1
|
Choix FJ, Palacios OA, Nevarez-Moorillón GV. Traditional and new proposals for environmental microbial indicators-a review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1521. [PMID: 37995003 DOI: 10.1007/s10661-023-12150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The continuous increment in world population coupled with the greatest natural resource consumption and waste generation has an enormous impact on the environment. To date, using biological indicators (bioindicators) to evaluate the biological quality of natural environments is very common. Nonetheless, selecting those suitable for each ecosystem or contaminant is one of the most important issues for environmental sciences. Bacteria and helminths are mainly related to fecal contamination, while antibiotic-resistant bacteria, fungi, viruses, and microalgae are organisms used to determine deteriorated ecosystems by diverse contaminants. Nowadays, each bioindicator is used as a specific agent of different contaminant types, but detecting and quantifying these bioindicator microorganisms can be performed from simple microscopy and culture methods up to a complex procedure based on omic sciences. Developing new techniques based on the metabolism and physiological responses of traditional bioindicators is shown in a fast environmental sensitivity analysis. Therefore, the present review focuses on analyzing different bioindicators to facilitate developing suitable monitoring environmental systems according to different pollutant agents. The traditional and new methods proposed to detect and quantify different bioindicators are also discussed. Their vital role is considered in implementing efficient ecosystem bioprospection, restoration, and conservation strategies directed to natural resource management.
Collapse
Affiliation(s)
- Francisco J Choix
- CONAHCYT - Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México.
| | - Oskar A Palacios
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N, C.P. 31125, Chihuahua, Chihuahua, México
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL, 36830, USA
| | | |
Collapse
|
2
|
Dremova O, Mimmler M, Paeslack N, Khuu MP, Gao Z, Bosmann M, Garo LP, Schön N, Mechler A, Beneich Y, Rebling V, Mann A, Pontarollo G, Kiouptsi K, Reinhardt C. Sterility testing of germ-free mouse colonies. Front Immunol 2023; 14:1275109. [PMID: 38022683 PMCID: PMC10662041 DOI: 10.3389/fimmu.2023.1275109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
In biomedical research, germ-free and gnotobiotic mouse models enable the mechanistic investigation of microbiota-host interactions and their role on (patho)physiology. Throughout any gnotobiotic experiment, standardized and periodic microbiological testing of defined gnotobiotic housing conditions is a key requirement. Here, we review basic principles of germ-free isolator technology, the suitability of various sterilization methods, and the use of sterility testing methods to monitor germ-free mouse colonies. We also discuss their effectiveness and limitations, and share the experience with protocols used in our facility. In addition, possible sources of isolator contamination are discussed and an overview of reported contaminants is provided.
Collapse
Affiliation(s)
- Olga Dremova
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Maximilian Mimmler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadja Paeslack
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - My Phung Khuu
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Zhenling Gao
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Lucien P. Garo
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Nathalie Schön
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alexa Mechler
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Yunes Beneich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vivian Rebling
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Klytaimnistra Kiouptsi
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), University Medical Center of the Johannes Gutenberg-University Mainz, Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), University Medical Center of the Johannes Gutenberg-University Mainz, Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
3
|
Capuano R, Mansi A, Paba E, Marcelloni AM, Chiominto A, Proietto AR, Gordiani A, Catini A, Paolesse R, Tranfo G, Di Natale C. A Pilot Study for Legionella pneumophila Volatilome Characterization Using a Gas Sensor Array and GC/MS Techniques. SENSORS (BASEL, SWITZERLAND) 2023; 23:1401. [PMID: 36772440 PMCID: PMC9920052 DOI: 10.3390/s23031401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Legionellosis is a generic term describing the pneumonic (Legionnaires' disease, LD) and non-pneumonic (Pontiac fever, PF) forms of infection with bacteria belonging to the genus Legionella. Currently, the techniques used to detect Legionella spp. in water samples have certain limitations and drawbacks, and thus, there is a need to identify new tools to carry out low-cost and rapid analysis. In this regard, several studies demonstrated that a volatolomics approach rapidly detects and discriminates different species of microorganisms via their volatile signature. In this paper, the volatile organic compounds (VOCs) pattern emitted in vitro by Legionella pneumophila cultures is characterized and compared to those produced by other Legionella species and by Pseudomonas aeruginosa, using a gas sensor array and gas chromatograph mass spectrometer (GC-MS). Bacterial cultures were measured at the 3rd and 7th day after the incubation. Sensor array data analyzed via the K-nearest neighbours (k-NN) algorithm showed a sensitivity to Legionella pneumophila identification at around 89%. On the other hand, GC-MS identified a bouquet of VOCs, mainly alcohols and ketones, that enable the differentiation of Legionella pneumophila in respect to other waterborne microorganisms.
Collapse
Affiliation(s)
- Rosamaria Capuano
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Interdepartmental Centre for Volatilomics ‘A. D’Amico’, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Antonella Mansi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Emilia Paba
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Anna Maria Marcelloni
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Alessandra Chiominto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Anna Rita Proietto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Andrea Gordiani
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Alexandro Catini
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Interdepartmental Centre for Volatilomics ‘A. D’Amico’, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Roberto Paolesse
- Interdepartmental Centre for Volatilomics ‘A. D’Amico’, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giovanna Tranfo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers’ Compensation Authority (INAIL), Via Fontana Candida 1, Monte Porzio Catone, 00078 Rome, Italy
| | - Corrado Di Natale
- Department of Electronic Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
- Interdepartmental Centre for Volatilomics ‘A. D’Amico’, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
4
|
Alali H, Ai Y, Pan YL, Videen G, Wang C. A Collection of Molecular Fingerprints of Single Aerosol Particles in Air for Potential Identification and Detection Using Optical Trapping-Raman Spectroscopy. Molecules 2022; 27:5966. [PMID: 36144702 PMCID: PMC9505655 DOI: 10.3390/molecules27185966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022] Open
Abstract
Characterization, identification, and detection of aerosol particles in their native atmospheric states remain a challenge. Recently, optical trapping-Raman spectroscopy (OT-RS) has been developed and demonstrated for characterization of single, airborne particles. Such particles in different chemical groups have been characterized by OT-RS in recent years and many more are being studied. In this work, we collected single-particle Raman spectra measured using the OT-RS technique and began construction of a library of OT-RS fingerprints that may be used as a reference for potential detection and identification of aerosol particles in the atmosphere. We collected OT-RS fingerprints of aerosol particles from eight different categories including carbons, bioaerosols (pollens, fungi, vitamins, spores), dusts, biological warfare agent surrogates, etc. Among the eight categories, spectral fingerprints of six groups of aerosol particles have been published previously and two other groups are new. We also discussed challenges, limitations, and advantages of using single-particle optical trapping-Raman spectroscopy for aerosol-particle characterization, identification, and detection.
Collapse
Affiliation(s)
- Haifa Alali
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA
| | - Yukai Ai
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA
| | - Yong-Le Pan
- DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Gorden Videen
- DEVCOM Army Research Laboratory, 2800 Powder Mill Road, Adelphi, MD 20783, USA
| | - Chuji Wang
- Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
5
|
Soni A, Dixit Y, Reis MM, Brightwell G. Hyperspectral imaging and machine learning in food microbiology: Developments and challenges in detection of bacterial, fungal, and viral contaminants. Compr Rev Food Sci Food Saf 2022; 21:3717-3745. [PMID: 35686478 DOI: 10.1111/1541-4337.12983] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 02/03/2023]
Abstract
Hyperspectral imaging (HSI) is a robust and nondestructive method that can detect foreign particles such as microbial, chemical, and physical contamination in food. This review summarizes the work done in the last two decades in this field with a highlight on challenges, risks, and research gaps. Considering the challenges of using HSI on complex matrices like food (e.g., the confounding and masking effects of background signals), application of machine learning and modeling approaches that have been successful in achieving better accuracy as well as increasing the detection limit have also been discussed here. Foodborne microbial contaminants such as bacteria, fungi, viruses, yeast, and protozoa are of interest and concern to food manufacturers due to the potential risk of either food poisoning or food spoilage. Detection of these contaminants using fast and efficient methods would not only prevent outbreaks and recalls but will also increase consumer acceptance and demand for shelf-stable food products. The conventional culture-based methods for microbial detection are time and labor-intensive, whereas hyperspectral imaging (HSI) is robust, nondestructive with minimum sample preparation, and has gained significant attention due to its rapid approach to detection of microbial contaminants. This review is a comprehensive summary of the detection of bacterial, viral, and fungal contaminants in food with detailed emphasis on the specific modeling and datamining approaches used to overcome the specific challenges associated with background and data complexity.
Collapse
Affiliation(s)
- Aswathi Soni
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand
| | - Yash Dixit
- Food Informatics, Smart Foods, AgResearch Ltd, Palmerston North, New Zealand
| | - Marlon M Reis
- Food Informatics, Smart Foods, AgResearch Ltd, Palmerston North, New Zealand
| | - Gale Brightwell
- Food System Integrity, Consumer Food Interface, AgResearch Ltd, Palmerston North, New Zealand.,New Zealand Food Safety Science Research Centre, Palmerston North, New Zealand
| |
Collapse
|
6
|
Suchorab Z, Tabiś K, Brzyski P, Szczepaniak Z, Rogala T, Susek W, Łagód G. Comparison of the Moist Material Relative Permittivity Readouts Using the Non-Invasive Reflectometric Sensors and Microwave Antenna. SENSORS (BASEL, SWITZERLAND) 2022; 22:3622. [PMID: 35632030 PMCID: PMC9145367 DOI: 10.3390/s22103622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/04/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023]
Abstract
The article concerns the issue of non-invasive moisture sensing in building materials. Two techniques that enable evaluating the value of the relative permittivity of the material, being the measure of porous material moisture, have been utilized for the research. The first is the microwave technique that utilizes the non-contact measurement of velocity of microwave radiation across the tested material and the second is the time domain reflectometry (TDR) technique based on the measurement of electromagnetic pulse propagation time along the waveguides, being the elements of sensor design. The tested building material involved samples of red ceramic brick that differed in moisture, ranging between 0% and 14% moisture by weight. The main goal of the research was to present the measuring potential of both techniques for moisture evaluation as well as emphasize the advantages and disadvantages of each method. Within the research, it was stated that both methods provide similar measuring potential, with a slight advantage in favor of a microwave non-contact sensor over surface TDR sensor designs.
Collapse
Affiliation(s)
- Zbigniew Suchorab
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B Str., 20-618 Lublin, Poland; (Z.S.); (G.Ł.)
| | - Krzysztof Tabiś
- Aquapol Polska CPV, Żeromskiego 12 Str., 58-160 Świebodzice, Poland;
| | - Przemysław Brzyski
- Faculty of Civil Engineering and Architecture, Lublin University of Technology, Nadbystrzycka 40 Str., 20-618 Lublin, Poland;
| | - Zenon Szczepaniak
- Faculty of Electronics, Military University of Technology, Gen. Sylwestra Kaliskiego 2 Str., 00-908 Warsaw, Poland; (Z.S.); (W.S.)
| | - Tomasz Rogala
- Faculty of Electronics, Military University of Technology, Gen. Sylwestra Kaliskiego 2 Str., 00-908 Warsaw, Poland; (Z.S.); (W.S.)
| | - Waldemar Susek
- Faculty of Electronics, Military University of Technology, Gen. Sylwestra Kaliskiego 2 Str., 00-908 Warsaw, Poland; (Z.S.); (W.S.)
| | - Grzegorz Łagód
- Faculty of Environmental Engineering, Lublin University of Technology, Nadbystrzycka 40B Str., 20-618 Lublin, Poland; (Z.S.); (G.Ł.)
| |
Collapse
|
7
|
MacDougall S, Bayansal F, Ahmadi A. Emerging Methods of Monitoring Volatile Organic Compounds for Detection of Plant Pests and Disease. BIOSENSORS 2022; 12:bios12040239. [PMID: 35448299 PMCID: PMC9025064 DOI: 10.3390/bios12040239] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 05/03/2023]
Abstract
Each year, unwanted plant pests and diseases, such as Hendel or potato soft rot, cause damage to crops and ecosystems all over the world. To continue to feed the growing population and protect the global ecosystems, the surveillance and management of the spread of these pests and diseases are crucial. Traditional methods of detection are often expensive, bulky and require expertise and training. Therefore, inexpensive, portable, and user-friendly methods are required. These include the use of different gas-sensing technologies to exploit volatile organic compounds released by plants under stress. These methods often meet these requirements, although they come with their own set of advantages and disadvantages, including the sheer number of variables that affect the profile of volatile organic compounds released, such as sensitivity to environmental factors and availability of soil nutrients or water, and sensor drift. Furthermore, most of these methods lack research on their use under field conditions. More research is needed to overcome these disadvantages and further understand the feasibility of the use of these methods under field conditions. This paper focuses on applications of different gas-sensing technologies from over the past decade to detect plant pests and diseases more efficiently.
Collapse
Affiliation(s)
- Samantha MacDougall
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
| | - Fatih Bayansal
- Department of Metallurgy and Materials Engineering, Iskenderun Technical University, Hatay TR-31200, Turkey;
| | - Ali Ahmadi
- Faculty of Sustainable Design Engineering, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada;
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE C1A 4P3, Canada
- Correspondence: ; Tel.: +1-902-566-0521
| |
Collapse
|
8
|
Predicting the crossmodal correspondences of odors using an electronic nose. Heliyon 2022; 8:e09284. [PMID: 35497032 PMCID: PMC9043411 DOI: 10.1016/j.heliyon.2022.e09284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 04/12/2022] [Indexed: 11/23/2022] Open
|
9
|
Kozicki M. Identification of Olfactory Nuisance of Floor Products Containing Bitumens with the TD-GC-MS/O Method. MATERIALS (BASEL, SWITZERLAND) 2022; 15:959. [PMID: 35160905 PMCID: PMC8840333 DOI: 10.3390/ma15030959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/01/2023]
Abstract
The adopted TD-GC-MS/O method helps determine the correlation between the odour signals and compounds separated on the chromatographic column, from the analysed gas mixture. It is possible to compare the retention times at which the odour signals were identified with the retention time of eluting compounds, when the test system and matrix are known. The presented study describes the details of representative samples obtained from (1) indoor air samples from a room where floor materials containing bitumen are present, (2) wooden floor staves placed in an emission chamber, and (3) fragments (chips) of the materials mentioned above, placed in glass tubes, exposed to an elevated desorption temperature. The results, presented in the paper, describe the identified odours and their intensity and assign chemical compounds to each odour, indicating their likely source of origin. The results presented in the manuscript are intended to show what methodology can be adopted to obtain intense odours from the tested samples, without losing the sensitivity derived from GC-MS. The manuscript presents representative results-case studies. The results for various types of samples were not very reproducible, related to the complex matrix of bituminous products. The enormity of compounds present in tar adhesives makes it possible to indicate only the groups of compounds that emit from these systems. They include, primarily, aliphatic, aromatic and heteroaromatic hydrocarbons, particularly Naphthalene and Phenol derivatives.
Collapse
Affiliation(s)
- Mateusz Kozicki
- Building Research Institute, Filtrowa 1 Street, 00-611 Warsaw, Poland
| |
Collapse
|
10
|
Conditions Influencing Mould Growth for Effective Prevention of Wood Deterioration Indoors. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12030975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Effective prevention of mould growth indoors is still an important topic considering that mould growth is frequently observed in buildings, it causes serious health hazards and can irreversibly damage infected objects. Several studies have been conducted and mould growth models developed. Despite that, some potentially important aspects such as water damage and spore contamination have received only little attention. The objective of the present study was to investigate the effect of the initial moisture content of wood and spore contamination on mould development indoors. The mould tests were performed in constant temperature (10, 20 and 30 °C) and relative humidity (91% and 97%) conditions. The results show that wetting of wood specimens prior to the test significantly accelerates mould growth at a temperature of 10 °C. For the other temperatures, the effect was insignificant. Similar results were obtained for the test involving dry (conditioned at RH 50%) and conditioned specimens (RH 91% or RH 97%). The results regarding initial spore contamination show that significantly longer periods are required for mould to develop without spore contamination at 10 °C and 20 °C, while at 30 °C the effect is relatively small.
Collapse
|
11
|
Mota I, Teixeira-Santos R, Cavaleiro Rufo J. Detection and identification of fungal species by electronic nose technology: A systematic review. FUNGAL BIOL REV 2021. [DOI: 10.1016/j.fbr.2021.03.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
12
|
Electronic Nose Differentiation between Quercus robur Acorns Infected by Pathogenic Oomycetes Phytophthora plurivora and Pythium intermedium. Molecules 2021; 26:molecules26175272. [PMID: 34500705 PMCID: PMC8434229 DOI: 10.3390/molecules26175272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 12/16/2022] Open
Abstract
Identification of the presence of pathogenic oomycetes in infected plant material proved possible using an electronic nose, giving hope for a tool to assist nurseries and quarantine services. Previously, species of Phytophthora plurivora and Pythium intermedium have been successfully distinguished in germinated acorns of English oak Quercus robur L. Chemical compound analyses performed by HS-SPME/GC-MS (Headspace Solid-Phase Microextraction/Gas Chromatography-Mass Spectrometry) revealed the presence of volatile antifungal molecules produced by oak seedlings belonging to terpenes and alkanes. Compounds characteristic only of Phytophthora plurivora or Pythium intermedium were also found. Methylcarveol occurred when germinated acorns were infected with Pythium, while neophytadiene (isomer 2 and 3) occurred only when infected with Phytophthora. Moreover, isopentanol was found in acorns infected with Phytophthora, while in control, isopentyl vinyl ether was not observed anywhere else. Among the numerous volatile compounds, isopentanol only occurred in acorns infected with Phytophthora and methylcarveol in acorns infected with Pythium.
Collapse
|
13
|
Optimization of Classification Prediction Performances of an Instrumental Odour Monitoring System by Using Temperature Correction Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060147] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Odour emissions generated by industrial and environmental protection plants are often a cause of nuisances and consequent conflicts in exposed populations. Their control is a key action to avoid complaints. Among the odour measurement techniques, the sensory-instrumental method with the application of Instrumental Odour Monitoring Systems (IOMSs) currently represents an effective solution to allow a continuous classification and quantification of odours in real time, combining the advantages of conventional analytical and sensorial techniques. However, some aspects still need to be improved. The study presents and discusses the investigation and optimization of the operational phases of an advanced IOMS, applied for monitoring of environmental odours, with the aim of increasing their performances and reliability of the measures. Accuracy rates of over 98% were reached in terms of classification performances. The implementation of automatic correction systems for the resistance values of the measurement sensors, by considering the influence of the temperature, has been proven to be a solution to further improve the reliability of IOMS. The proposed approach was based on the application of corrective coefficients experimentally determined by analyzing the correlation between resistance values and operating conditions. The paper provides useful information for the implementation of real-time management activities by using a tailor-made software, able to increase and enlarge the IOMS fields of application.
Collapse
|
14
|
John AT, Murugappan K, Nisbet DR, Tricoli A. An Outlook of Recent Advances in Chemiresistive Sensor-Based Electronic Nose Systems for Food Quality and Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2021; 21:2271. [PMID: 33804960 PMCID: PMC8036444 DOI: 10.3390/s21072271] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
An electronic nose (Enose) relies on the use of an array of partially selective chemical gas sensors for identification of various chemical compounds, including volatile organic compounds in gas mixtures. They have been proposed as a portable low-cost technology to analyse complex odours in the food industry and for environmental monitoring. Recent advances in nanofabrication, sensor and microcircuitry design, neural networks, and system integration have considerably improved the efficacy of Enose devices. Here, we highlight different types of semiconducting metal oxides as well as their sensing mechanism and integration into Enose systems, including different pattern recognition techniques employed for data analysis. We offer a critical perspective of state-of-the-art commercial and custom-made Enoses, identifying current challenges for the broader uptake and use of Enose systems in a variety of applications.
Collapse
Affiliation(s)
- Alishba T. John
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia;
| | - Krishnan Murugappan
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia;
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials, Research School of Chemistry and the John Curtin School of Medical Research, The Australian National University, Canberra 2601, Australia;
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Chemistry, College of Science, The Australian National University, Canberra 2601, Australia;
- Nanotechnology Research Laboratory, Faculty of Engineering, The University of Sydney, Camperdown 2006, Australia
| |
Collapse
|
15
|
Borowik P, Adamowicz L, Tarakowski R, Wacławik P, Oszako T, Ślusarski S, Tkaczyk M. Application of a Low-Cost Electronic Nose for Differentiation between Pathogenic Oomycetes Pythium intermedium and Phytophthora plurivora. SENSORS (BASEL, SWITZERLAND) 2021; 21:1326. [PMID: 33668511 PMCID: PMC7918289 DOI: 10.3390/s21041326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/26/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
Compared with traditional gas chromatography-mass spectrometry techniques, electronic noses are non-invasive and can be a rapid, cost-effective option for several applications. This paper presents comparative studies of differentiation between odors emitted by two forest pathogens: Pythium and Phytophthora, measured by a low-cost electronic nose. The electronic nose applies six non-specific Figaro Inc. metal oxide sensors. Various features describing shapes of the measurement curves of sensors' response to the odors' exposure were extracted and used for building the classification models. As a machine learning algorithm for classification, we use the Support Vector Machine (SVM) method and various measures to assess classification models' performance. Differentiation between Phytophthora and Pythium species has an important practical aspect allowing forest practitioners to take appropriate plant protection. We demonstrate the possibility to recognize and differentiate between the two mentioned species with acceptable accuracy by our low-cost electronic nose.
Collapse
Affiliation(s)
- Piotr Borowik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Leszek Adamowicz
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Przemysław Wacławik
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa, Poland; (P.B.); (R.T.); (P.W.)
| | - Tomasz Oszako
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (T.O.); (S.Ś.); (M.T.)
| | - Sławomir Ślusarski
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (T.O.); (S.Ś.); (M.T.)
| | - Miłosz Tkaczyk
- Forest Protection Department, Forest Research Institute, ul. Braci Leśnej 3, 05-090 Sękocin Stary, Poland; (T.O.); (S.Ś.); (M.T.)
| |
Collapse
|
16
|
Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life (Basel) 2020; 10:E89. [PMID: 32575729 PMCID: PMC7345136 DOI: 10.3390/life10060089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Fungi are a highly diverse group of heterotrophic organisms that play an important role in diverse ecological interactions, many of which are chemically mediated. Fungi have a very versatile metabolism, which allows them to synthesize a large number of still little-known chemical compounds, such as soluble compounds that are secreted into the medium and volatile compounds that are chemical mediators over short and long distances. Mass spectrometry (MS) is currently playing a dominant role in mycological studies, mainly due to its inherent sensitivity and rapid identification capabilities of different metabolites. Furthermore, MS has also been used as a reliable and accurate tool for fungi identification (i.e., biotyping). Here, we introduce the readers about fungal specialized metabolites, their role in ecological interactions and provide an overview on the MS-based techniques used in fungal studies. We particularly present the importance of sampling techniques, strategies to reduce false-positive identification and new MS-based analytical strategies that can be used in mycological studies, further expanding the use of MS in broader applications. Therefore, we foresee a bright future for mass spectrometry-based research in the field of mycology.
Collapse
Affiliation(s)
- Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Pablo Ramírez
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Carlos Martel
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Jesús María 15072, Lima, Peru
| | - Alfredo J. Ibañez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| |
Collapse
|
17
|
Campana R, Sabatini L, Frangipani E. Moulds on cementitious building materials-problems, prevention and future perspectives. Appl Microbiol Biotechnol 2019; 104:509-514. [PMID: 31802168 DOI: 10.1007/s00253-019-10185-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/26/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022]
Abstract
Materials rich in organic and inorganic compounds, such as building materials or paints, represent an excellent substrate for the development of moulds. Several conditions affect mould's growth on cementitious materials, such as nutrient and water availability, temperature, pH and moisture. Microorganisms, and especially moulds, attack these surfaces and contribute to their erosion, thereby reducing the life of the structure itself and negatively affecting human health through inhalation, ingestion and dermal contact with spores. Interventions are based on The European Communities Council Directive 89/106/EEC, that obliges the use of materials, products and building elements that are resistant to fungi and other forms of degradation, and that do not constitute a health risk for users and the environment. This mini-review summarises the current state of problems related to mould growth on cementitious building materials, emphasising new innovative approaches for limiting or contrasting their growth. In particular, the use of nanoparticles and the related nanomaterials as well as the potential use of new "biocides" from natural sources is discussed.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Sciences, Division of Pharmacology and Hygiene, University of Urbino, Via S. Chiara 27, 61029, Urbino (PU), Italy.
| | - Luigia Sabatini
- Department of Biomolecular Sciences, Division of Pharmacology and Hygiene, University of Urbino, Via S. Chiara 27, 61029, Urbino (PU), Italy
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, Division of Pharmacology and Hygiene, University of Urbino, Via S. Chiara 27, 61029, Urbino (PU), Italy
| |
Collapse
|