1
|
Tan K, Ransangan J, Tan K, Cheong KL. The impact of climate change on Omega-3 long-chain polyunsaturated fatty acids in bivalves. Crit Rev Food Sci Nutr 2024; 64:11661-11671. [PMID: 37555502 DOI: 10.1080/10408398.2023.2242943] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) have many health benefits to human. Increasing evidence have shown that climate change reduces the availability of plankton n-3 LC-PUFA to primary consumers which potentially reduces the availability of n-3 LC-PUFA to human. Since marine bivalves are an important source of n-3 LC-PUFA for human beings, and bivalve aquaculture completely depends on phytoplankton in ambient water as food, it is important to understand the impact of climate change on the lipid nutritional quality of bivalves. In this study, fatty acid profile of different bivalves (mussels, oysters, clams, scallops and cockles) from different regions (tropical, subtropical and temperate) and time (before 1990, 1991-1995, 1996-2000, 2001-2005, 2006-2010, 2011-2015, 2016-2020) were extracted from published literature to calculate various lipid nutritional quality indicators. The results of this study revealed that the effects of global warming and declines in aragonite saturation state on the lipid content and lipid indices of bivalves are highly dependent on the geographical region and bivalves. In general, global warming has the largest negative impact on the lipid content and indices of temperate bivalves, including decreasing the PUFA/SFA, EPA + DHA and n-3/n-6. However, global warming has a much smaller negative impact on lipid content and lipid indices in other regions. The declines of aragonite saturation state in seawater promotes the accumulation of lipid content in tropical and subtropical bivalves, but it compromised the PUFA/SFA, EPA + DHA and n-3/n-6 of bivalves in all regions. The findings of this study not only fill the knowledge gap of the impact of climate change on the lipid nutritional quality of bivalves, but also provide guidance for the establishment of bivalve aquaculture and fisheries management plans to mitigate the impact of climate change.
Collapse
Affiliation(s)
- Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Julian Ransangan
- Borneo Marine Research Institute, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Centre, Beibu Gulf University, Qinzhou, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
2
|
Song J, Wang Y, Huang L, Peng Y, Tan K, Tan K. The effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173538. [PMID: 38802009 DOI: 10.1016/j.scitotenv.2024.173538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Many researchers have evaluated the fishery carbon sink potential of bivalve aquaculture, with most studies focusing on the Life Cycle Assessment (LCA) of individual bivalves, and there is currently no consensus on whether bivalves are carbon sinks or carbon sources. It is worth noting that most studies have not considered the impact of bivalve aquaculture on ecosystems when evaluating its carbon sink potential. In this context, based on existing literature, this article aims to comprehensively review the effects of bivalve aquaculture on carbon storage in the water column and sediment of aquaculture areas. In general, our findings revealed that moderate and low stocking densities of bivalve aquaculture do not lead to significant changes in the abundance of phytoplankton, but it does indeed alter the phytoplankton community structure from dominated by huge diatom with lower carbon densities to dominated by small phytoplankton with higher carbon densities. Therefore, bivalve aquaculture may increase the total carbon storage in the water column. In addition, bivalve aquaculture also increases the sedimentation rate of suspended particles, increasing the rate of carbon burial, especially in low-energy environment and shallow water areas. The findings of this article fill the knowledge gap of fishery carbon sink in bivalve aquaculture from an ecosystem perspective.
Collapse
Affiliation(s)
- Jingjing Song
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Leiheng Huang
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Ya Peng
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Kianann Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China
| | - Karsoon Tan
- College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Pinglu Canal and Beibu Gulf Coastal Ecosystem Observation and Research Station of Guangxi, Qinzhou, Guangxi, China.
| |
Collapse
|
3
|
Garzke J, Forster I, Graham C, Costalago D, Hunt BPV. Future climate change-related decreases in food quality may affect juvenile Chinook salmon growth and survival. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106171. [PMID: 37716280 DOI: 10.1016/j.marenvres.2023.106171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Global climate change is projected to raise global temperatures by 3.3-5.7 °C by 2100, resulting in changes in species composition, abundance, and nutritional quality of organisms at the base of the marine food web. Predicted increases in prey availability and reductions in prey nutritional quality under climate warming in certain marine systems are expected to impact higher trophic levels, such as fish and humans. There is limited knowledge of the interplay between food quantity and quality under warming, specifically when food availability is high, but quality is low. Here, we conducted an experiment assessing the effects of food quality (fatty acid composition and ratios) on juvenile Chinook salmon's (Oncorhynchus tshawytscha) body and nutritional condition, specifically focusing on RNA:DNA ratio, Fulton's K, growth, mortality and their fatty acid composition. Experimental diets represented three different climate change scenarios with 1) a present-day diet (Euphausia pacifica), 2) a control diet (commercial aquaculture diet), and 3) a predicted Intergovernmental Panel on Climate Change (IPCC) worst-case scenario diet with low essential fatty acid concentrations (IPCC SSP5-8.5). We tested how growth rates, RNA:DNA ratio, Fulton's K index, fatty acid composition and mortality rates in juvenile Chinook salmon compared across diet treatments. Fatty acids were incorporated into the salmon muscle at varying rates but, on average, reflected dietary concentrations. High dietary concentrations of DHA, EPA and high DHA:EPA ratios, under the control and present-day diets, increased fish growth and condition. In contrast, low concentrations of DHA and EPA and low DHA:EPA ratios in the diets under climate change scenario were not compensated for by increased food quantity. This result highlights the importance of considering food quality when assessing fish response to changing ocean conditions.
Collapse
Affiliation(s)
- Jessica Garzke
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Ian Forster
- Pacific Science Enterprise Center, Fisheries and Oceans Canada, 4160 Marine Dr., West Vancouver, BC V7V 1N6, Canada
| | - Caroline Graham
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Costalago
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada; Hakai Institute, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
4
|
Piscoya E, von Dassow P, Aldunate M, Vargas CA. Physical-chemical factors influencing the vertical distribution of phototrophic pico-nanoplankton in the Oxygen Minimum Zone (OMZ) off Northern Chile: The relative influence of low pH/low O 2 conditions. MARINE ENVIRONMENTAL RESEARCH 2022; 180:105710. [PMID: 35932510 DOI: 10.1016/j.marenvres.2022.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
The vertical distribution of phytoplankton is of fundamental importance in the structure, dynamic, and biogeochemical pathways in marine ecosystems. Nevertheless, what are the main factors determining this distribution remains as an open question. Here, we evaluated the relative influence of environmental factors that might control the coexistence and vertical distribution of pico-nanoplankton associated with the OMZ off northern Chile. Our results showed that in the upper layer Synechococcus-like cells were numerically important at all sampling stations. Pico-nano eukaryotes and phototrophic nanoflagellates (PNF) also showed high abundances in the upper layer decreasing in abundance down to the upper oxycline, while only Prochlorococcus showed high abundances under oxycline and within the oxygen-depleted layer. Statistical analyses evidenced that temperature, oxygen, and carbonate chemistry parameters (pH and dissolved inorganic carbon, DIC) influenced significantly the vertical distribution of phototrophic pico-nanoplankton. Additionally, we experimentally-evaluated the combined effect of low pH/low O2 conditions on a nanophytoplankton species, the haptophyte Imantonia sp. Under control conditions (pH = 8.1; O2 = 287.5 μM, light = 169.6 μEm-2s-1), Imantonia sp. in vivo fluorescence increased over fifty times, inducing supersaturated O2 conditions (900 μM) and an increasing pH (8.5), whereas upon an experimental treatment mimicking OMZ conditions (pH = 7.5; O2 = 55.6 μM; light = 169.6 μEm-2s-1), in vivo fluorescence declined dramatically, suggesting that Imantonia sp. did not survive. Although preliminary, our study provides evidence about the role of low pH/low O2 conditions on the vertical distribution of nanophytoplankton, which deserve future attention through both fieldwork and more extended experimental experiences.
Collapse
Affiliation(s)
- Edson Piscoya
- Graduate Program in Oceanography, Department of Oceanography, Universidad de Concepción, Casilla 160-C, Concepcion, Chile; Millennium Institute of Oceanography (IMO), Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCALab), Department of Aquatic Systems, Faculty of Environmental Sciences, Universidad de Concepción, Concepcion, Chile
| | - Peter von Dassow
- Millennium Institute of Oceanography (IMO), Concepción, Chile; Department of Ecology, P. Universidad Católica de Chile, Alameda 340, Santiago, Chile; Research Fellow, Stazione Zoologica Anton Dohrn Napoli, Naples, Italy
| | - Montserrat Aldunate
- Millennium Institute of Oceanography (IMO), Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCALab), Department of Aquatic Systems, Faculty of Environmental Sciences, Universidad de Concepción, Concepcion, Chile
| | - Cristian A Vargas
- Millennium Institute of Oceanography (IMO), Concepción, Chile; Coastal Ecosystems & Global Environmental Change Lab (ECCALab), Department of Aquatic Systems, Faculty of Environmental Sciences, Universidad de Concepción, Concepcion, Chile; Coastal Socio-ecological Millennium Institute (SECOS), P. Universidad Católica de Chile, Chile.
| |
Collapse
|
5
|
Shalders TC, Champion C, Coleman MA, Benkendorff K. The nutritional and sensory quality of seafood in a changing climate. MARINE ENVIRONMENTAL RESEARCH 2022; 176:105590. [PMID: 35255319 DOI: 10.1016/j.marenvres.2022.105590] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Climate change is impacting living marine resources, whilst concomitantly, global reliance on seafood as a source of nutrition is increasing. Here we review an emerging research frontier, identifying significant impacts of climate-driven environmental change on the nutritional and sensory quality of seafood, and implications for human health. We highlight that changing ocean temperature, pH and salinity can lead to reductions in seafood macro and micronutrients, including essential nutrients such as protein and lipids. However, the nutritional quality of seafood appears to be more resilient in taxa that inhabit naturally variable environments such as estuaries and shallow near-coastal habitats. We develop criteria for assessing confidence in categorising the nutritional quality of seafood as vulnerable or resilient to climate change. The application of this criteria to a subset of seafood nutritional studies demonstrates confidence levels are generally low and could be improved by more realistic experimental designs and research collaboration. We highlight knowledge gaps to guide future research in this emerging field.
Collapse
Affiliation(s)
- Tanika C Shalders
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia.
| | - Curtis Champion
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Melinda A Coleman
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia; Fisheries Research, NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, New South Wales, Australia
| | - Kirsten Benkendorff
- National Marine Science Centre, Southern Cross University, Faculty of Science and Engineering, Coffs Harbour, New South Wales, Australia
| |
Collapse
|
6
|
Tan K, Zhang H, Zheng H. Climate change and n-3 LC-PUFA availability. Prog Lipid Res 2022; 86:101161. [PMID: 35301036 DOI: 10.1016/j.plipres.2022.101161] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 10/18/2022]
Abstract
Omega-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFA) are essential fatty acids for the growth, development and survival of virtually all organisms. There is increasing evidence that anthropogenic climate change has a direct and indirect impact on the availability of natural n-3 LC-PUFA. However, this information is fragmented and not well organized. Therefore, this article reviewed published data from laboratory experiments, field experiments and model simulations to reveal the impact of climate change on the global supply of natural n-3 LC-PUFA and how this will limit the availability of n-3 LC-PUFA in the future food web. In general, climate change can significantly reduce the availability of natural n-3 LC-PUFA in grazing food webs in the following ways: 1) decrease the total biomass of phytoplankton and shift the plankton community structure to a smaller size, which also reduce the biomass of animals in higher trophics; 2) reduce the n-3 LC-PUFA content and/or quality (n-3: n-6 ratio) of all marine organisms; 3) reduce the transfer efficiency of n-3 LC-PUFA in grazing food web. In addition, as an anthropogenic climate adaptation measure, this review also proposed some alternative sources of n-3 LC-PUFA and determined the direction of future research. The information in this article is very useful for providing a critical analysis of the impact of climate change on the supply of natural n-3 LC-PUFA. Such information will aid to establish climate adaptation or management measures, and determine the direction of future research.
Collapse
Affiliation(s)
- Karsoon Tan
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Hongkuan Zhang
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Huaiping Zheng
- Key Laboratory of Marine Biotechnology of Guangdong Province, Marine Sciences Institute, Shantou University, Shantou 515063, China; Mariculture Research Center for Subtropical Shellfish & Algae of Guangdong Province, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| |
Collapse
|
7
|
Lamarre J, Cheema SK, Robertson GJ, Wilson DR. Omega-3 fatty acids accelerate fledging in an avian marine predator: a potential role of cognition. J Exp Biol 2021; 224:jeb.235929. [PMID: 33462136 PMCID: PMC7929930 DOI: 10.1242/jeb.235929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/12/2021] [Indexed: 12/16/2022]
Abstract
Consuming omega-3 fatty acids (n-3 LCPUFAs) during development improves cognition in mammals, but the effect remains untested in other taxa. In aquatic ecosystems, n-3 LCPUFAs are produced by phytoplankton and bioaccumulate in the food web. Alarmingly, the warming and acidification of aquatic systems caused by climate change impair n-3 LCPUFA production, with an anticipated decrease of 80% by the year 2100. We tested whether n-3 LCPUFA consumption affects the physiology, morphology, behaviour and cognition of the chicks of a top marine predator, the ring-billed gull. Using a colony with little access to n-3 LCPUFAs, we supplemented siblings from 22 fenced nests with contrasting treatments from hatching until fledging; one sibling received n-3 LCPUFA-rich fish oil and the other, a control sucrose solution without n-3 LCPUFAs. Halfway through the nestling period, half the chicks receiving fish oil were switched to the sucrose solution to test whether n-3 LCPUFA intake remains crucial past the main growth phase (chronic versus transient treatments). Upon fledging, n-3 LCPUFAs were elevated in the blood and brains of chicks receiving the chronic treatment, but were comparable to control levels among those receiving the transient treatment. Across the entire sample, chicks with elevated n-3 LCPUFAs in their tissues fledged earlier despite their morphology and activity levels being unrelated to fledging age. Fledging required chicks to escape fences encircling their nest. We therefore interpret fledging age as a possible indicator of cognition, with chicks with improved cognition fledging earlier. These results provide insight into whether declining dietary n-3 LCPUFAs will compromise top predators' problem-solving skills, and thus their ability to survive in a rapidly changing world.
Collapse
Affiliation(s)
- Jessika Lamarre
- Cognitive and Behavioural Ecology Program, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Sukhinder Kaur Cheema
- Department of Biochemistry, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| | - Gregory J Robertson
- Wildlife Research Division, Environment and Climate Change Canada, Mount Pearl, NL, Canada, A1N 4T3
| | - David R Wilson
- Department of Psychology, Memorial University of Newfoundland, St John's, NL, Canada, A1B 3X9
| |
Collapse
|
8
|
Lee YH, Jeong CB, Wang M, Hagiwara A, Lee JS. Transgenerational acclimation to changes in ocean acidification in marine invertebrates. MARINE POLLUTION BULLETIN 2020; 153:111006. [PMID: 32275552 DOI: 10.1016/j.marpolbul.2020.111006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/11/2023]
Abstract
The rapid pace of increasing oceanic acidity poses a major threat to the fitness of the marine ecosystem, as well as the buffering capacity of the oceans. Disruption in chemical equilibrium in the ocean leads to decreased carbonate ion precipitation, resulting in calcium carbonate saturation. If these trends continue, calcifying invertebrates will experience difficultly maintaining their calcium carbonate exoskeleton and shells. Because malfunction of exoskeleton formation by calcifiers in response to ocean acidification (OA) will have non-canonical biological cascading results in the marine ecosystem, many studies have investigated the direct and indirect consequences of OA on ecosystem- and physiology-related traits of marine invertebrates. Considering that evolutionary adaptation to OA depends on the duration of OA effects, long-term exposure to OA stress over multi-generations may result in adaptive mechanisms that increase the potential fitness of marine invertebrates in response to OA. Transgenerational studies have the potential to elucidate the roles of acclimation, carryover effects, and evolutionary adaptation within and over generations in response to OA. In particular, understanding mechanisms of transgenerational responses (e.g., antioxidant responses, metabolic changes, epigenetic reprogramming) to changes in OA will enhance our understanding of marine invertebrate in response to rapid climate change.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea; Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Minghua Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment & Ecology, Xiamen University, Xiamen 36110, China; Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
9
|
Choi SJ, Savagatrup S, Kim Y, Lang JH, Swager TM. Precision pH Sensor Based on WO 3 Nanofiber-Polymer Composites and Differential Amplification. ACS Sens 2019; 4:2593-2598. [PMID: 31573180 DOI: 10.1021/acssensors.9b01579] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We report a new type of potentiometric pH sensor with sensitivity exceeding the theoretical Nernstian behavior (-59.1 mV/pH). For the pH-sensitive electrode, 1D tungsten oxide (WO3) nanofibers (NFs) were prepared to obtain large surface area and high porosity. These NFs were then stabilized in a reactive porous chloromethylated triptycene poly(ether sulfone) (Cl-TPES) binder, to facilitate proton diffusion into the polymer membrane. The measurements were performed with a differential amplifier using matched MOSFETs and providing a 10-fold amplified signal over a simple potentiometric determination. A high pH sensitivity of -377.5 mV/pH and a linearity of 0.9847 were achieved over the pH range of 6.90-8.94. Improved signal-to-noise ratios with large EMF signal changes of 175 mV were obtained in artificial seawater ranging pH 8.07-7.64 (ΔpH = 0.43), which demonstrates a practical application for pH monitoring in ocean environments.
Collapse
|