1
|
Murphy CM, Weller DL, Bardsley CA, Ingram DT, Chen Y, Oryang D, Rideout SL, Strawn LK. Survival of Twelve Pathogenic and Generic Escherichia coli Strains in Agricultural Soils as Influenced by Strain, Soil Type, Irrigation Regimen, and Soil Amendment. J Food Prot 2024; 87:100343. [PMID: 39147099 PMCID: PMC11537252 DOI: 10.1016/j.jfp.2024.100343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Biological soil amendments of animal origin (BSAAO) play an important role in agriculture but can introduce pathogens into soils. Pathogen survival in soil is widely studied, but data are needed on the impacts of strain variability and field management practices. This study monitored the population of 12 Escherichia coli strains (generic, O157, and non-O157) in soils while evaluating the interactions of soil type, irrigation regimen, and soil amendment in three independent, greenhouse-based, randomized complete block design trials. Each E. coli strain (4-5 log10 CFU/g) was homogenized in bovine manure amended or nonamended sandy-loam or clay-loam soil. E. coli was enumerated in 25 g samples on 0, 0.167 (4 h), 1, 2, 4, 7, 10, 14, 21, 28, 56, 84, 112, 168, 210, 252, and 336 days postinoculation (dpi). Regression analyses were developed to understand the impact of strain, soil type, irrigation regimen, and soil amendment on inactivation rates. E. coli survived for 112 to 336 dpi depending on the treatment combination. Pathogenic and generic E. coli survived 46 days [95% Confidence interval (CI) = 20.85, 64.72; p = 0.001] longer in soils irrigated weekly compared to daily and 146 days (CI = 114.50, 184.50; p < 0.001) longer in amended soils compared to unamended soils. Pathogenic E. coli strains were nondetectable 69 days (CI = 39.58, 98.66, p = 0.015) earlier than generic E. coli strains. E. coli inactivation rates demonstrated a tri-phasic pattern, with breakpoints at 26 dpi (CI = 22.3, 29.2) and 130 dpi (CI = 121.0, 138.1). The study findings demonstrate that using bovine manure as BSAAO in soil enhances E. coli survival, regardless of strain, and adequate food safety practices are needed to reduce the risk of crop contamination. The findings of this study contribute data on E. coli concentrations in amended soils to assist stakeholders and regulators in making risk-based decisions on time intervals between the application of BSAAO and the production and harvest of fruits and vegetables.
Collapse
Affiliation(s)
- Claire M Murphy
- School of Food Science, Washington State University - Irrigated Agriculture Research and Extension Center, Prosser, Washington, USA; Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Daniel L Weller
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - Cameron A Bardsley
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | - David T Ingram
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Yuhuan Chen
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - David Oryang
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - Steven L Rideout
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | - Laura K Strawn
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
2
|
Pandey P, Gaa ME, Huo J, Okada Y, Lee KY, Giat S, Li X, Zhang R, Pandey P. Determining the prevalence of Escherichia coli, Salmonella, and shiga toxin-producing Escherichia coli in manure of dairy lagoons. J Appl Microbiol 2024; 135:lxae103. [PMID: 38664008 DOI: 10.1093/jambio/lxae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/11/2024] [Accepted: 04/20/2024] [Indexed: 06/04/2024]
Abstract
AIM The aim of this study was to determine the prevalence of microbial pathogens in manure of dairy lagoons in California. METHODS AND RESULTS To determine pathogens in dairy manure stored in anaerobic lagoons of dairy farm, an extensive field study was conducted across California to sample manure from 20 dairy farms. Samples were analyzed to determine the prevalence of indicator Escherichia coli, Shiga toxin producing E. coli (STEC), Salmonella, and E. coli O157: H7. To test the E. coli, STEC, and Salmonella, we used agar culture-based method followed by polymerase chain reaction (PCR) method. In addition, a real- time PCR based method was used to determine the presence of E coli O157: H7. Study demonstrated that the prevalence of Salmonella in manure sample is lower than E. coli. The presence of Salmonella was found in 2.26% of the samples, and both the culture-based and PCR methods yielded comparable outcomes in detecting Salmonella. Moreover, ∼11.30% of the total samples out of the 177 were identified as positive for STEC by qPCR. CONCLUSION These findings demonstrate that indicator E. coli are abundantly present in anaerobic lagoons. However, the presence of STEC, and Salmonella is substantially low.
Collapse
Affiliation(s)
- Prachi Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Megan Elise Gaa
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| | - Jiang Huo
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| | - Yu Okada
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| | - Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| | - Sharon Giat
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
| | - Ruihong Zhang
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Pramod Pandey
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, United States
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| |
Collapse
|
3
|
Baker CA, Gutierrez A, Bell R, Schneider KR. Draft Genome Sequences of 110 Shiga Toxin-Producing Escherichia coli Isolates Collected from Bovine Manure Samples in the Southern United States. Microbiol Resour Announc 2023; 12:e0117722. [PMID: 36920193 PMCID: PMC10112231 DOI: 10.1128/mra.01177-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/16/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) bacteria continue to impact the food industry. Environmental sampling of potential sources of contamination is important to aid epidemiologic efforts in tracking foodborne illnesses throughout the United States. Here, the draft genome sequences of 110 STEC isolates from bovine manure collected in Florida and Texas are reported.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| | - Alan Gutierrez
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Rebecca Bell
- Center for Food Safety and Applied Nutrition, Division of Microbiology, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Wei X, Aggrawal A, Bond RF, Atwill ER. Low to Zero Concentrations of Airborne Bacterial Pathogens and Indicator E. coli in Proximity to Beef Cattle Feedlots in Imperial Valley, California. Microorganisms 2023; 11:microorganisms11020411. [PMID: 36838376 PMCID: PMC9961607 DOI: 10.3390/microorganisms11020411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
This study characterized the effect of distance from beef cattle feedlots, environmental factors, and climate on the occurrence of airborne bacterial indicators and pathogens. Three hundred air samples were collected over 6 months from five feedlots, with each air sample comprising 6000 L of air. Air samples were processed onto TSB-enriched air filters, qPCR-screened, and then qPCR-confirmed for suspect positive colonies of E. coli O157, non-O157-Shiga-toxin-producing E. coli (STEC), Salmonella, and E. coli. Direct enumeration of E. coli was also collected. Although no bacterial pathogens were qPCR-confirmed for the 300 samples, E. coli was detected in 16.7% (50/300) of samples, with an overall mean concentration of 0.17 CFU/6000 L air. Logistic regression analyses revealed a higher odds of E. coli for samples in close proximity compared to >610 m (2000 ft) distance from feedlots, along with significant associations with meteorological factors, sampling hour of day, and the presence of a dust-generating activity such as plowing a field or nearby vehicular traffic. The lack of bacterial pathogen detection suggests airborne deposition from nearby feedlots may not be a significant mechanism of leafy green bacterial pathogen contamination; the result of our study provides data to inform future revisions of produce-safety guidance.
Collapse
|
5
|
Dunn LL, Sharma V, Chapin TK, Friedrich LM, Larson CC, Rodrigues C, Jay-Russell M, Schneider KR, Danyluk MD. The prevalence and concentration of Salmonella enterica in poultry litter in the southern United States. PLoS One 2022; 17:e0268231. [PMID: 35617326 PMCID: PMC9135211 DOI: 10.1371/journal.pone.0268231] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/22/2022] [Indexed: 02/03/2023] Open
Abstract
Poultry litter is applied to crop production land in the southern United States as a waste management strategy as it is a nitrogen-rich fertilizer and plentiful throughout the region. While litter is a known reservoir for human enteric pathogens including Salmonella enterica, little is known regarding pathogen prevalence, concentration, and common serotypes within the material. Litter from thirteen farms across four southern states was examined for Salmonella. Samples (n = 490) from six of the thirteen (46.2%) farms tested positive. Thirty-three samples out of 490 (6.7%) were Salmonella positive. Salmonella was ca. 95% less likely to be collected from stacked litter piles than from the poultry house floor or pasture, and every day increase in litter age reduced the likelihood of recovering Salmonella by 5.1%. When present, concentrations of Salmonella in contaminated poultry litter were variable, ranging from <0.45 to >280,000 MPN/g. The most prevalent serotypes found were Kentucky (45.5%), Kiambu (18.2%), and Michigan (12.1%). Salmonella Kentucky also had the greatest distribution and was found on 4 of the 6 (66.7%) positive farms. Results from this survey demonstrated that Salmonella prevalence and concentration in poultry litter is highly variable, and good agricultural practices are critical to safely use poultry litter as a soil amendment on fresh produce fields.
Collapse
Affiliation(s)
- Laurel L. Dunn
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States of America
- * E-mail:
| | - Vijendra Sharma
- Food Science and Human Nutrition Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Travis K. Chapin
- Food Science and Human Nutrition Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Loretta M. Friedrich
- Food Science and Human Nutrition Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| | - Colleen C. Larson
- Okeechobee County Cooperative Extension Service, Institute of Food and Human Nutrition University of Florida, Okeechobee, FL, United States of America
| | - Camila Rodrigues
- Department of Food Science and Technology, University of Georgia, Athens, GA, United States of America
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, Davis, CA, United States of America
| | - Keith R. Schneider
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, United States of America
| | - Michelle D. Danyluk
- Food Science and Human Nutrition Department, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States of America
| |
Collapse
|
6
|
Ramos TDM, Jay-Russell MT, Millner PD, Baron JN, Stover J, Pagliari P, Hutchinson M, Lilley J, Rowley N, Haghani V, Aminabadi P, Kenney A, Hashem F, Martínez-López B, Bihn EA, Clements DP, Shade JB, Sciligo AR, Pires AFA. Survival and Persistence of Foodborne Pathogens in Manure-Amended Soils and Prevalence on Fresh Produce in Certified Organic Farms: A Multi-Regional Baseline Analysis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.674767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Biological soil amendments of animal origin (BSAAOs), including untreated (e.g., raw or aged manure, or incompletely composted manure) and treated animal products (e.g., compost), are used for crop production and as part of soil health management. Application of BSAAO's must be done cautiously, as raw manure commonly contains enteric foodborne pathogens that can potentially contaminate edible produce that may be consumed without cooking. USDA National Organic Program (NOP) certified production systems follow the 90-or 120-day interval standards between applications of untreated BSAAOs and crop harvest, depending on whether the edible portions of the crops are in indirect or direct contact with the soil, respectively. This study was conducted to evaluate the survival of four foodborne pathogens in soils amended with BSAAOs and to examine the potential for bacterial transfer to fresh produce harvested from USDA NOP certified organic farms (19) from four states. Only 0.4% (2/527) of produce samples were positive for L. monocytogenes. Among the untreated manure and compost samples, 18.0% (42/233) were positive for at least one of the tested and culturable bacterial foodborne pathogens. The prevalence of non-O157 STEC and Salmonella in untreated manure was substantially > that of E. coli O157:H7 and L. monocytogenes. Of the 2,461 soil samples analyzed in this study, 12.9% (318) were positive for at least one pathogen. In soil amended with untreated manure, the prevalence of non-O157 STEC [7.7% (190) and L. monocytogenes (5.0% (122), was > that of Salmonella (1.1% (26)] or E. coli O157 [0.04% (1)]. Foodborne pathogen prevalence in the soil peaked after manure application and decreased significantly 30 days post-application (dpa). However, non-O157 STEC and L. monocytogenes were recovered from soil samples after 90 and 120 dpa. Results indicate that produce contamination by tested foodborne pathogens was infrequent, but these data should not be generalized outside of the specific wait-time regulations for organic crop production and the farms studied. Moreover, other sources of contamination, e.g., irrigation, wildlife, environmental conditions, cropping and management practices, should be considered. This study also provides multi-regional baseline data relating to current NOP application intervals and development of potential risk mitigation strategies to reduce pathogen persistence in soils amended with BSAAOs. These findings contribute to filling critical data gaps concerning occurrence of fecal pathogens in NOP-certified farming systems used for production of fresh produce in different US regions.
Collapse
|
7
|
Potential Zoonotic Pathovars of Diarrheagenic Escherichia coli Detected in Lambs for Human Consumption from Tierra del Fuego, Argentina. Microorganisms 2021; 9:microorganisms9081710. [PMID: 34442790 PMCID: PMC8401499 DOI: 10.3390/microorganisms9081710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/03/2023] Open
Abstract
Diarrheagenic Escherichia coli (DEC) pathovars impact childhood health. The southern region of Argentina shows the highest incidence of hemolytic uremic syndrome (HUS) in children of the country. The big island of Tierra del Fuego (TDF) in Argentina registered an incidence of five cases/100,000 inhabitants of HUS in 2019. This work aimed to establish the prevalence of STEC, EPEC, and EAEC in lambs slaughtered in abattoirs from TDF as well as to characterize the phenotypes and the genotypes of the isolated pathogens. The prevalence was 26.6% for stx+, 5.7% for eae+, and 0.27% for aagR+/aaiC+. Twelve STEC isolates were obtained and belonged to the following serotypes: O70:HNT, O81:H21, O81:HNT, O102:H6, O128ab:H2, O174:H8, and O174:HNT. Their genotypic profiles were stx1c (2), stx1c/ehxA (3), stx2b/ehxA (1), stx1c/stx2b (2), and stx1c/stx2/ehxA (4). Six EPEC isolates were obtained and corresponded to five serotypes: O2:H40, O32:H8, O56:H6, O108:H21, and O177:H25. All the EPEC isolates were bfpA- and two were ehxA+. By XbaI-PFGE of 17 isolates, two clusters were identified. By antimicrobial susceptibility tests, 8/12 STEC and 5/6 EPEC were resistant to at least one antibiotic. This work provides new data to understand the ecology of DEC in TDF and confirms that ovine are an important carrier of these pathogens in the region.
Collapse
|
8
|
Jenkins M, Ahmed S, Barnes AN. A systematic review of waterborne and water-related disease in animal populations of Florida from 1999-2019. PLoS One 2021; 16:e0255025. [PMID: 34324547 PMCID: PMC8321142 DOI: 10.1371/journal.pone.0255025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Florida's waters are a reservoir for a host of pathogens and toxins. Many of these microorganisms cause water-related diseases in people that are reportable to the Florida Department of Health. Our objective in this review was to ascertain which water-related pathogens and toxins of public health importance have been found in animal populations in Florida over the last twenty years. METHODS Nineteen databases were searched, including PubMed and Web of Science Core Collection, using keywords and search terms for the waterborne diseases, water-related vector-borne diseases, and water-based toxins reportable to the Florida Department of Health. For inclusion, peer-reviewed journal articles were to be written in English, published between January 1, 1999 and December 31, 2019, and contain primary research findings documenting at least one of the water-related pathogens or toxins of interest in an animal population within Florida during this same time frame. RESULTS Of over eight thousand initial search results, 65 studies were included for final analysis. The most common animal types implicated in the diseases of interest included marine mammals, fish and shellfish, wild birds, and livestock. Toxins or pathogens most often associated with these animals included toxin-producer Karenia brevis, vibriosis, Escherichia coli, and Salmonellosis. DISCUSSION/CONCLUSION Findings from this review elucidate the water-related disease-causing pathogens and toxins which have been reported within animal populations in recent Florida history. As most of these diseases are zoonotic, our results suggest a One Health approach is necessary to support and maintain healthy water systems throughout the state of Florida for the protection of both human and animal populations.
Collapse
Affiliation(s)
- Meg Jenkins
- Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America
| | - Sabrina Ahmed
- Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America
| | - Amber N. Barnes
- Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America
| |
Collapse
|
9
|
Bozkurt H, Bell T, van Ogtrop F, Phan-Thien KY, McConchie R. Assessment of microbial risk during Australian industrial practices for Escherichia coli O157:H7 in fresh cut-cos lettuce: A stochastic quantitative approach. Food Microbiol 2021; 95:103691. [PMID: 33397620 DOI: 10.1016/j.fm.2020.103691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 11/21/2022]
Abstract
Escherichia coli O157:H7 risk associated with the consumption of fresh cut-cos lettuce during Australian industrial practices was assessed. A probabilistic risk assessment model was developed and implemented in the @Risk software by using the Monte Carlo simulation technique with 1,000,000 iterations. Australian preharvest practices yielded predicted annual mean E. coli O157:H7 levels from 0.2 to -3.4 log CFU/g and prevalence values ranged from 2 to 6.4%. While exclusion of solar radiation from the baseline model yielded a significant increase in concentration of E. coli O157:H7 (-5.2 -log fold), drip irrigation usage, exclusion of manure amended soil and rainfall reduced E. coli O157:H7 levels by 7.4, 6.5, and 4.3-log fold, respectively. The microbial quality of irrigation water and irrigation type both had a significant effect on E. coli O157:H7 concentrations at harvest (p < 0.05). The probability of illness due to consumption of E. coli O157:H7 contaminated fresh cut-cos lettuce when water washing interventions were introduced into the processing module, was reduced by 1.4-2.7-log fold (p < 0.05). This study provides a robust basis for assessment of risk associated with E. coli O157:H7 contamination on fresh cut-cos lettuce for industrial practices and will assist the leafy green industry and food safety authorities in Australia to identify potential risk management strategies.
Collapse
Affiliation(s)
- Hayriye Bozkurt
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW, 2006, Australia.
| | - Tina Bell
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| | - Floris van Ogtrop
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| | - Kim-Yen Phan-Thien
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| | - Robyn McConchie
- ARC Industrial Transformation Training Centre for Food Safety in the Fresh Produce Industry, Sydney Institute of Agriculture, Faculty of Science, The University of Sydney, NSW, 2006, Australia
| |
Collapse
|
10
|
Baker CA, De J, Schneider KR. Influence of soil microbes on Escherichia coli O157:H7 survival in soil rinse and artificial soil. J Appl Microbiol 2021; 131:1531-1538. [PMID: 33583119 DOI: 10.1111/jam.15039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 02/10/2021] [Indexed: 11/27/2022]
Abstract
AIMS This research investigated the influence of soil microbiota on Escherichia coli O157:H7 survival in soil rinse and artificial soil. Additionally, the influence of selected soil bacteria on E. coli O157:H7 in soil environments was determined. METHODS AND RESULTS Escherichia coli O157:H7 counts (log CFU per ml or g-1 ) were determined by spread plating: (i) artificial soil amended with soil rinse (filter-sterilized and unfiltered) at 30°C; (ii) unfiltered soil rinse (50 ml) treated with cycloheximide (200 μg ml-1 ), vancomycin (40 μg ml-1 ), heat (80°C, 15 min) and no treatment (control) for 7 days at 30°C and (iii) filtered soil rinse with selected soil bacterial isolates over 7 days. There was a significant difference (P = 0·027) in E. coli O157:H7 counts after 35 days between artificial soils amended with filtered (4·45 ± 0·29) and non-filtered (1·83 ± 0·33) soil rinse. There were significant differences (P < 0·05) in E. coli O157:H7 counts after 3 days of incubation between soil rinse treatments (heat (7·04 ± 0·03), cycloheximide (6·94 ± 0·05), vancomycin (4·26 ± 0·98) and control (5·00 ± 0·93)). Lastly, a significant difference (P < 0·05) in E. coli O157:H7 counts was observed after 3 days of incubation at 30°C in filtered soil rinse when incubated with Paenibacillus alvei versus other soil bacterial isolates evaluated. CONCLUSIONS Soil microbiota isolated from Florida sandy soil influenced E. coli O157:H7 survival. Specifically, P. alvei reduced E. coli O157:H7 by over 3 log CFU per ml after 3 days of incubation at 30°C in filtered soil rinse. SIGNIFICANCE AND IMPACT OF THE STUDY This research identified soil bacterial isolates that may reduce E. coli O157:H7 in the soil environment and be used in future biocontrol applications.
Collapse
Affiliation(s)
- C A Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - J De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| | - K R Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, USA
| |
Collapse
|
11
|
Baker CA, De J, Schneider KR. Escherichia coli O157 survival in liquid culture and artificial soil microcosms with variable pH, humic acid and clay content. J Appl Microbiol 2020; 130:416-423. [PMID: 32633002 DOI: 10.1111/jam.14775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/14/2020] [Accepted: 06/27/2020] [Indexed: 11/29/2022]
Abstract
AIMS This research was performed to investigate the influence of clay and humic acid on Escherichia coli O157 survival in model soils. Additionally, the influence of pH and humic acid on E. coli O157 in liquid culture was investigated. METHODS AND RESULTS Artificial soil microcosms were prepared with sand, kaolinite, bentonite and humic acid. Artificial soil microcosms pH was adjusted (6·0-7·0) with aluminium sulphate before E. coli O157 inoculation. After 56 days of incubation at 30°C, significant differences in E. coli O157 log CFU per gram were observed between 0 and 1000 ppm (P < 0·0001) and 0 and 5000 ppm (P < 0·0001) humic acid in 1·5% clay soils, but not in 7·5 or 15% clay soils. Significant differences (P < 0·05) in E. coli O157 log CFU per ml were observed in liquid culture influenced by humic acid concentrations after 8 h at 37°C. CONCLUSIONS The developed model soils support E. coli O157 populations over 28 days, and higher clay soils may aid in E. coli O157 survival. SIGNIFICANCE AND IMPACT OF THE STUDY These results provide insights into physicochemical properties of soil that may influence E. coli O157 in the environment and help explain E. coli O157 survival in various soils and geographical regions.
Collapse
Affiliation(s)
- C A Baker
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - J De
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - K R Schneider
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| |
Collapse
|
12
|
Baker CA, Lee S, De J, Jeong KC, Schneider KR. Survival of Escherichia coli O157 in autoclaved and natural sandy soil mesocosms. PLoS One 2020; 15:e0234562. [PMID: 32525952 PMCID: PMC7289397 DOI: 10.1371/journal.pone.0234562] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/28/2020] [Indexed: 01/14/2023] Open
Abstract
While the soil microbiome may influence pathogen survival, determining the major contributors that reduce pathogen survival is inconclusive. This research was performed to determine the survival of E. coli O157 in autoclaved and natural (unautoclaved) sandy soils. Soils were inoculated with three different E. coli O157 strains (stx1+/stx2+, stx1-/stx2-, and stx1-/stx2+), and enumerated until extinction at 30°C. There was a significant difference in the survival of E. coli O157 based on soil treatment (autoclaved versus natural) at 30°C on days 1 (P = 0.00022), 3, (P = 2.53e-14), 7 (P = 5.59e-16), 14 (P = 1.072e-12), 30 (P = 7.18e-9), and 56 (P = 0.00029), with greater survival in autoclaved soils. The time to extinction (two consecutive negative enrichments) for all three strains was 169 and 84 days for autoclaved and natural soils, respectively. A separate E. coli O157 trial supplemented with 16S rRNA gene sequencing of the soil microbiome was performed at 15°C and 30°C on days 0, 7, 14, and 28 for each soil treatment. Greater species richness (Chao1, P = 2.2e-16) and diversity (Shannon, P = 2.2e-16) was observed in natural soils in comparison with autoclaved soils. Weighted UniFrac (beta-diversity) showed a clear distinction between soil treatments (P = 0.001). The greatest reduction of E. coli O157 was observed in natural soils at 30°C, and several bacterial taxa positively correlated (relative abundance) with time (day 0 to 28) in these soils (P < 0.05), suggesting that the presence of those bacteria might cause the reduction of E. coli O157. Taken together, a clear distinction in E. coli O157 survival, was observed between autoclaved and natural soils along with corresponding differences in microbial diversity in soil treatments. This research provides further insights into the bacterial taxa that may influence E. coli O157 in soils.
Collapse
Affiliation(s)
- Christopher A. Baker
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| | - Shinyoung Lee
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Jaysankar De
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
| | - Kwangcheol C. Jeong
- Department of Animal Sciences, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States of America
| | - Keith R. Schneider
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| |
Collapse
|
13
|
Single-Cell-Based Digital PCR Detection and Association of Shiga Toxin-Producing Escherichia coli Serogroups and Major Virulence Genes. J Clin Microbiol 2020; 58:JCM.01684-19. [PMID: 31896667 DOI: 10.1128/jcm.01684-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/13/2019] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli serogroups O157, O26, O45, O103, O111, O121, and O145, when carrying major virulence genes, the Shiga toxin genes stx 1 and stx 2 and the intimin gene eae, are important foodborne pathogens. They are referred to as the "top 7" Shiga toxin-producing E. coli (STEC) serogroups and were declared by the USDA as adulterants to human health. Since top 7 serogroup-positive cattle feces and ground beef can also contain nonadulterant E. coli strains, regular PCR cannot confirm whether the virulence genes are carried by adulterant or nonadulterant E. coli serogroups. Thus, traditional gold-standard STEC detection requires bacterial isolation and characterization, which are not compatible with high-throughput settings and often take a week to obtain a definitive result. In this study, we demonstrated that the partition-based multichannel digital PCR (dPCR) system can be used to detect and associate the E. coli serogroup-specific gene with major virulence genes and developed a single-cell-based dPCR approach for rapid (within 1 day) and accurate detection and confirmation of major STEC serogroups in high-throughput settings. Major virulence genes carried by each of the top 7 STEC serogroups were detected by dPCR with appropriately diluted intact bacterial cells from pure cultures, culture-spiked cattle feces, and culture-spiked ground beef. Furthermore, from 100 randomly collected, naturally shed cattle fecal samples, 3 O103 strains carrying eae and 2 O45 strains carrying stx 1 were identified by this dPCR assay and verified by the traditional isolation method. This novel and rapid dPCR assay is a culture-independent, high-throughput, accurate, and sensitive method for STEC detection and confirmation.
Collapse
|
14
|
Factors Impacting the Prevalence of Foodborne Pathogens in Agricultural Water Sources in the Southeastern United States. WATER 2019. [DOI: 10.3390/w12010051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Surface water poses a great risk to fruit and vegetable crops when contaminated by foodborne pathogens. Several factors impact the microbial quality of surface waters and increase the risk of produce contamination. Therefore, evaluating the factors associated with the prevalence of pathogenic microorganisms in agricultural water sources is critical to determine and establish preventive actions that may minimize the incidence of foodborne outbreaks associated with contaminated production water. In the Southeastern U.S. environmental factors such as rainfall, temperature, and seasonal variations have been associated with the prevalence of pathogens or microbial indicators of fecal contamination in water. Also, the geographical location of the irrigation sources as well as surrounding activities and land use play an important role on the survival and prevalence of pathogenic bacteria. Therefore, these factors may be determinants useful in the evaluation of production water quality and may help to preemptively identify scenarios or hazards associated with the incidence of foodborne pathogenic microorganisms.
Collapse
|