1
|
Kneppers J, Severson TM, Siefert JC, Schol P, Joosten SEP, Yu IPL, Huang CCF, Morova T, Altıntaş UB, Giambartolomei C, Seo JH, Baca SC, Carneiro I, Emberly E, Pasaniuc B, Jerónimo C, Henrique R, Freedman ML, Wessels LFA, Lack NA, Bergman AM, Zwart W. Extensive androgen receptor enhancer heterogeneity in primary prostate cancers underlies transcriptional diversity and metastatic potential. Nat Commun 2022; 13:7367. [PMID: 36450752 PMCID: PMC9712620 DOI: 10.1038/s41467-022-35135-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Androgen receptor (AR) drives prostate cancer (PCa) development and progression. AR chromatin binding profiles are highly plastic and form recurrent programmatic changes that differentiate disease stages, subtypes and patient outcomes. While prior studies focused on concordance between patient subgroups, inter-tumor heterogeneity of AR enhancer selectivity remains unexplored. Here we report high levels of AR chromatin binding heterogeneity in human primary prostate tumors, that overlap with heterogeneity observed in healthy prostate epithelium. Such heterogeneity has functional consequences, as somatic mutations converge on commonly-shared AR sites in primary over metastatic tissues. In contrast, less-frequently shared AR sites associate strongly with AR-driven gene expression, while such heterogeneous AR enhancer usage also distinguishes patients' outcome. These findings indicate that epigenetic heterogeneity in primary disease is directly informative for risk of biochemical relapse. Cumulatively, our results illustrate a high level of AR enhancer heterogeneity in primary PCa driving differential expression and clinical impact.
Collapse
Affiliation(s)
- Jeroen Kneppers
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Tesa M Severson
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joseph C Siefert
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Pieter Schol
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Stacey E P Joosten
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ivan Pak Lok Yu
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Chia-Chi Flora Huang
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | - Tunç Morova
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
| | | | - Claudia Giambartolomei
- Central RNA Lab, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Ji-Heui Seo
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
- The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Sylvan C Baca
- The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
| | - Isa Carneiro
- Department of Pathology, Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Porto Comprehensive Cancer Center, Porto, Portugal
| | - Eldon Emberly
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, USA
| | - Carmen Jerónimo
- Department of Pathology, Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Porto Comprehensive Cancer Center, Porto, Portugal
| | - Rui Henrique
- Department of Pathology, Cancer Biology and Epigenetics Group, Portuguese Oncology Institute of Porto and Porto Comprehensive Cancer Center, Porto, Portugal
| | - Matthew L Freedman
- The Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, USA
- Department of Medical Oncology, The Center for Functional Cancer Epigenetics, Dana Farber Cancer Institute, Boston, USA
| | - Lodewyk F A Wessels
- Division of Molecular Carcinogenesis, Oncode Institute, Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Nathan A Lack
- Vancouver Prostate Centre, Department of Urologic Science, University of British Columbia, Vancouver, Canada
- School of Medicine, Koç University, Istanbul, Turkey
- Koç University Research Centre for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Andries M Bergman
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Division of Medical Oncology, Netherlands Cancer Institute, Amsterdam, the Netherlands.
| | - Wilbert Zwart
- Division of Oncogenomics, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
2
|
Identifying genes targeted by disease-associated non-coding SNPs with a protein knowledge graph. PLoS One 2022; 17:e0271395. [PMID: 35830458 PMCID: PMC9278741 DOI: 10.1371/journal.pone.0271395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified many single nucleotide polymorphisms (SNPs) that play important roles in the genetic heritability of traits and diseases. With most of these SNPs located on the non-coding part of the genome, it is currently assumed that these SNPs influence the expression of nearby genes on the genome. However, identifying which genes are targeted by these disease-associated SNPs remains challenging. In the past, protein knowledge graphs have often been used to identify genes that are associated with disease, also referred to as “disease genes”. Here, we explore whether protein knowledge graphs can be used to identify genes that are targeted by disease-associated non-coding SNPs by testing and comparing the performance of six existing methods for a protein knowledge graph, four of which were developed for disease gene identification. We compare our performance against two baselines: (1) an existing state-of-the-art method that is based on guilt-by-association, and (2) the leading assumption that SNPs target the nearest gene on the genome. We test these methods with four reference sets, three of which were obtained by different means. Furthermore, we combine methods to investigate whether their combination improves performance. We find that protein knowledge graphs that include predicate information perform comparable to the current state of the art, achieving an area under the receiver operating characteristic curve (AUC) of 79.6% on average across all four reference sets. Protein knowledge graphs that lack predicate information perform comparable to our other baseline (genetic distance) which achieved an AUC of 75.7% across all four reference sets. Combining multiple methods improved performance to 84.9% AUC. We conclude that methods for a protein knowledge graph can be used to identify which genes are targeted by disease-associated non-coding SNPs.
Collapse
|
3
|
Larson NB, McDonnell SK, Fogarty Z, Liu Y, French AJ, Tillmans LS, Cheville JC, Wang L, Schaid DJ, Thibodeau SN. A microRNA Transcriptome-wide Association Study of Prostate Cancer Risk. Front Genet 2022; 13:836841. [PMID: 35432445 PMCID: PMC9006872 DOI: 10.3389/fgene.2022.836841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/22/2022] [Indexed: 11/13/2022] Open
Abstract
Large genome-wide association studies have identified hundreds of single-nucleotide polymorphisms associated with increased risk of prostate cancer (PrCa), and many of these risk loci is presumed to confer regulatory effects on gene expression. While eQTL studies of long RNAs has yielded many potential risk genes, the relationship between PrCa risk genetics and microRNA expression dysregulation is understudied. We performed an microRNA transcriptome-wide association study of PrCa risk using small RNA sequencing and genome-wide genotyping data from N = 441 normal prostate epithelium tissue samples along with N = 411 prostate adenocarcinoma tumor samples from the Cancer Genome Atlas (TCGA). Genetically regulated expression prediction models were trained for all expressed microRNAs using the FUSION TWAS software. TWAS for PrCa risk was performed with both sets of models using single-SNP summary statistics from the recent PRACTICAL consortium PrCa case-control OncoArray GWAS meta-analysis. A total of 613 and 571 distinct expressed microRNAs were identified in the normal and tumor tissue datasets, respectively (overlap: 480). Among these, 79 (13%) normal tissue microRNAs demonstrated significant cis-heritability (median cis-h2 = 0.15, range: 0.03–0.79) for model training. Similar results were obtained from TCGA tumor samples, with 48 (9%) microRNA expression models successfully trained (median cis-h2 = 0.14, range: 0.06–0.60). Using normal tissue models, we identified two significant TWAS microRNA associations with PrCa risk: over-expression of mir-941 family microRNAs (PTWAS = 2.9E-04) and reduced expression of miR-3617-5p (PTWAS = 1.0E-03). The TCGA tumor TWAS also identified a significant association with miR-941 overexpression (PTWAS = 9.7E-04). Subsequent finemapping of the TWAS results using a multi-tissue database indicated limited evidence of causal status for each microRNA with PrCa risk (posterior inclusion probabilities <0.05). Future work will examine downstream regulatory effects of microRNA dysregulation as well as microRNA-mediated risk mechanisms via competing endogenous RNA relationships.
Collapse
Affiliation(s)
- Nicholas B. Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Nicholas B. Larson,
| | - Shannon K. McDonnell
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Zachary Fogarty
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yuanhang Liu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Amy J. French
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Lori S. Tillmans
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - John C. Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center, Tampa, FL, United States
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Stephen N. Thibodeau
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
4
|
Wahlström G, Heron S, Knuuttila M, Kaikkonen E, Tulonen N, Metsälä O, Löf C, Ettala O, Boström PJ, Taimen P, Poutanen M, Schleutker J. The variant rs77559646 associated with aggressive prostate cancer disrupts ANO7 mRNA splicing and protein expression. Hum Mol Genet 2022; 31:2063-2077. [PMID: 35043958 PMCID: PMC9239746 DOI: 10.1093/hmg/ddac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/17/2021] [Accepted: 01/10/2022] [Indexed: 12/05/2022] Open
Abstract
Prostate cancer is among the most common cancers in men, with a large fraction of the individual risk attributable to heritable factors. A majority of the diagnosed cases does not lead to a lethal disease, and hence biological markers that can distinguish between indolent and fatal forms of the disease are of great importance for guiding treatment decisions. Although over 300 genetic variants are known to be associated with prostate cancer risk, few have been associated with the risk of an aggressive disease. One such variant is rs77559646 located in ANO7. This variant has a dual function. It constitutes a missense mutation in the short isoform of ANO7 and a splice region mutation in full-length ANO7. In this study, we have analyzed the impact of the variant allele of rs77559646 on ANO7 mRNA splicing using a minigene splicing assay and by performing splicing analysis with the tools IRFinder (intron retention finder), rMATS (replicate multivariate analysis of transcript splicing) and LeafCutter on RNA sequencing data from prostate tissue of six rs77559646 variant allele carriers and 43 non-carriers. The results revealed a severe disruption of ANO7 mRNA splicing in rs77559646 variant allele carriers. Immunohistochemical analysis of prostate samples from patients homozygous for the rs77559646 variant allele demonstrated a loss of apically localized ANO7 protein. Our study is the first to provide a mechanistic explanation for the impact of a prostate cancer risk SNP on ANO7 protein production. Furthermore, the rs77559646 variant is the first known germline loss-of-function mutation described for ANO7. We suggest that loss of ANO7 contributes to prostate cancer progression.
Collapse
Affiliation(s)
- Gudrun Wahlström
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Samuel Heron
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Matias Knuuttila
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), University of Turku, 20520 Turku, Finland
| | - Elina Kaikkonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Nea Tulonen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Olli Metsälä
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Christoffer Löf
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
| | - Otto Ettala
- Department of Urology, Turku University Hospital, 20520 Turku, Finland
| | - Peter J Boström
- Department of Urology, Turku University Hospital, 20520 Turku, Finland
| | - Pekka Taimen
- Cancer Research Unit, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland
| | - Matti Poutanen
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland
- FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland
- Turku Center for Disease Modeling (TCDM), University of Turku, 20520 Turku, Finland
| | - Johanna Schleutker
- To whom correspondence should be addressed at: Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, 20520 Turku, Finland. Tel: +358 294502726; Fax: +358 294505040;
| |
Collapse
|
5
|
Ahmed M, Soares F, Xia JH, Yang Y, Li J, Guo H, Su P, Tian Y, Lee HJ, Wang M, Akhtar N, Houlahan KE, Bosch A, Zhou S, Mazrooei P, Hua JT, Chen S, Petricca J, Zeng Y, Davies A, Fraser M, Quigley DA, Feng FY, Boutros PC, Lupien M, Zoubeidi A, Wang L, Walsh MJ, Wang T, Ren S, Wei GH, He HH. CRISPRi screens reveal a DNA methylation-mediated 3D genome dependent causal mechanism in prostate cancer. Nat Commun 2021; 12:1781. [PMID: 33741908 PMCID: PMC7979745 DOI: 10.1038/s41467-021-21867-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) risk-associated SNPs are enriched in noncoding cis-regulatory elements (rCREs), yet their modi operandi and clinical impact remain elusive. Here, we perform CRISPRi screens of 260 rCREs in PCa cell lines. We find that rCREs harboring high risk SNPs are more essential for cell proliferation and H3K27ac occupancy is a strong indicator of essentiality. We also show that cell-line-specific essential rCREs are enriched in the 8q24.21 region, with the rs11986220-containing rCRE regulating MYC and PVT1 expression, cell proliferation and tumorigenesis in a cell-line-specific manner, depending on DNA methylation-orchestrated occupancy of a CTCF binding site in between this rCRE and the MYC promoter. We demonstrate that CTCF deposition at this site as measured by DNA methylation level is highly variable in prostate specimens, and observe the MYC eQTL in the 8q24.21 locus in individuals with low CTCF binding. Together our findings highlight a causal mechanism synergistically driven by a risk SNP and DNA methylation-mediated 3D genome architecture, advocating for the integration of genetics and epigenetics in assessing risks conferred by genetic predispositions.
Collapse
Affiliation(s)
- Musaddeque Ahmed
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Fraser Soares
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Ji-Han Xia
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Yue Yang
- Changhai Hospital, Shanghai, China
| | - Jing Li
- Changhai Hospital, Shanghai, China
| | - Haiyang Guo
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Peiran Su
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yijun Tian
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Hyung Joo Lee
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | - Miranda Wang
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Nayeema Akhtar
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Kathleen E Houlahan
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Almudena Bosch
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stanley Zhou
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Parisa Mazrooei
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Junjie T Hua
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sujun Chen
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Jessica Petricca
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Yong Zeng
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
| | - Alastair Davies
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Michael Fraser
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA
| | - Paul C Boutros
- Vector Institute, Toronto, ON, Canada
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mathieu Lupien
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Vancouver General Hospital and Department of Urologic Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Martin J Walsh
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ting Wang
- Department of Genetics, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Gong-Hong Wei
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
- Fudan University Shanghai Cancer Center, School of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Housheng Hansen He
- Princess Margaret Cancer Center/University Health Network, Toronto, ON, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|