• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4642360)   Today's Articles (2070)   Subscriber (50484)
For: Lenzi H, Ben ÂJ, Stein AT. Development and validation of a patient no-show predictive model at a primary care setting in Southern Brazil. PLoS One 2019;14:e0214869. [PMID: 30947294 PMCID: PMC6448862 DOI: 10.1371/journal.pone.0214869] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/21/2019] [Indexed: 11/18/2022]  Open
Number Cited by Other Article(s)
1
Yang Y, Madanian S, Parry D. Enhancing Health Equity by Predicting Missed Appointments in Health Care: Machine Learning Study. JMIR Med Inform 2024;12:e48273. [PMID: 38214974 PMCID: PMC10818230 DOI: 10.2196/48273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]  Open
2
Deina C, Fogliatto FS, da Silveira GJC, Anzanello MJ. Decision analysis framework for predicting no-shows to appointments using machine learning algorithms. BMC Health Serv Res 2024;24:37. [PMID: 38183029 PMCID: PMC10770919 DOI: 10.1186/s12913-023-10418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]  Open
3
Breeze F, Hossain RR, Mayo M, McKelvie J. Predicting ophthalmic clinic non-attendance using machine learning: Development and validation of models using nationwide data. Clin Exp Ophthalmol 2023;51:764-774. [PMID: 37885379 DOI: 10.1111/ceo.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 09/04/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023]
4
Chaves ACC, Scherer MDDA, Conill EM. What contributes to Primary Health Care effectiveness? Integrative literature review, 2010-2020. CIENCIA & SAUDE COLETIVA 2023;28:2537-2551. [PMID: 37672445 DOI: 10.1590/1413-81232023289.15342022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 01/11/2023] [Indexed: 09/08/2023]  Open
5
Coppa K, Kim EJ, Oppenheim MI, Bock KR, Zanos TP, Hirsch JS. Application of a Machine Learning Algorithm to Develop and Validate a Prediction Model for Ambulatory Non-Arrivals. J Gen Intern Med 2023;38:2298-2307. [PMID: 36757667 PMCID: PMC9910253 DOI: 10.1007/s11606-023-08065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023]
6
Babayoff O, Shehory O, Geller S, Shitrit-Niselbaum C, Weiss-Meilik A, Sprecher E. Improving Hospital Outpatient Clinics Appointment Schedules by Prediction Models. J Med Syst 2022;47:5. [PMID: 36585996 DOI: 10.1007/s10916-022-01902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/14/2022] [Indexed: 01/01/2023]
7
Alabdulkarim Y, Almukaynizi M, Alameer A, Makanati B, Althumairy R, Almaslukh A. Predicting no-shows for dental appointments. PeerJ Comput Sci 2022;8:e1147. [PMID: 36426240 PMCID: PMC9680883 DOI: 10.7717/peerj-cs.1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
8
Benedito Zattar da Silva R, Fogliatto FS, Garcia TS, Faccin CS, Zavala AAZ. Modelling the no-show of patients to exam appointments of computed tomography. Int J Health Plann Manage 2022;37:2889-2904. [PMID: 35648052 DOI: 10.1002/hpm.3527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 05/09/2022] [Accepted: 05/18/2022] [Indexed: 11/12/2022]  Open
9
Comparison Between Short Text Messages and Phone Calls to Reduce No-Show Rates in Outpatient Medical Appointments: A Randomized Trial. J Ambul Care Manage 2021;44:314-320. [PMID: 34120122 DOI: 10.1097/jac.0000000000000388] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
10
Milicevic AS, Mitsantisuk K, Tjader A, Vargas DL, Hubert TL, Scott B. Modeling Patient No-Show History and Predicting Future Appointment Behavior at the Veterans Administration's Outpatient Mental Health Clinics: NIRMO-2. Mil Med 2021;185:e988-e994. [PMID: 32591833 DOI: 10.1093/milmed/usaa095] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]  Open
11
Chen J, Goldstein IH, Lin WC, Chiang MF, Hribar MR. Application of Machine Learning to Predict Patient No-Shows in an Academic Pediatric Ophthalmology Clinic. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2021;2020:293-302. [PMID: 33936401 PMCID: PMC8075453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
12
Su W, Zhu C, Zhang X, Xie J, Gong Q. <p>Who Misses Appointments Made Online? Retrospective Analysis of the Outpatient Department of a General Hospital in Jinan, Shandong Province, China</p>. Healthc Policy 2020;13:2773-2781. [PMID: 33273875 PMCID: PMC7708679 DOI: 10.2147/rmhp.s280656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/06/2020] [Indexed: 11/23/2022]  Open
13
Carreras-García D, Delgado-Gómez D, Llorente-Fernández F, Arribas-Gil A. Patient No-Show Prediction: A Systematic Literature Review. ENTROPY 2020;22:e22060675. [PMID: 33286447 PMCID: PMC7517206 DOI: 10.3390/e22060675] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/13/2020] [Accepted: 06/14/2020] [Indexed: 12/02/2022]
14
Aladeemy M, Adwan L, Booth A, Khasawneh MT, Poranki S. New feature selection methods based on opposition-based learning and self-adaptive cohort intelligence for predicting patient no-shows. Appl Soft Comput 2020. [DOI: 10.1016/j.asoc.2019.105866] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA