1
|
Edel C, Rühr PT, Frenzel M, van de Kamp T, Faragó T, Hammel JU, Wilde F, Blanke A. Bite force transmission and mandible shape in grasshoppers, crickets, and allies is not driven by dietary niches. Evolution 2024; 78:1958-1968. [PMID: 39290094 DOI: 10.1093/evolut/qpae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/26/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
Although species evolve in response to many intrinsic and extrinsic factors, frequently one factor has a dominating influence on a given organ system. In this context, mouthpart shape and function are thought to correlate strongly with dietary niche and this was advocated for decades, e.g., for insects. Orthoptera (grasshoppers, crickets, and allies) are a prominent case in this respect because mandible shape has been even used to predict feeding preferences. Here, we analyzed mandible shape, force transmission efficiency, and their potential correlation with dietary categories in a phylogenetic framework for 153 extant Orthoptera. The mechanical advantage profile was used as a descriptor of gnathal edge shape and bite force transmission efficiency in order to understand how mandible shape is linked to biting efficiency and diet, and how these traits are influenced by phylogeny and allometry. Results show that mandible shape, in fact, is a poor predictor of feeding ecology and phylogenetic history has a strong influence on gnathal edge shape. Being ancestrally phytophagous, Orthoptera evolved in an environment with food sources being always abundant so that selective pressures leading to more specialized mouthpart shapes and force transmission efficiencies were low.
Collapse
Affiliation(s)
- Carina Edel
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Peter T Rühr
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Melina Frenzel
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| | - Thomas van de Kamp
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Tomáš Faragó
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Lepoldshafen, Germany
| | - Jörg U Hammel
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Fabian Wilde
- Institute of Materials Physics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
| | - Alexander Blanke
- Bonn Institute for Organismic Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
2
|
Berthaume MA, Morley MJ. Interspecific and intraspecific variation in grasshopper (Orthoptera: Acrididea) molar form: implications for dietary ecology. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240596. [PMID: 39479239 PMCID: PMC11523494 DOI: 10.1098/rsos.240596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/02/2024]
Abstract
Like many mammals, grasshoppers (infraorder Acrididea) chew using molariform structures. Despite decades of research on mammals, little is known about grasshopper molar form and how it relates to grasshopper feeding biomechanics, diet, dietary ecology and evolution. Here, we develop a method for quantifying molar form and apply it to two species of distantly related grasshoppers with different diets (Phymateus saxosus, seven females; Valanga nigricornis, seven females, 11 males). We show that there are quantifiable differences in molar form, potentially related to diet. There are some differences in molar shape between left and right molars in both species and sexes, and significant differences in molar size, potentially due to scaling. Like in mammals, molar wear can cause large differences in molar shape. Species differences in molar shape did not match what was expected based on mammalian molar functional morphology. Dental topographic analysis is a promising new avenue for quantifying molar form in grasshoppers and a distinct advantage over traditional two-dimensional microscopy methods, and promises to reveal much about the biology, biomechanics and evolution of Acrididea.
Collapse
Affiliation(s)
| | - Matthew J. Morley
- Division of Mechanical Engineering and Design, London South Bank University, London, UK
| |
Collapse
|
3
|
de Vries D, Winchester JM, Fulwood EL, St Clair EM, Boyer DM. Dental topography of prosimian premolars predicts diet: A comparison in premolar and molar dietary classification accuracies. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24995. [PMID: 38965918 DOI: 10.1002/ajpa.24995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVES This study tests whether (1) premolar topography of extant "prosimians" (strepsirrhines and tarsiers) successfully predicts diet and (2) whether the combination of molar and premolar topography yields higher classification accuracy than using either tooth position in isolation. MATERIALS AND METHODS Dental topographic metrics (ariaDNE, relief index, and orientation patch count rotated) were calculated for 118 individual matched-pairs of mandibular fourth premolars (P4) and second molars (M2). The sample represents 7 families and 22 genera. Tooth variables were analyzed in isolation (P4 only; M2 only), together (P4 and M2), and combined (PC1 scores of bivariate principal component analyses of P4 and M2 for each metric). Discriminant function analyses were conducted with and without a measure of size (two-dimensional surface area). RESULTS When using topography only, "prosimian" P4 shape predicts diet with a success rate that is slightly higher than that of M2 shape. When absolute size is included, premolars and molars perform comparably well. Including both premolar and molar topography (separately or combined) improves classification accuracy for every analysis beyond considering either in isolation. Classification accuracy is highest when premolar and molar topography and size are included. DISCUSSION Our findings indicate that molar teeth incompletely summarize the functional requirements of oral food breakdown for a given diet, and that the mechanism selecting for premolar form is more varied than what is expressed by molar teeth. Finally, our findings suggest that fossil P4s (in isolation or with the M2) can be used for meaningful dietary reconstruction of extinct primates.
Collapse
Affiliation(s)
- Dorien de Vries
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York, USA
| | - Julie M Winchester
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Ethan L Fulwood
- DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, Tennessee, USA
| | | | - Doug M Boyer
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
4
|
Pampush JD, Morse PE, Kay RF. Dental sculpting and compensatory shearing crests demonstrated in a WEAR series of Presbytis rubicunda (Cercopithecoidea, Colobidae) with dental topography analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 185:e24953. [PMID: 38751320 DOI: 10.1002/ajpa.24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVES Maintaining effective and efficient occlusal morphology presents adaptive challenges for mammals, particularly because mastication produces interactions with foods and other materials that alters the geometry of occlusal surfaces through macrowear and/or catastrophic failure (i.e. "chipping"). Altered occlusal morphologies are often less effective for masticating materials of given diet-but not always-some species exhibit dental sculpting, meaning their dentitions are set up to harness macrowear to hone their occlusal surfaces into more effective morphologies (i.e. secondary morphologies). Here we show that dental sculpting is present in the folivorous Presbytis rubicunda of Borneo. METHODS Thirty-one undamaged lower second molars of P. rubicunda exhibiting various stages of macroscopic wear were micro-CT scanned and processed into digital surfaces. The surfaces were measured for convex Dirichlet normal energy (vDNE, a measure of surface sharpness), and degree of surface wear. Regression analyses compared surface sharpness with several measures of wear to test for the presence and magnitude of dental sculpting. RESULTS Positive correlations between the wear proxies and vDNE reveal that P. rubicunda wear in such a way as to become sharper, and therefore more effective chewing surfaces by exposing enamel-dentine junctions on their occlusal surfaces and then honing these junctions into sharpened edges. Compared to another primate folivore in which increasing surface sharpness with macrowear has been demonstrated (i.e., Alouatta palliata), the worn surfaces are similarly sharp, but the dental sculpting process appears to be different. DISCUSSION The results presented here suggest that not only do some primates exhibit dental sculpting and the attendant secondary morphology, but that there appear to be multiple different morphological configurations that can achieve this result. P. rubicunda has thicker enamel and a more stereotyped wear pattern than A. palliata, although both show positive correlations of occlusal surface sharpness (vDNE) with various wear proxies. These findings shed light on the varied approaches for the maintenance of effective and efficient occlusal surfaces in primates.
Collapse
Affiliation(s)
- James D Pampush
- Department of Health and Human Performance, High Point University, High Point, North Carolina, USA
- Department of Physician Assistant Studies, High Point University, High Point, North Carolina, USA
| | - Paul E Morse
- Department of Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Richard F Kay
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
- Division of Earth and Climate Sciences, Nicholas School, Duke University, Durham, North Carolina, USA
| |
Collapse
|
5
|
DeMers AC, Hunter JP. Dental complexity and diet in amniotes: A meta-analysis. PLoS One 2024; 19:e0292358. [PMID: 38306370 PMCID: PMC10836679 DOI: 10.1371/journal.pone.0292358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/19/2023] [Indexed: 02/04/2024] Open
Abstract
Tooth morphology is among the most well-studied indicators of ecology. For decades, researchers have examined the gross morphology and wear patterns of teeth as indicators of diet, and recent advances in scanning and computer analysis have allowed the development of new and more quantitative measures of tooth morphology. One of the most popular of these new methods is orientation patch count (OPC). OPC, a measure of surface complexity, was originally developed to distinguish the more complex tooth crowns of herbivores from the less complex tooth crowns of faunivores. OPC and a similar method derived from it, orientation patch count rotated (OPCR), have become commonplace in analyses of both modern and fossil amniote dietary ecology. The widespread use of these techniques makes it possible to now re-assess the utility of OPC and OPCR. Here, we undertake a comprehensive review of OPC(R) and diet and perform a meta-analysis to determine the overall difference in complexity between herbivores and faunivores. We find that the relationship between faunivore and herbivore OPC or OPCR values differs substantially across studies, and although some support the initial assessment of greater complexity in herbivores, others do not. Our meta-analysis does not support an overall pattern of greater complexity in herbivores than faunivores across terrestrial amniotes. It appears that the relationship of OPC or OPCR to diet is taxon-specific and dependent on the type of faunivory of the group in question, with insectivores often having values similar to herbivores. We suggest extreme caution in comparing OPC and OPCR values across studies and offer suggestions for how OPCR can constructively be used in future research.
Collapse
Affiliation(s)
- Anessa C DeMers
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - John P Hunter
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Newark, Ohio, United States of America
| |
Collapse
|
6
|
Selig KR. Hypoconulid loss in cercopithecins: Functional and developmental considerations. J Hum Evol 2024; 187:103479. [PMID: 38181576 DOI: 10.1016/j.jhevol.2023.103479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 01/07/2024]
Abstract
Cercopithecins differ from papionins in lacking a M3 hypoconulid. Although this loss may be related to dietary differences, the functional and developmental ramifications of hypoconulid loss are currently unclear. The following makes use of dental topographic analysis to quantify shape variation in a sample of cercopithecin M3s, as well as in a sample of Macaca, which has a hypoconulid. To help understand the consequences of hypoconulid loss, Macaca M3s were virtually cropped to remove the hypoconulid and were also subjected to dental topographic analysis. The patterning cascade model and the inhibitory cascade model attempt to explain variation in cusp pattern and molar proportions, respectively. These models have both previously been used to explain patterns of variation in cercopithecines, but have not been examined in the context of hypoconulid loss. For example, previous work suggests that earlier developing cusps impact the development of later developing cusps (i.e., the hypoconulid) and that cercopithecines do not conform to the predictions of the inhibitory cascade model in that the size of the molars is not linear moving distally. Results of the current study suggest that the loss of the hypoconulid is associated with a reduction in dental topography among cercopithecins, which is potentially related to diet, although the connection to diet is not necessarily clear. Results also suggest that the loss of the hypoconulid can be explained by the patterning cascade model, and that hypoconulid loss explains the apparent lack of support for the inhibitory cascade model among cercopithecines. These findings highlight the importance of a holistic approach to studying variation in molar proportions and developmental models.
Collapse
Affiliation(s)
- Keegan R Selig
- Department of Evolutionary Anthropology, Duke University, Biological Sciences Building, 130 Science Drive, Durham, NC, 27708, USA.
| |
Collapse
|
7
|
Morley MJ, Berthaume MA. Technical note: A freeware, equitable approach to dental topographic analysis. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2023; 182:143-153. [PMID: 37493093 DOI: 10.1002/ajpa.24807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Dental topographic analysis has proved a valuable tool for quantifying dental morphology. Established workflows often use proprietary software for pre-processing dental surfaces, rendering the method expensive and inaccessible to many. This study explores the use of freeware pre-processing alternatives. We tested 4 decimation tools and 13 smoothing tools across 7 different freeware packages. Surfaces generated via proprietary software could not be replicated, but it was possible to obtain statistically similar measurements using freeware. Based on this investigation, we propose a freeware workflow for researchers to conduct dental topographic analysis, with the expectation that their results will be comparable to that obtained through proprietary methods.
Collapse
Affiliation(s)
- Matthew J Morley
- Division of Mechanical Engineering and Design, London South Bank University, London, UK
| | - Michael A Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, London, UK
| |
Collapse
|
8
|
Avià Y, Romero A, Estebaranz-Sánchez F, Pérez-Pérez A, Cuesta-Torralvo E, Martínez LM. Dental topography and dietary specialization in Papionini primates. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.969007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of primate adaptive evolution depends on appreciating the way in which dental functional morphology affects food processing. The Papionini tribe of Cercopithecoidea primates shows great dietary versatility and ecological adaptations to resource seasonality across the African and Asian ecosystems, however, there are few studies focusing on the occlusal topography of the bilophodont teeth and the effect of tooth wear in the crown shape. Here, we explore the relationship between wear-related dental functional morphology and dietary ecological constraints within the Papionini. Three-dimensional (3D) polygonal meshes of the upper permanent molar row (M1-3) were obtained in a large papionine sample (838 specimens) of known dietary preferences including species from six genera (Cercocebus, Lophocebus, Macaca, Mandrillus, Papio, and Theropithecus). All the sample was classified in four diet categories and four topographic metrics (orientation patch count rotated, OPCR; Dirichlet normal energy, DNE; occlusal relief, OR; and ambient occlusion, portion de ciel visible, PCV) were measured for each tooth-type according to wear stage (lightly and moderately worn) to determine diet-related interspecific morphological changes with long-term functionality. The results indicate that hard-object feeders (Cercocebus and Lophocebus) and grass eaters (Theropithecus gelada) exhibit a pattern of occlusal complexity (OPCR), surface curvature (DNE), relief (OR), and morphological wear resistance (PCV) that is significantly different from the omnivores and folivore-frugivore species (Mandrillus and Macaca) despite the overall homogeneity of the bilophodont dentition. A multifactorial ANOVA showed that the topographic metrics were sensitive to tooth wear as expected. The results also indicate that the interspecific variability of dental topography of the upper molars reflects dietary specializations rather than phylogenetic proximity. These findings support the hypothesis that evolutionary convergence processes could have affected the Papionini, clustering the hard-object feeders (Lophocebus and Cercocebus) together in the morphospace, and clearly discriminating this group from the graminivorous and frugivores-folivores.
Collapse
|
9
|
Measuring Molarization: Change Through Time in Premolar Function in An Extinct Stem Primate Lineage. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09623-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
10
|
Three-Dimensional, Km-Scale Hyperspectral Data of Well-Exposed Zn–Pb Mineralization at Black Angel Mountain, Greenland. DATA 2022. [DOI: 10.3390/data7080104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperspectral imaging is an innovative technology for non-invasive mapping, with increasing applications in many sectors. As with any novel technology, robust processing workflows are required to ensure a wide use. We present an open-source hypercloud dataset capturing the complex but spectacularly well exposed geology from the Black Angel Mountain in Maarmorilik, West Greenland, alongside a detailed and interactive tutorial documenting relevant processing workflows. This contribution relies on very recent progress made on the correction, interpretation and integration of hyperspectral data in earth sciences. The possibility to fuse hyperspectral scans with 3D point cloud representations (hyperclouds) has opened up new possibilities for the mapping of complex natural targets. Spectroscopic and machine learning tools allow or the rapid and accurate characterization of geological structures in a 3D environment. Potential users can use this exemplary dataset and the associated tools to train themselves or test new algorithms. As the data and the tools have a wide range of application, we expect this contribution to benefit the scientific community at large.
Collapse
|
11
|
Feeding ecology of the last European colobine monkey, Dolichopithecus ruscinensis. J Hum Evol 2022; 168:103199. [PMID: 35667203 DOI: 10.1016/j.jhevol.2022.103199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/23/2022]
Abstract
Currently, very little is known about the ecology of extinct Eurasian cercopithecids. Dietary information is crucial in understanding the ecological adaptations and diversity of extinct cercopithecids and the evolution of this family. For example, the colobine genus Dolichopithecus is represented by multiple large-bodied species that inhabited Eurasia during the Pliocene-Early Pleistocene. The available evidence, though limited, suggests semiterrestrial locomotion, which contrasts with most extant African and Asian colobines that exhibit morphological and physiological adaptations for arboreality and folivory. These differences raise questions regarding the dietary specialization of early colobine taxa and how/if that influenced their dispersion out of Africa and into Eurasia. To further our understanding of the ecology of Plio-Pleistocene cercopithecids, we characterized the dental capabilities and potential dietary adaptations of Dolichopithecus ruscinensis through dental topographic and enamel thickness analyses on an M1 from the locality of Serrat d'en Vacquer, Perpignan (France). We also assessed the feeding behavior of D. ruscinensis through dental microwear texture analysis on a broad sample of fossil molars from fossil sites in France, Greece, Bulgaria, and Romania. Dental topographic and enamel thickness analyses suggest that D. ruscinensis could efficiently process a wide range of foods. Results of the dental microwear texture analysis suggest that its diet ranged from folivory to the consumption of more mechanically challenging foods. Collectively, this suggests a more opportunistic feeding behavior for Dolichopithecus than characteristic of most extant colobines.
Collapse
|
12
|
López-Aguirre C, Hand SJ, Simmons NB, Silcox MT. Untangling the ecological signal in the dental morphology in the bat superfamily Noctilionoidea. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09606-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Berthaume MA, Kupczik K. Molar biomechanical function in South African hominins Australopithecus africanus and Paranthropus robustus. Interface Focus 2021; 11:20200085. [PMID: 34938434 DOI: 10.1098/rsfs.2020.0085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2021] [Indexed: 11/12/2022] Open
Abstract
Diet is a driving force in human evolution. Two species of Plio-Pleistocene hominins, Paranthropus robustus and Australopithecus africanus, have derived craniomandibular and dental morphologies which are often interpreted as P. robustus having a more biomechanically challenging diet. While dietary reconstructions based on dental microwear generally support this, they show extensive dietary overlap between species, and craniomandibular and dental biomechanical analyses can yield contradictory results. Using methods from anthropology and engineering (i.e. anthroengineering), we quantified the molar biomechanical performance of these hominins to investigate possible dietary differences between them. Thirty-one lower second molars were 3D printed and used to fracture gelatine blocks, and Bayesian generalized linear models were used to investigate the relationship between species and tooth wear, size and shape, and biomechanical performance. Our results demonstrate that P. robustus required more force and energy to fracture blocks but had a higher force transmission rate. Considering previous dietary reconstructions, we propose three evolutionary scenarios concerning the dietary ecologies of these hominins. These evolutionary scenarios cannot be reached by investigating morphological differences in isolation, but require combining several lines of evidence. This highlights the need for a holistic approach to reconstructing hominin dietary ecology.
Collapse
Affiliation(s)
- Michael A Berthaume
- Division of Mechanical Engineering and Design, London South Bank University, 103 Borough Road, London SE1 0AA, UK.,Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute of Evolutionary Anthropology, 04103 Leipzig, Germany
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute of Evolutionary Anthropology, 04103 Leipzig, Germany.,Department of Human Evolution, Max Planck Institute of Evolutionary Anthropology, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Berthaume MA, Lazzari V, Guy F. The landscape of tooth shape: Over 20 years of dental topography in primates. Evol Anthropol 2020; 29:245-262. [PMID: 32687672 PMCID: PMC7689778 DOI: 10.1002/evan.21856] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2019] [Accepted: 06/24/2020] [Indexed: 12/19/2022]
Abstract
Diet plays an incontrovertible role in primate evolution, affecting anatomy, growth and development, behavior, and social structure. It should come as no surprise that a myriad of methods for reconstructing diet have developed, mostly utilizing the element that is not only most common in the fossil record but also most pertinent to diet: teeth. Twenty years ago, the union of traditional, anatomical analyses with emerging scanning and imaging technologies led to the development of a new method for quantifying tooth shape and reconstructing the diets of extinct primates. This method became known as dental topography.
Collapse
Affiliation(s)
- Michael A. Berthaume
- Division of Mechanical Engineering and DesignLondon South Bank UniversityLondonUK
- Department of BioengineeringImperial College LondonLondonUK
| | - Vincent Lazzari
- PALEVOPRIM—UMR 7262 CNRS INEE Laboratoire Paléontologie Evolution Paléoécosystèmes PaléoprimatologieUniversité de PoitiersPoitiersFrance
| | - Franck Guy
- PALEVOPRIM—UMR 7262 CNRS INEE Laboratoire Paléontologie Evolution Paléoécosystèmes PaléoprimatologieUniversité de PoitiersPoitiersFrance
| |
Collapse
|
15
|
Grossnickle DM. Feeding ecology has a stronger evolutionary influence on functional morphology than on body mass in mammals. Evolution 2020; 74:610-628. [PMID: 31967667 DOI: 10.1111/evo.13929] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/27/2019] [Accepted: 01/14/2020] [Indexed: 01/02/2023]
Abstract
Ecological specialization is a central driver of adaptive evolution. However, selective pressures may uniquely affect different ecomorphological traits (e.g., size and shape), complicating efforts to investigate the role of ecology in generating phenotypic diversity. Comparative studies can help remedy this issue by identifying specific relationships between ecologies and morphologies, thus elucidating functionally relevant traits. Jaw shape is a dietary correlate that offers considerable insight on mammalian evolution, but few studies have examined the influence of diet on jaw morphology across mammals. To this end, I apply phylogenetic comparative methods to mandibular measurements and dietary data for a diverse sample of mammals. Especially powerful predictors of diet are metrics that capture either the size of the angular process, which increases with greater herbivory, or the length of the posterior portion of the jaw, which decreases with greater herbivory. The size of the angular process likely reflects sizes of attached muscles that produce jaw movements needed to grind plant material. Further, I examine the impact of feeding ecology on body mass, an oft-used ecological surrogate in macroevolutionary studies. Although body mass commonly increases with evolutionary shifts to herbivory, it is outperformed by functional jaw morphology as a predictor of diet. Body mass is influenced by numerous factors beyond diet, and it may be evolutionarily labile relative to functional morphologies. This suggests that ecological diversification events may initially facilitate body mass diversification at smaller taxonomic and temporal scales, but sustained selective pressures will subsequently drive greater trait partitioning in functional morphologies.
Collapse
|
16
|
Berthaume MA, Winchester J, Kupczik K. Effects of cropping, smoothing, triangle count, and mesh resolution on 6 dental topographic metrics. PLoS One 2019; 14:e0216229. [PMID: 31059538 PMCID: PMC6502444 DOI: 10.1371/journal.pone.0216229] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/16/2019] [Indexed: 11/18/2022] Open
Abstract
Dental topography is a widely used method for quantifying dental morphology and inferring dietary ecology in animals. Differences in methodology have brought into question the comparability of different studies. Using primate mandibular second molars, we investigated the effects of mesh preparation parameters smoothing, cropping, and triangle count/mesh resolution (herein, resolution) on six topographic variables (Dirichlet normal energy, DNE; orientation patch count rotated, OPCR; relief index, RFI; ambient occlusion, portion de ciel visible, PCV; enamel surface area, SA; tooth size) to determine the effects of smoothing, cropping, and triangle count/resolution on topographic values and the relationship between these values and diet. All topographic metrics are sensitive to smoothing, cropping method, and triangle count/resolution. In general, smoothing decreased DNE, OPCR, RFI, and SA, increased PCV, and had no predictable effect on tooth size. Relative to the basin cut off (BCO) cropping method, the entire enamel cap (EEC) method increased RFI, SA, and size, and had no predictable effect on DNE and OPCR. Smoothing and cropping affected DNE/OPCR and surfaces with low triangle counts more than other metrics and surfaces with high triangle counts. There was a positive correlation between DNE/OPCR and triangle count/resolution, and the rate of increase was weakly correlated to diet. PCV tended to converge or decrease with increases in triangle count/resolution, and RFI, SA, and size converged. Finally, there appears to be no optimal triangle count or resolution for predicting diet from this sample, and constant triangle count appeared to perform better than constant resolution for predicting diet.
Collapse
Affiliation(s)
- Michael A. Berthaume
- Department of Bioengineering, Imperial College London, London, United Kingdom
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
- Department of Anthropology, Durham University, Durham, United Kingdom
| | - Julia Winchester
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Kornelius Kupczik
- Max Planck Weizmann Center for Integrative Archaeology and Anthropology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Saxony, Germany
| |
Collapse
|