1
|
Bakhshi B, Shams S, Rezaie N, Ameri Shah Reza M. Design of dot-blot hybridization assay for simultaneous detection of Campylobacter jejuni and Campylobacter coli: a preliminary study. Ann Med Surg (Lond) 2024; 86:219-224. [PMID: 38222678 PMCID: PMC10783310 DOI: 10.1097/ms9.0000000000001558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2024] Open
Abstract
Objectives Campylobacters are a major cause of gastroenteritis worldwide. These are fastidious in culture and false negative results are seen in many clinical laboratories. Among molecular methods, the dot-blot technique is widely used for a variety of purposes, especially diagnostics. So, the authors aimed to detect C. jejuni and C. coli simultaneously using a dot-blot assay. Methods After evaluating the bioinformatics studies, a cadF-conserved fragment was selected for the design of primers and probe. DNAs from standard strains and a recombinant plasmid, prepared in this study, were used to assess the technique. The specificity of the method was also surveyed using DNAs from other enteric bacteria. The limit of detection was evaluated by recombinant plasmid and different concentrations of the designed probe. Results A 95-bp fragment of cadF was selected, and in silico analysis studies showed that it is conserved between both species. Also, the non-specific annealing of the primers and probe with other bacteria was not seen theoretically. The technique with recombinant plasmid as well as DNAs of standard strains created black spots on the membrane, confirming that the probe was correctly synthesized. No non-specific reactions with other bacterial species were observed (specificity=100%). The limit of detection of the test was determined to be 50 µg/ml. Conclusions This is the first study to simultaneously detect two important pathogens in the Campylobacter genus and was able to detect C. jejuni and C. coli with acceptable sensitivity and specificity.
Collapse
Affiliation(s)
- Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University
| | - Saeed Shams
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Niloofar Rezaie
- Department of Microbiology, Pasteur Institute of Iran, Tehran
| | | |
Collapse
|
2
|
Blomvall L, Kaukonen E, Kurittu P, Heikinheimo A, Fredriksson-Ahomaa M. Food chain information and post-mortem findings in fattening Turkey flocks. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Schorling E, Lick S, Steinberg P, Brüggemann DA. Health care utilizations and costs of Campylobacter enteritis in Germany: A claims data analysis. PLoS One 2023; 18:e0283865. [PMID: 37018288 PMCID: PMC10075411 DOI: 10.1371/journal.pone.0283865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 03/19/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE The number of reported cases of Campylobacter enteritis (CE) remains on a high level in many parts of the world. The aim of this study was to analyze the health care utilizations and direct and indirect costs of CE and sequelae of patients insured by a large health insurance with 26 million members in Germany. METHODS Claims data of insurants with at least one CE diagnosis in 2017 (n = 13,150) were provided, of which 9,945 were included in the analysis of health care utilizations and costs. If medical services were not diagnosis-linked, CE-associated costs were estimated in comparison to up to three healthy controls per CE patient. Indirect costs were calculated by multiplying the work incapacities by the average labor costs. Total costs of CE in Germany were extrapolated by including all officially reported CE cases in 2017 using Monte Carlo simulations. RESULTS Insurants showed a lower rate of 56 CE diagnoses per 100,000 than German surveillance data for 2017, but with a similar age, gender and regional distribution. Of those CE cases, 6.3% developed post-infectious reactive arthritis, Guillain-Barré syndrome (GBS), inflammatory bowel disease (IBD) and/or irritable bowel syndrome (IBS). Health care utilizations differed depending on CE severity, age and gender. Average CE-specific costs per patient receiving outpatient care were € 524 (95% CI 495-560) over a 12-month period, whereas costs per hospitalized CE case amounted to € 2,830 (2,769-2,905). The analyzed partial costs of sequelae ranged between € 221 (IBS) and € 22,721 (GBS) per patient per 12 months. Total costs of CE and sequelae extrapolated to Germany 2017 ranged between € 74.25 and € 95.19 million, of which 10-30% were due to sequelae. CONCLUSION CE is associated with a substantial economic burden in Germany, also due to care-intensive long-lasting sequelae. However, uncertainties remain as to the causal relationship of IBD and IBS after CE.
Collapse
Affiliation(s)
- Elisabeth Schorling
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Bavaria, Germany
| | - Sonja Lick
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Bavaria, Germany
| | - Pablo Steinberg
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Baden-Württemberg, Germany
| | - Dagmar Adeline Brüggemann
- Department of Safety and Quality of Meat, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Kulmbach, Bavaria, Germany
| |
Collapse
|
4
|
Rangaraju V, Malla BA, Milton AAP, Madesh A, Madhukar KB, Kadwalia A, Vinodhkumar OR, Kumar MS, Dubal ZB. Occurrence, antimicrobial resistance and virulence properties of thermophilic Campylobacter coli originating from two different poultry settings. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Heimesaat MM, Backert S, Alter T, Bereswill S. Human Campylobacteriosis-A Serious Infectious Threat in a One Health Perspective. Curr Top Microbiol Immunol 2021; 431:1-23. [PMID: 33620646 DOI: 10.1007/978-3-030-65481-8_1] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zoonotic Campylobacter species-mainly C. jejuni and C. coli-are major causes of food-borne bacterial infectious gastroenteritis worldwide. Symptoms of intestinal campylobacteriosis include abdominal pain, diarrhea and fever. The clinical course of enteritis is generally self-limiting, but some infected individuals develop severe post-infectious sequelae including autoimmune disorders affecting the nervous system, the joints and the intestinal tract. Moreover, in immunocompromised individuals, systemic spread of the pathogens may trigger diseases of the circulatory system and septicemia. The socioeconomic costs associated with Campylobacter infections have been calculated to several billion dollars annually. Poultry meat products represent major sources of human infections. Thus, a "One World-One Health" approach with collective efforts of public health authorities, veterinarians, clinicians, researchers and politicians is required to reduce the burden of campylobacteriosis. Innovative intervention regimes for the prevention of Campylobacter contaminations along the food chain include improvements of information distribution to strengthen hygiene measures for agricultural remediation. Given that elimination of Campylobacter from the food production chains is not feasible, novel intervention strategies fortify both the reduction of pathogen contamination in food production and the treatment of the associated diseases in humans. This review summarizes some current trends in the combat of Campylobacter infections including the combination of public health and veterinary preventive approaches with consumer education. The "One World-One Health" perspective is completed by clinical aspects and molecular concepts of human campylobacteriosis offering innovative treatment options supported by novel murine infection models that are based on the essential role of innate immune activation by bacterial endotoxins.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Steffen Backert
- Division of Microbiology, Department of Biology, Friedrich Alexander University Erlangen/Nuremberg, Erlangen, Germany
| | - Thomas Alter
- Department of Veterinary Medicine, Institute of Food Safety and Food Hygiene, Free University Berlin, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
6
|
Ben Romdhane R, Merle R. The Data Behind Risk Analysis of Campylobacter Jejuni and Campylobacter Coli Infections. Curr Top Microbiol Immunol 2021; 431:25-58. [PMID: 33620647 DOI: 10.1007/978-3-030-65481-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are major causes of food-borne enteritis in humans. Poultry meat is known to be responsible for a large proportion of cases of human campylobacteriosis. However, other food-borne, environmental and animal sources are frequently associated with the disease in humans as well. Human campylobacteriosis causes gastroenteritis that in most cases is self-limiting. Nevertheless, the burden of the disease is relatively large compared with other food-borne diseases, which is mostly due to rare but long-lasting symptoms related to immunological sequelae. In order to pave the way to improved surveillance and control of human campylobacteriosis, we review here the data that is typically used for risk analysis to quantify the risk and disease burden, identify specific surveillance strategies and assist in choosing the most effective control strategies. Such data are mostly collected from the literature, and their nature is discussed here, for each of the three processes that are essential for a complete risk analysis procedure: risk assessment, risk management and risk communication. Of these, the first, risk assessment, is most dependent on data, and this process is subdivided into the steps of hazard identification, hazard characterization, exposure assessment and risk characterization. For each of these steps of risk assessment, information from published material that is typically collected will be summarized here. In addition, surveillance data are highly valuable for risk assessments. Different surveillance systems are employed in different countries, which can make international comparison of data challenging. Risk analysis typically results in targeted control strategies, and these again differ between countries. The applied control strategies are as yet not sufficient to eradicate human campylobacteriosis. The surveillance tools of Campylobacter in humans and exposure sources in place in different countries are briefly reviewed to better understand the Campylobacter dynamics and guide control strategies. Finally, the available control measures on different risk factors and exposure sources are presented.
Collapse
Affiliation(s)
- Racem Ben Romdhane
- Faculty of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Faculty of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
7
|
|
8
|
Wachira VK, Nascimento GL, Peixoto HM, de Oliveira MRF. Burden of Disease of Guillain-Barré Syndrome in Brazil before and during the Zika virus epidemic 2014-2016. Trop Med Int Health 2020; 26:66-81. [PMID: 33151584 DOI: 10.1111/tmi.13508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To estimate the burden of disease of Guillain-Barré syndrome (GBS) in Brazil in 2014, 1 year before the Zika virus epidemic, and in 2015 and 2016 during the epidemic. METHODS The burden of disease of GBS was estimated using the summary measure of population health: Disability Adjusted Life Years (DALY), that combines both mortality (Years of Life Lost YLLs) and morbidity (Years Lived with Disability) components. The study population was composed of GBS hospitalised cases and deaths from the information systems of the Brazilian Unified Health System. RESULTS The GBS incidence rate in 2014, 2015 and 2016 was 0.74, 0.96, 1.02/100 000 respectively, and the mortality rate in the same period was 0.08, 0.009 and 0.11/100 000 habitants. The DALYs calculated using the point estimate of GBS disability weight and its values of the confidence interval (0.198 and 0.414) were 5725.90 (5711.79-5742.89) in 2014, 6054.61 (6035.57-6077.54) in 2015 and 7588.49 (7570.20-7610.51) in 2016. The DALYs were high among the male population and in age groups between 20 and 50 years. CONCLUSIONS The increase in DALYs in the years 2015 and 2016 compared to 2014 probably resulted from the introduction of ZIKV in Brazil, reinforcing the importance of investments in the prevention of ZIKV infection and in the care of GBS patients.
Collapse
Affiliation(s)
- Virginia Kagure Wachira
- Center of Tropical Medicine, Faculty of Medicine, Universidade de Brasília, Brasília, Brazil
| | | | - Henry Maia Peixoto
- Center of Tropical Medicine, Faculty of Medicine, Universidade de Brasília, Brasília, Brazil.,National Institute of Science and Technology for Health Technology Assessment, Porto Alegre, Brazil
| | - Maria Regina Fernandes de Oliveira
- Center of Tropical Medicine, Faculty of Medicine, Universidade de Brasília, Brasília, Brazil.,National Institute of Science and Technology for Health Technology Assessment, Porto Alegre, Brazil
| |
Collapse
|
9
|
Frid P, Baraniya D, Halbig J, Rypdal V, Songstad NT, Rosèn A, Berstad JR, Flatø B, Alakwaa F, Gil EG, Cetrelli L, Chen T, Al-Hebshi NN, Nordal E, Al-Haroni M. Salivary Oral Microbiome of Children With Juvenile Idiopathic Arthritis: A Norwegian Cross-Sectional Study. Front Cell Infect Microbiol 2020; 10:602239. [PMID: 33251163 PMCID: PMC7672027 DOI: 10.3389/fcimb.2020.602239] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background The oral microbiota has been connected to the pathogenesis of rheumatoid arthritis through activation of mucosal immunity. The objective of this study was to characterize the salivary oral microbiome associated with juvenile idiopathic arthritis (JIA), and correlate it with the disease activity including gingival inflammation. Methods Fifty-nine patients with JIA (mean age, 12.6 ± 2.7 years) and 34 healthy controls (HC; mean age 12.3 ± 3.0 years) were consecutively recruited in this Norwegian cross-sectional study. Information about demographics, disease activity, medication history, frequency of tooth brushing and a modified version of the gingival bleeding index (GBI) and the simplified oral hygiene index (OHI-S) was obtained. Microbiome profiling of saliva samples was performed by sequencing of the V1-V3 region of the 16S rRNA gene, coupled with a species-level taxonomy assignment algorithm; QIIME, LEfSe and R-package for Spearman correlation matrix were used for downstream analysis. Results There were no significant differences between JIA and HC in alpha- and beta-diversity. However, differential abundance analysis revealed several taxa to be associated with JIA: TM7-G1, Solobacterium and Mogibacterium at the genus level; and Leptotrichia oral taxon 417, TM7-G1 oral taxon 352 and Capnocytophaga oral taxon 864 among others, at the species level. Haemophilus species, Leptotrichia oral taxon 223, and Bacillus subtilis, were associated with healthy controls. Gemella morbillorum, Leptotrichia sp. oral taxon 498 and Alloprevotella oral taxon 914 correlated positively with the composite juvenile arthritis 10-joint disease activity score (JADAS10), while Campylobacter oral taxon 44 among others, correlated with the number of active joints. Of all microbial markers identified, only Bacillus subtilis and Campylobacter oral taxon 44 maintained false discovery rate (FDR) < 0.1. Conclusions In this exploratory study of salivary oral microbiome we found similar alpha- and beta-diversity among children with JIA and healthy. Several taxa associated with chronic inflammation were found to be associated with JIA and disease activity, which warrants further investigation.
Collapse
Affiliation(s)
- Paula Frid
- Department of ENT, Division of Oral and Maxillofacial Surgery, University Hospital North Norway, Tromsø, Norway.,Public Dental Service Competence Centre of North Norway, Tromsø, Norway.,Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway
| | - Divyashri Baraniya
- Oral Microbiome Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Josefine Halbig
- Public Dental Service Competence Centre of North Norway, Tromsø, Norway.,Department of Clinical Dentistry, UiT the Arctic University of Norway, Tromsø, Norway
| | - Veronika Rypdal
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Nils Thomas Songstad
- Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Annika Rosèn
- Department of Clinical Dentistry, University of Bergen, Bergen, Norway.,Department of Oral and Maxillofacial Surgery, Haukeland University Hospital, Bergen, Norway
| | - Johanna Rykke Berstad
- Department of ENT, Division of Oral and Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Berit Flatø
- Department of Rheumatology and Infectious Diseases, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Rheumatology, Oslo University Hospital, Oslo, Norway
| | - Fadhl Alakwaa
- Department of Computational Medicine and Bioinformatics, University Michigan, Ann Arbor, MI, United States
| | | | - Lena Cetrelli
- Center of Oral Health Services and Research (TkMidt), Trondheim, Norway
| | - Tsute Chen
- Department of Microbiology, Forsyth Institute, Cambridge, MA, United States
| | - Nezar Noor Al-Hebshi
- Oral Microbiome Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Ellen Nordal
- Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.,Department of Pediatrics and Adolescence Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Mohammed Al-Haroni
- Department of Clinical Dentistry, UiT the Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
10
|
Future impacts and trends in treatment of hospital wastewater. CURRENT DEVELOPMENTS IN BIOTECHNOLOGY AND BIOENGINEERING 2020:599-615. [PMCID: PMC7252248 DOI: 10.1016/b978-0-12-819722-6.00017-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The world’s population growth and economic development result in the increased requirement of land, water, and energy. This increased demand leads to the deforestation, loss in biodiversity, imbalance in agriculture and food supply, climate change, and increase in food and travel trade, which result in emergence and reemergence of infectious diseases. This chapter discussed various emerging infectious diseases and their causative agents (Buruli ulcer and Bunyvirus). Furthermore, this chapter further illustrates the emergence of superbugs and the associated threat due to the presence of pharmaceutical compounds in the environment. The prevalence of pharmaceuticals in the environment exerts ecotoxic effects on living organisms and causes thousands of death every year. The threats associated with the pharmaceutical presence in the environment were briefly discussed in this chapter. Finally, this chapter provides the alternative methods to avoid the use of antibiotics and to develop novel treatment technologies (such as Phage therapy) to degrade and remove the pharmaceutical compounds.
Collapse
|