and the Orch SVP-like B clades, in eudicots and monocots respectively. On the other hand, expression data points to plesiomorphic pleiotropic roles of AGL24/SVP genes likely similar to SVP core eudicot genes, and the acquisition of new roles as flowering positive regulators in Core Eudicot AGL24 A genes. Our research presents evidence on the diversification and recruitment of AGL24/SVP homologs in flowering transition in orchids. Although, broad expression of most copies does not allow to determine if they act as flowering repressors or promoters, the restricted expression of some homologs in the SAM suggests putative roles in maintaining the vegetative phase. If so studying in detail the function of AGL24/SVP homologs in orchids is critical to identify putative flowering repressors in a lineage where other canonical repressors remain elusive.
Collapse
Affiliation(s)
- Jessica A Ramírez-Ramírez
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Yesenia Madrigal
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| | - Juan F Alzate
- Centro Nacional de Secuenciación Genómica, Sede de Investigación Universitaria, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia.
| | - Natalia Pabón-Mora
- Facultad de Ciencias Exactas y Naturales, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia.
| |
Collapse
|
9
|
Zhang W, Zhang G, Zeng P, Zhang Y, Hu H, Liu Z, Cai J. Genome sequence of Apostasia ramifera provides insights into the adaptive evolution in orchids. BMC Genomics 2021; 22:536. [PMID: 34256691 PMCID: PMC8278605 DOI: 10.1186/s12864-021-07852-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The Orchidaceae family is one of the most diverse among flowering plants and serves as an important research model for plant evolution, especially "evo-devo" study on floral organs. Recently, sequencing of several orchid genomes has greatly improved our understanding of the genetic basis of orchid biology. To date, however, most sequenced genomes are from the Epidendroideae subfamily. To better elucidate orchid evolution, greater attention should be paid to other orchid lineages, especially basal lineages such as Apostasioideae. RESULTS Here, we present a genome sequence of Apostasia ramifera, a terrestrial orchid species from the Apostasioideae subfamily. The genomes of A. ramifera and other orchids were compared to explore the genetic basis underlying orchid species richness. Genome-based population dynamics revealed a continuous decrease in population size over the last 100 000 years in all studied orchids, although the epiphytic orchids generally showed larger effective population size than the terrestrial orchids over most of that period. We also found more genes of the terpene synthase gene family, resistant gene family, and LOX1/LOX5 homologs in the epiphytic orchids. CONCLUSIONS This study provides new insights into the adaptive evolution of orchids. The A. ramifera genome sequence reported here should be a helpful resource for future research on orchid biology.
Collapse
Affiliation(s)
- Weixiong Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China
| | - Guoqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, 518114, Shenzhen, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, 518114, Shenzhen, China
- National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, 518114, Shenzhen, China
| | - Peng Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China
| | - Yongqiang Zhang
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization, 518114, Shenzhen, China
- Shenzhen Key Laboratory for Orchid Conservation and Utilization, 518114, Shenzhen, China
- National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, 518114, Shenzhen, China
- Key Laboratory of NFGA for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Hao Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, 999078, Macau, China
| | - Zhongjian Liu
- Key Laboratory of NFGA for Orchid Conservation and Utilization, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, 710129, Xi'an, China.
| |
Collapse
|
10
|
Radial or Bilateral? The Molecular Basis of Floral Symmetry. Genes (Basel) 2020; 11:genes11040395. [PMID: 32268578 PMCID: PMC7230197 DOI: 10.3390/genes11040395] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 01/10/2023] Open
Abstract
In the plant kingdom, the flower is one of the most relevant evolutionary novelties. Floral symmetry has evolved multiple times from the ancestral condition of radial to bilateral symmetry. During evolution, several transcription factors have been recruited by the different developmental pathways in relation to the increase of plant complexity. The MYB proteins are among the most ancient plant transcription factor families and are implicated in different metabolic and developmental processes. In the model plant Antirrhinum majus, three MYB transcription factors (DIVARICATA, DRIF, and RADIALIS) have a pivotal function in the establishment of floral dorsoventral asymmetry. Here, we present an updated report of the role of the DIV, DRIF, and RAD transcription factors in both eudicots and monocots, pointing out their functional changes during plant evolution. In addition, we discuss the molecular models of the establishment of flower symmetry in different flowering plants.
Collapse
|
11
|
Teo ZWN, Zhou W, Shen L. Dissecting the Function of MADS-Box Transcription Factors in Orchid Reproductive Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1474. [PMID: 31803211 PMCID: PMC6872546 DOI: 10.3389/fpls.2019.01474] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/23/2019] [Indexed: 05/20/2023]
Abstract
The orchid family (Orchidaceae) represents the second largest angiosperm family, having over 900 genera and 27,000 species in almost all over the world. Orchids have evolved a myriad of intriguing ways in order to survive extreme weather conditions, acquire nutrients, and attract pollinators for reproduction. The family of MADS-box transcriptional factors have been shown to be involved in the control of many developmental processes and responses to environmental stresses in eukaryotes. Several findings in different orchid species have elucidated that MADS-box genes play critical roles in the orchid growth and development. An in-depth understanding of their ecological adaptation will help to generate more interest among breeders and produce novel varieties for the floriculture industry. In this review, we summarize recent findings of MADS-box transcription factors in regulating various growth and developmental processes in orchids, in particular, the floral transition and floral patterning. We further discuss the prospects for the future directions in light of new genome resources and gene editing technologies that could be applied in orchid research and breeding.
Collapse
Affiliation(s)
- Zhi Wei Norman Teo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Wei Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| |
Collapse
|
12
|
Ma YQ, Pu ZQ, Zhang L, Lu MX, Zhu Y, Hao CY, Xu ZQ. A SEPALLATA1-like gene of Isatis indigotica Fort. regulates flowering time and specifies floral organs. Gene 2019; 713:143974. [DOI: 10.1016/j.gene.2019.143974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 12/21/2022]
|
13
|
Chen Y, Shen Q, Lyu P, Lin R, Sun C. Identification and expression profiling of selected MADS-box family genes in Dendrobium officinale. Genetica 2019; 147:303-313. [PMID: 31292836 DOI: 10.1007/s10709-019-00071-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/05/2019] [Indexed: 11/24/2022]
Abstract
Dendrobium officinale, a herb with highly medicinal and ornamental value, is widely distributed in China. MADS-box genes encode transcription factors that regulate various growth and developmental processes in plants, particular in flowering. However, the MADS-box genes in D. officinale are largely unknown. In our study, expression profiling analyses of selected MADS-box genes in D. officinale were performed. In total, 16 DnMADS-box genes with full-length ORF were identified and named according to their phylogenetic relationships with model plants. The transient expression of eight selected MADS-box genes in the epidermal cells of tobacco leaves showed that these DnMADS-box proteins localized to the nucleus. Tissue-specific expression analysis pointed out eight flower-specific expressed MADS-box genes in D. officinale. Furthermore, expression patterns of DnMADS-box genes were investigated during the floral transition process. DnMADS3, DnMADS8 and DnMADS22 were significantly up-regulated in the reproductive phase compared with the vegetative phase, suggesting putative roles of these DnMADS-box genes in flowering. Our data showed that the expressions of MADS-box genes in D. officinale were controlled by diverse exogenous phytohormones. Together, these findings will facilitate further studies of MADS-box genes in Orchids and broaden our understanding of the genetics of flowering.
Collapse
Affiliation(s)
- Yue Chen
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China.,Key laboratory of creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China
| | - Qi Shen
- Plant Protection and Microbiology, Zhejiang Academy of Agricultural Science, Hangzhou, Zhejiang, People's Republic of China
| | - Ping Lyu
- Lin'an Agricultural & Forestry Technology Extension Center, Hangzhou, Zhejiang, People's Republic of China
| | - Renan Lin
- Yueqing Forestry Varieties Tech Center, Yueqing, Zhejiang, People's Republic of China
| | - Chongbo Sun
- Institute of Horticulture, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, People's Republic of China. .,Key laboratory of creative Agriculture, Ministry of Agriculture, Hangzhou, People's Republic of China.
| |
Collapse
|
14
|
Valoroso MC, Sobral R, Saccone G, Salvemini M, Costa MMR, Aceto S. Evolutionary Conservation of the Orchid MYB Transcription Factors DIV, RAD, and DRIF. FRONTIERS IN PLANT SCIENCE 2019; 10:1359. [PMID: 31736999 PMCID: PMC6838138 DOI: 10.3389/fpls.2019.01359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/02/2019] [Indexed: 05/02/2023]
Abstract
The MYB transcription factors DIVARICATA (DIV), DIV-and-RAD-Interacting-Factor (DRIF), and the small interfering peptide RADIALIS (RAD) can interact, forming a regulatory module that controls different plant developmental processes. In the snapdragon Antirrhinum majus, this module, together with the TCP transcription factor CYCLOIDEA (CYC), is responsible for the establishment of floral dorsoventral asymmetry. The spatial gene expression pattern of the OitDIV, OitDRIF, and OitRAD homologs of Orchis italica, an orchid with zygomorphic flowers, has suggested a possible conserved role of these genes in bilateral symmetry of the orchid flower. Here, we have identified four DRIF genes of orchids and have reconstructed their genomic organization and evolution. In addition, we found snapdragon transcriptional cis-regulatory elements of DIV and RAD loci generally conserved within the corresponding orchid orthologues. We have tested the biochemical interactions among OitDIV, OitDRIF1, and OitRAD of O. italica, showing that OitDRIF1 can interact both with OitDIV and OitRAD, whereas OitDIV and OitRAD do not directly interact, as in A. majus. The analysis of the quantitative expression profile of these MYB genes revealed that in zygomorphic orchid flowers, the DIV, DRIF1, and RAD transcripts are present at higher levels in the lip than in lateral inner tepals, whereas in peloric orchid flowers they show similar expression levels. These results indicate that MYB transcription factors could have a role in shaping zygomorphy of the orchid flower, potentially enriching the underlying orchid developmental code.
Collapse
Affiliation(s)
| | - Rómulo Sobral
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Maria Manuela Ribeiro Costa
- BioSystems & Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Serena Aceto
- Department of Biology, University of Naples Federico II, Naples, Italy
- *Correspondence: Serena Aceto,
| |
Collapse
|