1
|
Sghedoni R, Origgi D, Cucurachi N, Minischetti GC, Alio D, Savini G, Botta F, Marzi S, Aiello M, Rancati T, Cusumano D, Politi LS, Didonna V, Massafra R, Petrillo A, Esposito A, Imparato S, Anemoni L, Bortolotto C, Preda L, Boldrini L. Stability of radiomic features in magnetic resonance imaging of the female pelvis: A multicentre phantom study. Phys Med 2025; 130:104895. [PMID: 39793255 DOI: 10.1016/j.ejmp.2025.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/18/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Affiliation(s)
- Roberto Sghedoni
- Medical Physics Unit, Azienda USL - IRCCS di Reggio Emilia, Viale Risorgimento 80, Reggio Emilia, Italy.
| | - Daniela Origgi
- Medical Physics Unit, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milano, Italy
| | - Noemi Cucurachi
- Medical Physics Unit, Azienda USL - IRCCS di Reggio Emilia, Viale Risorgimento 80, Reggio Emilia, Italy
| | - Giuseppe Castiglioni Minischetti
- Medical Physics Unit, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milano, Italy; School of Medical Physics, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Davide Alio
- Medical Physics Unit, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milano, Italy; School of Medical Physics, University of Milan, Via Celoria 16, 20133 Milan, Italy
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca Botta
- Medical Physics Unit, IEO, European Institute of Oncology, IRCCS, Via Ripamonti 435, Milano, Italy
| | - Simona Marzi
- Medical Physics Laboratory, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Roma, Italy
| | - Marco Aiello
- IRCCS SYNLAB SDN, Via Francesco Crispi, 8, 80121 Napoli, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Giacomo Venezian, 1, 20133 Milano, Italy
| | - Davide Cusumano
- UO Fisica Medica e Radioprotezione, Mater Olbia Hospital, SS 125 Orientale Sarda, 07026 Olbia, Italy
| | - Letterio Salvatore Politi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Vittorio Didonna
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, Bari 70124, Italy
| | - Raffaella Massafra
- I.R.C.C.S. Istituto Tumori "Giovanni Paolo II", Viale Orazio Flacco 65, Bari 70124, Italy
| | - Antonella Petrillo
- Istituto Nazionale Tumori IRCCS Fondazione Pascale, Via M. Semmola, 52, 80131 Napoli, Italy
| | - Antonio Esposito
- Experimetal Imaging Center, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132 Milano, Italy; Vita-Salute San Raffaele University, School of Medicine, Via Olgettina, 58, 20132 Milano, Italy
| | - Sara Imparato
- Unità di Diagnostica per Immagini, CNAO, Via Erminio Borloni, 1, 27100 Pavia, Italy
| | - Luca Anemoni
- Unità di Diagnostica per Immagini, CNAO, Via Erminio Borloni, 1, 27100 Pavia, Italy
| | - Chandra Bortolotto
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy; Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy
| | - Lorenzo Preda
- Diagnostic Imaging and Radiotherapy Unit, Department of Clinical, Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, Viale Golgi 19, 27100 Pavia, Italy; Radiology Institute, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy
| | - Luca Boldrini
- Dipartimento di Diagnostica per Immagini e Radioterapia Oncologica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Largo Agostino Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
2
|
Kallos-Balogh P, Vas NF, Toth Z, Szakall S, Szabo P, Garai I, Kepes Z, Forgacs A, Szatmáriné Egeresi L, Magnus D, Balkay L. Multicentric study on the reproducibility and robustness of PET-based radiomics features with a realistic activity painting phantom. PLoS One 2024; 19:e0309540. [PMID: 39446842 PMCID: PMC11500893 DOI: 10.1371/journal.pone.0309540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024] Open
Abstract
Previously, we developed an "activity painting" tool for PET image simulation; however, it could simulate heterogeneous patterns only in the air. We aimed to improve this phantom technique to simulate arbitrary lesions in a radioactive background to perform relevant multi-center radiomic analysis. We conducted measurements moving a 22Na point source in a 20-liter background volume filled with 5 kBq/mL activity with an adequately controlled robotic system to prevent the surge of the water. Three different lesion patterns were "activity-painted" in five PET/CT cameras, resulting in 8 different reconstructions. We calculated 46 radiomic indeces (RI) for each lesion and imaging setting, applying absolute and relative discretization. Reproducibility and reliability were determined by the inter-setting coefficient of variation (CV) and the intraclass correlation coefficient (ICC). Hypothesis tests were used to compare RI between lesions. By simulating precisely the same lesions, we confirmed that the reconstructed voxel size and the spatial resolution of different PET cameras were critical for higher order RI. Considering conventional RIs, the SUVpeak and SUVmean proved the most reliable (CV<10%). CVs above 25% are more common for higher order RIs, but we also found that low CVs do not necessarily imply robust parameters but often rather insensitive RIs. Based on the hypothesis test, most RIs could clearly distinguish between the various lesions using absolute resampling. ICC analysis also revealed that most RIs were more reproducible with absolute discretization. The activity painting method in a real radioactive environment proved suitable for precisely detecting the radiomic differences derived from the different camera settings and texture characteristics. We also found that inter-setting CV is not an appropriate metric for analyzing RI parameters' reliability and robustness. Although multicentric cohorts are increasingly common in radiomics analysis, realistic texture phantoms can provide indispensable information on the sensitivity of an RI and how an individual RI parameter measures the texture.
Collapse
Affiliation(s)
- Piroska Kallos-Balogh
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Norman Felix Vas
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltan Toth
- Medicopus Healthcare Provider and Public Nonprofit Ltd., Somogy County Moritz Kaposi Teaching Hospital, Kaposvár, Hungary
| | | | | | - Ildiko Garai
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Scanomed Ltd., Debrecen, Debrecen, Hungary
| | - Zita Kepes
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | | | - Lilla Szatmáriné Egeresi
- Division of Radiology and Imaging Science, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dahlbom Magnus
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, California, United States of America
| | - Laszlo Balkay
- Division of Nuclear Medicine and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Stefano A. Challenges and limitations in applying radiomics to PET imaging: Possible opportunities and avenues for research. Comput Biol Med 2024; 179:108827. [PMID: 38964244 DOI: 10.1016/j.compbiomed.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/05/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Radiomics, the high-throughput extraction of quantitative imaging features from medical images, holds immense potential for advancing precision medicine in oncology and beyond. While radiomics applied to positron emission tomography (PET) imaging offers unique insights into tumor biology and treatment response, it is imperative to elucidate the challenges and constraints inherent in this domain to facilitate their translation into clinical practice. This review examines the challenges and limitations of applying radiomics to PET imaging, synthesizing findings from the last five years (2019-2023) and highlights the significance of addressing these challenges to realize the full clinical potential of radiomics in oncology and molecular imaging. A comprehensive search was conducted across multiple electronic databases, including PubMed, Scopus, and Web of Science, using keywords relevant to radiomics issues in PET imaging. Only studies published in peer-reviewed journals were eligible for inclusion in this review. Although many studies have highlighted the potential of radiomics in predicting treatment response, assessing tumor heterogeneity, enabling risk stratification, and personalized therapy selection, various challenges regarding the practical implementation of the proposed models still need to be addressed. This review illustrates the challenges and limitations of radiomics in PET imaging across various cancer types, encompassing both phantom and clinical investigations. The analyzed studies highlight the importance of reproducible segmentation methods, standardized pre-processing and post-processing methodologies, and the need to create large multicenter studies registered in a centralized database to promote the continuous validation and clinical integration of radiomics into PET imaging.
Collapse
Affiliation(s)
- Alessandro Stefano
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Cefalù, Italy.
| |
Collapse
|
4
|
Mostafavi L, Homayounieh F, Lades F, Primak A, Muse V, Harris GJ, Kalra MK, Digumarthy SR. Correlation of Radiomics with Treatment Response in Liver Metastases. Acad Radiol 2024; 31:3133-3141. [PMID: 38087718 DOI: 10.1016/j.acra.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 08/31/2024]
Abstract
RATIONALE AND OBJECTIVES To assess differences in radiomics derived from semi-automatic segmentation of liver metastases for stable disease (SD), partial response (PR), and progressive disease (PD) based on RECIST1.1 and to assess if radiomics alone at baseline can predict response. MATERIALS AND METHODS Our IRB-approved study included 203 women (mean age 54 ± 11 years) with metastatic liver disease from breast cancer. All patients underwent contrast abdomen-pelvis CT in the portal venous phase at two points: baseline (pre-treatment) and follow-up (between 3 and 12 months following treatment). Patients were subcategorized into three subgroups based on RECIST 1.1 criteria (Response Evaluation Criteria in Solid Tumors version 1.1): 66 with SD, 69 with PR, and 68 with PD on follow-up CT. The deidentified baseline and follow-up CT images were exported to the radiomics prototype. The prototype enabled semi-automatic segmentation of the target liver lesions for the extraction of first and high order radiomics. Statistical analyses with logistic regression and random forest classifiers were performed to differentiate SD from PD and PR. RESULTS There was no significant difference between the radiomics on the baseline and follow-up CT images of patients with SD (area under the curve (AUC): 0.3). Random forest classifier differentiated patients with PR with an AUC of 0.845. The most relevant feature was the large dependence emphasis's high and low pass wavelet filter (derived gray level dependence matrix features). Random forest classifier differentiated PD with an AUC of 0.731, with the most relevant feature being the surface-to-volume ratio. There was no difference in radiomics among the three groups at baseline; therefore, a response could not be predicted. CONCLUSION Radiomics of liver metastases with semi-automatic segmentation demonstrate differences between SD from PR and PD. SUMMARY STATEMENT Semiautomatic segmentation and radiomics of metastatic liver disease demonstrate differences in SD from the PR and progressive metastatic on the baseline and follow-up CT. Despite substantial variations in the scanners, acquisition, and reconstruction parameters, radiomics had an AUC of 0.84-0.89 for differentiating stable hepatic metastases from decreasing and increasing metastatic disease.
Collapse
Affiliation(s)
- Leila Mostafavi
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.).
| | - Fatemeh Homayounieh
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Felix Lades
- Siemens Healthcare GmbH, Forchheim, Germany (F.L.)
| | - Andrew Primak
- Siemens Healthineers, Malvern, Pennsylvania, USA (A.P.)
| | - Victorine Muse
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Gordon J Harris
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.); Tumor Imaging Metrics Core (TIMC), Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA (L.M., G.J.H.)
| | - Mannudeep K Kalra
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| | - Subba R Digumarthy
- Department of Radiology, Massachusetts General Hospital and the Harvard Medical School, Boston, Massachusetts, USA (L.M., F.H., V.M., G.J.H., M.K.K., S.R.D.)
| |
Collapse
|
5
|
van Timmeren JE, Bussink J, Koopmans P, Smeenk RJ, Monshouwer R. Longitudinal Image Data for Outcome Modeling. Clin Oncol (R Coll Radiol) 2024:S0936-6555(24)00277-2. [PMID: 39003124 DOI: 10.1016/j.clon.2024.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
In oncology, medical imaging is crucial for diagnosis, treatment planning and therapy execution. Treatment responses can be complex and varied and are known to involve factors of treatment, patient characteristics and tumor microenvironment. Longitudinal image analysis is able to track temporal changes, aiding in disease monitoring, treatment evaluation, and outcome prediction. This allows for the enhancement of personalized medicine. However, analyzing longitudinal 2D and 3D images presents unique challenges, including image registration, reliable segmentation, dealing with variable imaging intervals, and sparse data. This review presents an overview of techniques and methodologies in longitudinal image analysis, with a primary focus on outcome modeling in radiation oncology.
Collapse
Affiliation(s)
- J E van Timmeren
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - J Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - P Koopmans
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - R J Smeenk
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - R Monshouwer
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Rogasch JMM, Shi K, Kersting D, Seifert R. Methodological evaluation of original articles on radiomics and machine learning for outcome prediction based on positron emission tomography (PET). Nuklearmedizin 2023; 62:361-369. [PMID: 37995708 PMCID: PMC10667066 DOI: 10.1055/a-2198-0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023]
Abstract
AIM Despite a vast number of articles on radiomics and machine learning in positron emission tomography (PET) imaging, clinical applicability remains limited, partly owing to poor methodological quality. We therefore systematically investigated the methodology described in publications on radiomics and machine learning for PET-based outcome prediction. METHODS A systematic search for original articles was run on PubMed. All articles were rated according to 17 criteria proposed by the authors. Criteria with >2 rating categories were binarized into "adequate" or "inadequate". The association between the number of "adequate" criteria per article and the date of publication was examined. RESULTS One hundred articles were identified (published between 07/2017 and 09/2023). The median proportion of articles per criterion that were rated "adequate" was 65% (range: 23-98%). Nineteen articles (19%) mentioned neither a test cohort nor cross-validation to separate training from testing. The median number of criteria with an "adequate" rating per article was 12.5 out of 17 (range, 4-17), and this did not increase with later dates of publication (Spearman's rho, 0.094; p = 0.35). In 22 articles (22%), less than half of the items were rated "adequate". Only 8% of articles published the source code, and 10% made the dataset openly available. CONCLUSION Among the articles investigated, methodological weaknesses have been identified, and the degree of compliance with recommendations on methodological quality and reporting shows potential for improvement. Better adherence to established guidelines could increase the clinical significance of radiomics and machine learning for PET-based outcome prediction and finally lead to the widespread use in routine clinical practice.
Collapse
Affiliation(s)
- Julian Manuel Michael Rogasch
- Department of Nuclear Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital University Hospital Bern, Bern, Switzerland
| | - David Kersting
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| |
Collapse
|
7
|
Montoya C, Spieler B, Welford SM, Kwon D, Pra AD, Lopes G, Mihaylov IB. Predicting response to immunotherapy in non-small cell lung cancer- from bench to bedside. Front Oncol 2023; 13:1225720. [PMID: 38033493 PMCID: PMC10686412 DOI: 10.3389/fonc.2023.1225720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Background Immune checkpoint inhibitor (ICI) therapy is first-line treatment for many advanced non-small cell lung cancer (aNSCLC) patients. Predicting response could help guide selection of intensified or alternative anti-cancer regimens. We hypothesized that radiomics and laboratory variables predictive of ICI response in a murine model would also predict response in aNSCLC patients. Methods Fifteen mice with lung carcinoma tumors implanted in bilateral flanks received ICI. Pre-ICI laboratory and computed tomography (CT) data were evaluated for association with systemic ICI response. Baseline clinical and CT data for 117 aNSCLC patients treated with nivolumab were correlated with overall survival (OS). Models for predicting treatment response were created and subjected to internal cross-validation, with the human model further tested on 42 aNSCLC patients who received pembrolizumab. Results Models incorporating baseline NLR and identical radiomics (surface-to-mass ratio, average Gray, and 2D kurtosis) predicted ICI response in mice and OS in humans with AUCs of 0.91 and 0.75, respectively. The human model successfully sorted pembrolizumab patients by longer vs. shorter predicted OS (median 35 months vs. 6 months, p=0.026 by log-rank). Discussion This study advances precision oncology by non-invasively classifying aNSCLC patients according to ICI response using pre-treatment data only. Interestingly, identical radiomics features and NLR correlated with outcomes in the preclinical study and with ICI response in 2 independent patient cohorts, suggesting translatability of the findings. Future directions include using a radiogenomic approach to optimize modeling of ICI response.
Collapse
Affiliation(s)
- Chris Montoya
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Benjamin Spieler
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Scott M. Welford
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Deukwoo Kwon
- Division of Clinical and Translational Sciences, Department of Internal Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Alan Dal Pra
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Gilberto Lopes
- Department of Medical Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| | - Ivaylo B. Mihaylov
- Department of Radiation Oncology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
8
|
Pan F, Feng L, Liu B, Hu Y, Wang Q. Application of radiomics in diagnosis and treatment of lung cancer. Front Pharmacol 2023; 14:1295511. [PMID: 38027000 PMCID: PMC10646419 DOI: 10.3389/fphar.2023.1295511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
Radiomics has become a research field that involves the process of converting standard nursing images into quantitative image data, which can be combined with other data sources and subsequently analyzed using traditional biostatistics or artificial intelligence (Al) methods. Due to the capture of biological and pathophysiological information by radiomics features, these quantitative radiomics features have been proven to provide fast and accurate non-invasive biomarkers for lung cancer risk prediction, diagnosis, prognosis, treatment response monitoring, and tumor biology. In this review, radiomics has been emphasized and discussed in lung cancer research, including advantages, challenges, and drawbacks.
Collapse
Affiliation(s)
- Feng Pan
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of CT, Jilin Province FAW General Hospital, Changchun, China
| | - Li Feng
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baocai Liu
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yue Hu
- Department of Biobank, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qian Wang
- Department of Radiation Oncology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Chen K, Wang J, Li S, Zhou W, Xu W. Predictive value of 18F-FDG PET/CT-based radiomics model for neoadjuvant chemotherapy efficacy in breast cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging 2023; 50:1869-1880. [PMID: 36808002 DOI: 10.1007/s00259-023-06150-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
PURPOSE To develop and validate the predictive value of an 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) model for breast cancer neoadjuvant chemotherapy (NAC) efficacy based on the tumor-to-liver ratio (TLR) radiomic features and multiple data pre-processing methods. METHODS One hundred and ninety-three breast cancer patients from multiple centers were retrospectively included in this study. According to the endpoint of NAC, we divided the patients into pathological complete remission (pCR) and non-pCR groups. All patients underwent 18F-FDG PET/CT imaging before NAC treatment, and CT and PET images volume of interest (VOI) segmentation by manual segmentation and semi-automated absolute threshold segmentation, respectively. Then, feature extraction of VOI was performed with the pyradiomics package. A total of 630 models were created based on the source of radiomic features, the elimination of the batch effect approach, and the discretization method. The differences in data pre-processing approaches were compared and analyzed to identify the best-performing model, which was further tested by the permutation test. RESULTS A variety of data pre-processing methods contributed in varying degrees to the improvement of model effects. Among them, TLR radiomic features and Combat and Limma methods that eliminate batch effects could enhance the model prediction overall, and data discretization could be used as a potential method that can further optimize the model. A total of seven excellent models were selected and then based on the AUC of each model in the four test sets and their standard deviations, we selected the optimal model. The optimal model predicted AUC between 0.7 and 0.77 for the four test groups, with p-values less than 0.05 for the permutation test. CONCLUSION It is necessary to enhance the predictive effect of the model by eliminating confounding factors through data pre-processing. The model developed in this way is effective in predicting the efficacy of NAC for breast cancer.
Collapse
Affiliation(s)
- Kun Chen
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Jian Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China
| | - Shuai Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China
| | - Wen Zhou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, People's Republic of China.
| | - Wengui Xu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi Distinct, 300060, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060, China.
| |
Collapse
|
10
|
Cilla S, Pistilli D, Romano C, Macchia G, Pierro A, Arcelli A, Buwenge M, Morganti AG, Deodato F. CT-based radiomics prediction of complete response after stereotactic body radiation therapy for patients with lung metastases. Strahlenther Onkol 2023:10.1007/s00066-023-02086-6. [PMID: 37256303 DOI: 10.1007/s00066-023-02086-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
PURPOSE Stereotactic body radiotherapy (SBRT) is a key treatment modality for lung cancer patients. This study aims to develop a machine learning-based prediction model of complete response for lung oligometastatic cancer patients undergoing SBRT. MATERIALS AND METHODS CT images of 80 pulmonary oligometastases from 56 patients treated with SBRT were analyzed. The gross tumor volumes (GTV) were contoured on CT images. Patients that achieved complete response (CR) at 4 months were defined as responders. For each GTV, 107 radiomic features were extracted using the Pyradiomics software. The concordance correlation coefficients (CCC) between the region of interest (ROI)-based radiomics features obtained by the two segmentations were calculated. Pairwise feature interdependencies were evaluated using the Spearman rank correlation coefficient. The association of clinical variables and radiomics features with CR was evaluated with univariate logistic regression. Two supervised machine learning models, the logistic regression (LR) and the classification and regression tree analysis (CART), were trained to predict CR. The models were cross-validated using a five-fold cross-validation. The performance of models was assessed by receiver operating characteristic curve (ROC) and class-specific accuracy, precision, recall, and F1-measure evaluation metrics. RESULTS Complete response was associated with four radiomics features, namely the surface to volume ratio (SVR; p = 0.003), the skewness (Skew; p = 0.027), the correlation (Corr; p = 0.024), and the grey normalized level uniformity (GNLU; p = 0.015). No significant relationship between clinical parameters and CR was found. In the validation set, the developed LR and CART machine learning models had an accuracy, precision, and recall of 0.644 and 0.750, 0.644 and 0.651, and 0.635 and 0.754, respectively. The area under the curve for CR prediction was 0.707 and 0.753 for the LR and CART models, respectively. CONCLUSION This analysis demonstrates that radiomics features obtained from pretreatment CT could predict complete response of lung oligometastases following SBRT.
Collapse
Affiliation(s)
- Savino Cilla
- Gemelli Molise Hospital, Medical Physics Unit, Largo Gemelli 1, 86100, Campobasso, Italy.
| | - Domenico Pistilli
- Gemelli Molise Hospital, Medical Physics Unit, Largo Gemelli 1, 86100, Campobasso, Italy
| | - Carmela Romano
- Gemelli Molise Hospital, Medical Physics Unit, Largo Gemelli 1, 86100, Campobasso, Italy
| | | | - Antonio Pierro
- Radiology Unit, Gemelli Molise Hospital, Campobasso, Italy
| | - Alessandra Arcelli
- Radiation Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Milly Buwenge
- Radiation Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio Giuseppe Morganti
- Radiation Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic, and Specialty Medicine-DIMES, Alma Mater Studiorum, Università di Bologna, Diagnostic, Italy
| | - Francesco Deodato
- Radiation Oncology Unit, Gemelli Molise Hospital, Campobasso, Italy
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|
11
|
McAnena P, Moloney BM, Browne R, O’Halloran N, Walsh L, Walsh S, Sheppard D, Sweeney KJ, Kerin MJ, Lowery AJ. A radiomic model to classify response to neoadjuvant chemotherapy in breast cancer. BMC Med Imaging 2022; 22:225. [PMID: 36564734 PMCID: PMC9789647 DOI: 10.1186/s12880-022-00956-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Medical image analysis has evolved to facilitate the development of methods for high-throughput extraction of quantitative features that can potentially contribute to the diagnostic and treatment paradigm of cancer. There is a need for further improvement in the accuracy of predictive markers of response to neo-adjuvant chemotherapy (NAC). The aim of this study was to develop a radiomic classifier to enhance current approaches to predicting the response to NAC breast cancer. METHODS Data on patients treated for breast cancer with NAC prior to surgery who had a pre-NAC dynamic contrast enhanced breast MRI were included. Response to NAC was assessed using the Miller-Payne system on the excised tumor. Tumor segmentation was carried out manually under the supervision of a consultant breast radiologist. Features were selected using least absolute shrinkage selection operator regression. A support vector machine learning model was used to classify response to NAC. RESULTS 74 patients were included. Patients were classified as having a poor response to NAC (reduction in cellularity < 90%, n = 44) and an excellent response (> 90% reduction in cellularity, n = 30). 4 radiomics features (discretized kurtosis, NGDLM contrast, GLZLM_SZE and GLZLM_ZP) were identified as pertinent predictors of response to NAC. A SVM model using these features stratified patients into poor and excellent response groups producing an AUC of 0.75. Addition of estrogen receptor status improved the accuracy of the model with an AUC of 0.811. CONCLUSION This study identified a radiomic classifier incorporating 4 radiomics features to augment subtype based classification of response to NAC in breast cancer.
Collapse
Affiliation(s)
- Peter McAnena
- grid.412440.70000 0004 0617 9371Department of Surgery, Clinical Sciences Institute, University Hospital Galway, Galway, Ireland
| | - Brian M. Moloney
- grid.412440.70000 0004 0617 9371Department of Radiology, University Hospital Galway, Galway, Ireland
| | - Robert Browne
- grid.412440.70000 0004 0617 9371Department of Surgery, Clinical Sciences Institute, University Hospital Galway, Galway, Ireland
| | - Niamh O’Halloran
- grid.412440.70000 0004 0617 9371Department of Radiology, University Hospital Galway, Galway, Ireland
| | - Leon Walsh
- grid.412440.70000 0004 0617 9371Department of Radiology, University Hospital Galway, Galway, Ireland
| | - Sinead Walsh
- grid.412440.70000 0004 0617 9371Department of Radiology, University Hospital Galway, Galway, Ireland
| | - Declan Sheppard
- grid.412440.70000 0004 0617 9371Department of Radiology, University Hospital Galway, Galway, Ireland
| | - Karl J. Sweeney
- grid.412440.70000 0004 0617 9371Department of Surgery, Clinical Sciences Institute, University Hospital Galway, Galway, Ireland
| | - Michael J. Kerin
- grid.412440.70000 0004 0617 9371Department of Surgery, Clinical Sciences Institute, University Hospital Galway, Galway, Ireland ,grid.6142.10000 0004 0488 0789Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| | - Aoife J. Lowery
- grid.412440.70000 0004 0617 9371Department of Surgery, Clinical Sciences Institute, University Hospital Galway, Galway, Ireland ,grid.6142.10000 0004 0488 0789Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland, Galway, Ireland
| |
Collapse
|
12
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
13
|
Manafi-Farid R, Askari E, Shiri I, Pirich C, Asadi M, Khateri M, Zaidi H, Beheshti M. [ 18F]FDG-PET/CT radiomics and artificial intelligence in lung cancer: Technical aspects and potential clinical applications. Semin Nucl Med 2022; 52:759-780. [PMID: 35717201 DOI: 10.1053/j.semnuclmed.2022.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023]
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related death worldwide. Molecular imaging using [18F]fluorodeoxyglucose Positron Emission Tomography and/or Computed Tomography ([18F]FDG-PET/CT) plays an essential role in the diagnosis, evaluation of response to treatment, and prediction of outcomes. The images are evaluated using qualitative and conventional quantitative indices. However, there is far more information embedded in the images, which can be extracted by sophisticated algorithms. Recently, the concept of uncovering and analyzing the invisible data extracted from medical images, called radiomics, is gaining more attention. Currently, [18F]FDG-PET/CT radiomics is growingly evaluated in lung cancer to discover if it enhances the diagnostic performance or implication of [18F]FDG-PET/CT in the management of lung cancer. In this review, we provide a short overview of the technical aspects, as they are discussed in different articles of this special issue. We mainly focus on the diagnostic performance of the [18F]FDG-PET/CT-based radiomics and the role of artificial intelligence in non-small cell lung cancer, impacting the early detection, staging, prediction of tumor subtypes, biomarkers, and patient's outcomes.
Collapse
Affiliation(s)
- Reyhaneh Manafi-Farid
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Emran Askari
- Department of Nuclear Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland
| | - Christian Pirich
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Mahboobeh Asadi
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Maziar Khateri
- Research Center for Nuclear Medicine, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva, Switzerland; Geneva University Neurocenter, Geneva University, Geneva, Switzerland; Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark
| | - Mohsen Beheshti
- Division of Molecular Imaging and Theranostics, Department of Nuclear Medicine, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
14
|
Hosseini SA, Shiri I, Hajianfar G, Bahadorzade B, Ghafarian P, Zaidi H, Ay MR. Synergistic impact of motion and acquisition/reconstruction parameters on 18 F-FDG PET radiomic features in non-small cell lung cancer: phantom and clinical studies. Med Phys 2022; 49:3783-3796. [PMID: 35338722 PMCID: PMC9322423 DOI: 10.1002/mp.15615] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
Objectives This study is aimed at examining the synergistic impact of motion and acquisition/reconstruction parameters on 18F‐FDG PET image radiomic features in non‐small cell lung cancer (NSCLC) patients, and investigating the robustness of features performance in differentiating NSCLC histopathology subtypes. Methods An in‐house developed thoracic phantom incorporating lesions with different sizes was used with different reconstruction settings, including various reconstruction algorithms, number of subsets and iterations, full‐width at half‐maximum of post‐reconstruction smoothing filter and acquisition parameters, including injected activity and test–retest with and without motion simulation. To simulate motion, a special motor was manufactured to simulate respiratory motion based on a normal patient in two directions. The lesions were delineated semi‐automatically to extract 174 radiomic features. All radiomic features were categorized according to the coefficient of variation (COV) to select robust features. A cohort consisting of 40 NSCLC patients with adenocarcinoma (n = 20) and squamous cell carcinoma (n = 20) was retrospectively analyzed. Statistical analysis was performed to discriminate robust features in differentiating histopathology subtypes of NSCLC lesions. Results Overall, 29% of radiomic features showed a COV ≤5% against motion. Forty‐five percent and 76% of the features showed a COV ≤ 5% against the test–retest with and without motion in large lesions, respectively. Thirty‐three percent and 45% of the features showed a COV ≤ 5% against different reconstruction parameters with and without motion, respectively. For NSCLC histopathological subtype differentiation, statistical analysis showed that 31 features were significant (p‐value < 0.05). Two out of the 31 significant features, namely, the joint entropy of GLCM (AUC = 0.71, COV = 0.019) and median absolute deviation of intensity histogram (AUC = 0.7, COV = 0.046), were robust against the motion (same reconstruction setting). Conclusions Motion, acquisition, and reconstruction parameters significantly impact radiomic features, just as their synergies. Radiomic features with high predictive performance (statistically significant) in differentiating histopathological subtype of NSCLC may be eliminated due to non‐reproducibility.
Collapse
Affiliation(s)
- Seyyed Ali Hosseini
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Isaac Shiri
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland
| | - Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Science, Tehran, Iran
| | | | - Pardis Ghafarian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran.,PET/CT and cyclotron center, Masih Daneshvari hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, Geneva 4, Switzerland.,Geneva University Neurocenter, Geneva University, CH-1205, Geneva, Switzerland.,Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, Netherlands.,Department of Nuclear Medicine, University of Southern Denmark, DK-500, Odense, Denmark
| | - Mohammad Reza Ay
- Department of Medical physics and biomedical engineering, Tehran University of medical sciences, Tehran, Iran.,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Pretherapy 18F-fluorodeoxyglucose positron emission tomography/computed tomography robust radiomic features predict overall survival in non-small cell lung cancer. Nucl Med Commun 2022; 43:540-548. [PMID: 35190518 DOI: 10.1097/mnm.0000000000001541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE To extract robust radiomic features from staging positron emission tomography/computed tomography (18F- fluroodeoxyglucose PET/CT) in patients with non-small cell lung cancer from different segmentation methods and to assess their association with 2-year overall survival. METHODS Eighty-one patients with stage I-IV non-small cell lung cancer were included. All patients underwent a pretherapy 18F-FDG PET/CT. Primary tumors were delineated using four different segmentation methods: method 1, manual; method 2: manual with peripheral 1 mm erosion; method 3: absolute threshold at standardized uptake value (SUV) 2.5; and method 4: relative threshold at 40% SUVmax. Radiomic features from each method were extracted using Image Biomarker Standardization Initiative-compliant process. The study cohort was divided into two groups (exploratory and testing) in a ratio of 1:2 (n = 25 and n = 56, respectively). Exploratory cohort was used to identify robust radiomic features, defined as having a minimum concordance correlation coefficient ≥0.75 among all the 4-segmentation methods. The resulting texture features were evaluated for association with 2-year overall survival in the testing cohort (n = 56). All patients in the testing cohort had a follow-up for 2 years from the date of staging 18F-FDG PET/CT scan or till death. Cox proportional hazard models were used to evaluate the independent prognostic factors. RESULTS Exploratory and validation cohorts were equivalent regarding their basic characteristics (age, sex, and tumor stage). Ten radiomic features were deemed robust to the described four segmentation methods: SUV SD, SUVmax, SUVQ3, SUVpeak in 0.5 ml, total lesion glycolysis, histogram entropy log 2, histogram entropy log 10, histogram energy uniformity, gray level run length matrix-gray level non-uniformity, and gray level zone length matrix-gray level non-uniformity. At the end of 2-year follow-up, 41 patients were dead and 15 were still alive (overall survival = 26.8%; median survival = 14.7 months, 95% confidence interval: 10.2-19.2 months). Three texture features, regardless the segmentation method, were associated with 2-year overall survival: total lesion glycolysis, gray level run length matrix_gray level non-uniformity, and gray level zone length matrix_run-length non-uniformity. In the final Cox-regression model: total lesion glycolysis, and gray level zone length matrix_gray level non-uniformity were independent prognostic factors. The quartiles from the two features were combined with clinical staging in a prognostic model that allowed better risk stratification of patients for overall survival. CONCLUSION Ten radiomic features were robust to segmentation methods and two of them (total lesion glycolysis and gray level zone length matrix_gray level non-uniformity) were independently associated with 2-year overall survival. Together with the clinical staging, these features could be utilized towards improved risk stratification of lung cancer patients.
Collapse
|
16
|
Morgan HE, Wang K, Dohopolski M, Liang X, Folkert MR, Sher DJ, Wang J. Exploratory ensemble interpretable model for predicting local failure in head and neck cancer: the additive benefit of CT and intra-treatment cone-beam computed tomography features. Quant Imaging Med Surg 2021; 11:4781-4796. [PMID: 34888189 PMCID: PMC8611459 DOI: 10.21037/qims-21-274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Local failure (LF) following chemoradiation (CRT) for head and neck cancer is associated with poor overall survival. If machine learning techniques could stratify patients at risk of treatment failure based on baseline and intra-treatment imaging, such a model could facilitate response-adapted approaches to escalate, de-escalate, or switch therapy. METHODS A 1:2 retrospective case control cohort of patients treated at a single institution with definitive radiotherapy for head and neck cancer who failed locally, in-field at a primary or nodal structure were included. Radiomic features were extracted from baseline CT and CBCT scans at fractions 1 and 21 (delta) of radiotherapy with PyRadiomics and were selected for by: reproducibility (intra-class correlation coefficients ≥0.95), redundancy [maximum relevance and minimum redundancy (mRMR)], and informativeness [recursive feature elimination (RFE)]. Separate models predicting LF of primaries or nodes were created using the explainable boosting machine (EBM) classifier with 5-fold cross-validation for (I) clinical only, (II) radiomic only (CT1 and delta features), and (III) fused models (clinical + radiomic). Twenty-five iterations were performed, and predicted scores were averaged with a parallel ensemble design. Receiver operating characteristic curves were compared between models with paired-samples t-tests. RESULTS The fused ensemble model for primaries (using clinical, CT1, and delta features) achieved an AUC of 0.871 with a sensitivity of 78.3% and specificity of 90.9% at the maximum Youden J statistic. The fused ensemble model trended towards improvement when compared to the clinical only ensemble model (AUC =0.788, P=0.134) but reached significance when compared to the radiomic ensemble model (AUC =0.770, P=0.017). The fused ensemble model for nodes achieved an AUC of 0.910 with a sensitivity of 100.0% and specificity of 68.0%, which also trended towards improvement when compared to the clinical model (AUC =0.865, P=0.080). CONCLUSIONS The fused ensemble EBM model achieved high discriminatory ability at predicting LF for head and neck cancer in independent primary and nodal structures. Although an additive benefit of delta radiomics over clinical factors could not be proven, the results trended towards improvement with the fused ensemble model, which are promising and worthy of prospective investigation in a larger cohort.
Collapse
Affiliation(s)
- Howard E. Morgan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xiao Liang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael R. Folkert
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David J. Sher
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Wang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medical Artificial Intelligence and Automation Laboratory, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Radiomics for Predicting Lung Cancer Outcomes Following Radiotherapy: A Systematic Review. Clin Oncol (R Coll Radiol) 2021; 34:e107-e122. [PMID: 34763965 DOI: 10.1016/j.clon.2021.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/13/2022]
Abstract
Lung cancer's radiomic phenotype may potentially inform clinical decision-making with respect to radical radiotherapy. At present there are no validated biomarkers available for the individualisation of radical radiotherapy in lung cancer and the mortality rate of this disease remains the highest of all other solid tumours. MEDLINE was searched using the terms 'radiomics' and 'lung cancer' according to the Preferred Reporting Items for Systematic Reviews and Met-Analyses (PRISMA) guidance. Radiomics studies were defined as those manuscripts describing the extraction and analysis of at least 10 quantifiable imaging features. Only those studies assessing disease control, survival or toxicity outcomes for patients with lung cancer following radical radiotherapy ± chemotherapy were included. Study titles and abstracts were reviewed by two independent reviewers. The Radiomics Quality Score was applied to the full text of included papers. Of 244 returned results, 44 studies met the eligibility criteria for inclusion. End points frequently reported were local (17%), regional (17%) and distant control (31%), overall survival (79%) and pulmonary toxicity (4%). Imaging features strongly associated with clinical outcomes include texture features belonging to the subclasses Gray level run length matrix, Gray level co-occurrence matrix and kurtosis. The median cohort size for model development was 100 (15-645); in the 11 studies with external validation in a separate independent population, the median cohort size was 84 (21-295). The median number of imaging features extracted was 184 (10-6538). The median Radiomics Quality Score was 11% (0-47). Patient-reported outcomes were not incorporated within any studies identified. No studies externally validated a radiomics signature in a registered prospective study. Imaging-derived indices attained through radiomic analyses could equip thoracic oncologists with biomarkers for treatment response, patterns of failure, normal tissue toxicity and survival in lung cancer. Based on routine scans, their non-invasive nature and cost-effectiveness are major advantages over conventional pathological assessment. Improved tools are required for the appraisal of radiomics studies, as significant barriers to clinical implementation remain, such as standardisation of input scan data, quality of reporting and external validation of signatures in randomised, interventional clinical trials.
Collapse
|
18
|
Ferreira M, Lovinfosse P, Hermesse J, Decuypere M, Rousseau C, Lucia F, Schick U, Reinhold C, Robin P, Hatt M, Visvikis D, Bernard C, Leijenaar RTH, Kridelka F, Lambin P, Meyer PE, Hustinx R. [ 18F]FDG PET radiomics to predict disease-free survival in cervical cancer: a multi-scanner/center study with external validation. Eur J Nucl Med Mol Imaging 2021; 48:3432-3443. [PMID: 33772334 PMCID: PMC8440288 DOI: 10.1007/s00259-021-05303-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE To test the performances of native and tumour to liver ratio (TLR) radiomic features extracted from pre-treatment 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG) PET/CT and combined with machine learning (ML) for predicting cancer recurrence in patients with locally advanced cervical cancer (LACC). METHODS One hundred fifty-eight patients with LACC from multiple centers were retrospectively included in the study. Tumours were segmented using the Fuzzy Local Adaptive Bayesian (FLAB) algorithm. Radiomic features were extracted from the tumours and from regions drawn over the normal liver. Cox proportional hazard model was used to test statistical significance of clinical and radiomic features. Fivefold cross validation was used to tune the number of features. Seven different feature selection methods and four classifiers were tested. The models with the selected features were trained using bootstrapping and tested in data from each scanner independently. Reproducibility of radiomics features, clinical data added value and effect of ComBat-based harmonisation were evaluated across scanners. RESULTS After a median follow-up of 23 months, 29% of the patients recurred. No individual radiomic or clinical features were significantly associated with cancer recurrence. The best model was obtained using 10 TLR features combined with clinical information. The area under the curve (AUC), F1-score, precision and recall were respectively 0.78 (0.67-0.88), 0.49 (0.25-0.67), 0.42 (0.25-0.60) and 0.63 (0.20-0.80). ComBat did not improve the predictive performance of the best models. Both the TLR and the native models performance varied across scanners used in the test set. CONCLUSION [18F]FDG PET radiomic features combined with ML add relevant information to the standard clinical parameters in terms of LACC patient's outcome but remain subject to variability across PET/CT devices.
Collapse
Affiliation(s)
- Marta Ferreira
- GIGA-CRC in vivo Imaging, University of Liège, GIGA, Avenue de l'Hôpital 11, 4000, Liege, Belgium.
| | - Pierre Lovinfosse
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
| | - Johanne Hermesse
- Department of Radiation Oncology, Liège University Hospital, Liège, Belgium
| | - Marjolein Decuypere
- Division of Oncological Gynecology, University Hospital of Liège, Liège, Belgium
| | - Caroline Rousseau
- Université de Nantes, CNRS, Inserm, CRCINA, F-44000, Nantes, France
- ICO René Gauducheau, F-44800, Saint-Herblain, France
| | - François Lucia
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Ulrike Schick
- Radiation Oncology Department, University Hospital, Brest, France
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | - Caroline Reinhold
- Department of Radiology, McGill University Health Centre (MUHC), Montreal, Canada
| | - Philippe Robin
- Department of Nuclear Medicine and EA3878, Brest University Hospital, University of Brest, Brest, France
| | - Mathieu Hatt
- LaTIM, INSERM, UMR 1101, Univ Brest, Brest, France
| | | | - Claire Bernard
- Division of Nuclear Medicine and Oncological Imaging, University Hospital of Liège, Liège, Belgium
| | - Ralph T H Leijenaar
- Oncoradiomics SA, Clos Chanmurly 13, 4000, Liège, Belgium
- The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Frédéric Kridelka
- Division of Oncological Gynecology, University Hospital of Liège, Liège, Belgium
| | - Philippe Lambin
- The-D Lab, Precision Medicine, GROW-School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Patrick E Meyer
- Bioinformatics and Systems Biology Lab, University of Liège, Liège, Belgium
| | - Roland Hustinx
- GIGA-CRC in vivo Imaging, University of Liège, GIGA, Avenue de l'Hôpital 11, 4000, Liege, Belgium
| |
Collapse
|
19
|
Mali SA, Ibrahim A, Woodruff HC, Andrearczyk V, Müller H, Primakov S, Salahuddin Z, Chatterjee A, Lambin P. Making Radiomics More Reproducible across Scanner and Imaging Protocol Variations: A Review of Harmonization Methods. J Pers Med 2021; 11:842. [PMID: 34575619 PMCID: PMC8472571 DOI: 10.3390/jpm11090842] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Radiomics converts medical images into mineable data via a high-throughput extraction of quantitative features used for clinical decision support. However, these radiomic features are susceptible to variation across scanners, acquisition protocols, and reconstruction settings. Various investigations have assessed the reproducibility and validation of radiomic features across these discrepancies. In this narrative review, we combine systematic keyword searches with prior domain knowledge to discuss various harmonization solutions to make the radiomic features more reproducible across various scanners and protocol settings. Different harmonization solutions are discussed and divided into two main categories: image domain and feature domain. The image domain category comprises methods such as the standardization of image acquisition, post-processing of raw sensor-level image data, data augmentation techniques, and style transfer. The feature domain category consists of methods such as the identification of reproducible features and normalization techniques such as statistical normalization, intensity harmonization, ComBat and its derivatives, and normalization using deep learning. We also reflect upon the importance of deep learning solutions for addressing variability across multi-centric radiomic studies especially using generative adversarial networks (GANs), neural style transfer (NST) techniques, or a combination of both. We cover a broader range of methods especially GANs and NST methods in more detail than previous reviews.
Collapse
Affiliation(s)
- Shruti Atul Mali
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
- Department of Medical Physics, Division of Nuclear Medicine and Oncological Imaging, Hospital Center Universitaire de Liege, 4000 Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Center Aachen (CDCA), University Hospital RWTH Aachen University, 52074 Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | - Vincent Andrearczyk
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland; (V.A.); (H.M.)
| | - Henning Müller
- Institute of Information Systems, University of Applied Sciences and Arts Western Switzerland (HES-SO), rue du Technopole 3, 3960 Sierre, Switzerland; (V.A.); (H.M.)
| | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Zohaib Salahuddin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Avishek Chatterjee
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW—School for Oncology, Maastricht University, Maastricht, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands; (A.I.); (H.C.W.); (S.P.); (Z.S.); (A.C.); (P.L.)
- Department of Radiology and Nuclear Medicine, GROW—School for Oncology, Maastricht University Medical Center+, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| |
Collapse
|
20
|
Jha AK, Mithun S, Rangarajan V, Wee L, Dekker A. Emerging role of artificial intelligence in nuclear medicine. Nucl Med Commun 2021; 42:592-601. [PMID: 33660696 DOI: 10.1097/mnm.0000000000001381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The role of artificial intelligence is increasing in all branches of medicine. The emerging role of artificial intelligence applications in nuclear medicine is going to improve the nuclear medicine clinical workflow in the coming years. Initial research outcomes are suggestive of increasing role of artificial intelligence in nuclear medicine workflow, particularly where selective automation tasks are of concern. Artificial intelligence-assisted planning, dosimetry and procedure execution appear to be areas for rapid and significant development. The role of artificial intelligence in more directly imaging-related tasks, such as dose optimization, image corrections and image reconstruction, have been particularly strong points of artificial intelligence research in nuclear medicine. Natural Language Processing (NLP)-based text processing task is another area of interest of artificial intelligence implementation in nuclear medicine.
Collapse
Affiliation(s)
- Ashish Kumar Jha
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
| | - Sneha Mithun
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
- Homi Bhabha National Institute (HBNI), Deemed University, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Tata Memorial Hospital
- Homi Bhabha National Institute (HBNI), Deemed University, Mumbai, India
| | - Leonard Wee
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (Maastro), GROW School for Oncology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
21
|
Ibrahim A, Refaee T, Leijenaar RTH, Primakov S, Hustinx R, Mottaghy FM, Woodruff HC, Maidment ADA, Lambin P. The application of a workflow integrating the variable reproducibility and harmonizability of radiomic features on a phantom dataset. PLoS One 2021; 16:e0251147. [PMID: 33961646 PMCID: PMC8104396 DOI: 10.1371/journal.pone.0251147] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
Radiomics–the high throughput extraction of quantitative features from medical images and their correlation with clinical and biological endpoints- is the subject of active and extensive research. Although the field shows promise, the generalizability of radiomic signatures is affected significantly by differences in scan acquisition and reconstruction settings. Previous studies reported on the sensitivity of radiomic features (RFs) to test-retest variability, inter-observer segmentation variability, and intra-scanner variability. A framework involving robust radiomics analysis and the application of a post-reconstruction feature harmonization method using ComBat was recently proposed to address these challenges. In this study, we investigated the reproducibility of RFs across different scanners and scanning parameters using this framework. We analysed thirteen scans of a ten-layer phantom that were acquired differently. Each layer was subdivided into sixteen regions of interest (ROIs), and the scans were compared in a pairwise manner, resulting in seventy-eight different scenarios. Ninety-one RFs were extracted from each ROI. As hypothesized, we demonstrate that the reproducibility of a given RF is not a constant but is dependent on the heterogeneity found in the data under analysis. The number (%) of reproducible RFs varied across the pairwise scenarios investigated, having a wide range between 8 (8.8%) and 78 (85.7%) RFs. Furthermore, in contrast to what has been previously reported, and as hypothesized in the robust radiomics analysis framework, our results demonstrate that ComBat cannot be applied to all RFs but rather on a percentage of those–the “ComBatable” RFs–which differed depending on the data being harmonized. The number (%) of reproducible RFs following ComBat harmonization varied across the pairwise scenarios investigated, ranging from 14 (15.4%) to 80 (87.9%) RFs, and was found to depend on the heterogeneity in the data. We conclude that the standardization of image acquisition protocols remains the cornerstone for improving the reproducibility of RFs, and the generalizability of the signatures developed. Our proposed approach helps identify the reproducible RFs across different datasets.
Collapse
Affiliation(s)
- Abdalla Ibrahim
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
- * E-mail:
| | - Turkey Refaee
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Faculty of Applied Medical Sciences, Department of Diagnostic Radiology, Jazan University, Jazan, Saudi Arabia
| | | | - Sergey Primakov
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, University Hospital of Liège and GIGA CRC-in vivo imaging, University of Liège, Liege, Belgium
| | - Felix M. Mottaghy
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
- Department of Nuclear Medicine and Comprehensive Diagnostic Centre Aachen (CDCA), University Hospital RWTH Aachen University, Aachen, Germany
| | - Henry C. Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Andrew D. A. Maidment
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University, Maastricht, The Netherlands
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
22
|
Bousabarah K, Blanck O, Temming S, Wilhelm ML, Hoevels M, Baus WW, Ruess D, Visser-Vandewalle V, Ruge MI, Treuer H, Kocher M. Radiomics for prediction of radiation-induced lung injury and oncologic outcome after robotic stereotactic body radiotherapy of lung cancer: results from two independent institutions. Radiat Oncol 2021; 16:74. [PMID: 33863358 PMCID: PMC8052812 DOI: 10.1186/s13014-021-01805-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 04/11/2021] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES To generate and validate state-of-the-art radiomics models for prediction of radiation-induced lung injury and oncologic outcome in non-small cell lung cancer (NSCLC) patients treated with robotic stereotactic body radiation therapy (SBRT). METHODS Radiomics models were generated from the planning CT images of 110 patients with primary, inoperable stage I/IIa NSCLC who were treated with robotic SBRT using a risk-adapted fractionation scheme at the University Hospital Cologne (training cohort). In total, 199 uncorrelated radiomic features fulfilling the standards of the Image Biomarker Standardization Initiative (IBSI) were extracted from the outlined gross tumor volume (GTV). Regularized models (Coxnet and Gradient Boost) for the development of local lung fibrosis (LF), local tumor control (LC), disease-free survival (DFS) and overall survival (OS) were built from either clinical/ dosimetric variables, radiomics features or a combination thereof and validated in a comparable cohort of 71 patients treated by robotic SBRT at the Radiosurgery Center in Northern Germany (test cohort). RESULTS Oncologic outcome did not differ significantly between the two cohorts (OS at 36 months 56% vs. 43%, p = 0.065; median DFS 25 months vs. 23 months, p = 0.43; LC at 36 months 90% vs. 93%, p = 0.197). Local lung fibrosis developed in 33% vs. 35% of the patients (p = 0.75), all events were observed within 36 months. In the training cohort, radiomics models were able to predict OS, DFS and LC (concordance index 0.77-0.99, p < 0.005), but failed to generalize to the test cohort. In opposite, models for the development of lung fibrosis could be generated from both clinical/dosimetric factors and radiomic features or combinations thereof, which were both predictive in the training set (concordance index 0.71- 0.79, p < 0.005) and in the test set (concordance index 0.59-0.66, p < 0.05). The best performing model included 4 clinical/dosimetric variables (GTV-Dmean, PTV-D95%, Lung-D1ml, age) and 7 radiomic features (concordance index 0.66, p < 0.03). CONCLUSION Despite the obvious difficulties in generalizing predictive models for oncologic outcome and toxicity, this analysis shows that carefully designed radiomics models for prediction of local lung fibrosis after SBRT of early stage lung cancer perform well across different institutions.
Collapse
Affiliation(s)
- Khaled Bousabarah
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.,Institute of Diagnostic and Interventional Radiology, University Hospital of Cologne, Cologne, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany.,Saphir Radiosurgery Center Northern Germany, Guestrow, Germany
| | - Susanne Temming
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - Maria-Lisa Wilhelm
- Saphir Radiosurgery Center Northern Germany, Guestrow, Germany.,Department of Radiation Oncology, University Medicine Rostock, Rostock, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Wolfgang W Baus
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - Daniel Ruess
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Maximilian I Ruge
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Martin Kocher
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| |
Collapse
|
23
|
Duron L, Heraud A, Charbonneau F, Zmuda M, Savatovsky J, Fournier L, Lecler A. A Magnetic Resonance Imaging Radiomics Signature to Distinguish Benign From Malignant Orbital Lesions. Invest Radiol 2021; 56:173-180. [PMID: 32932375 DOI: 10.1097/rli.0000000000000722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Distinguishing benign from malignant orbital lesions remains challenging both clinically and with imaging, leading to risky biopsies. The objective was to differentiate benign from malignant orbital lesions using radiomics on 3 T magnetic resonance imaging (MRI) examinations. MATERIALS AND METHODS This institutional review board-approved prospective single-center study enrolled consecutive patients presenting with an orbital lesion undergoing a 3 T MRI prior to surgery from December 2015 to July 2019. Radiomics features were extracted from 6 MRI sequences (T1-weighted images [WIs], DIXON-T2-WI, diffusion-WI, postcontrast DIXON-T1-WI) using the Pyradiomics software. Features were selected based on their intraobserver and interobserver reproducibility, nonredundancy, and with a sequential step forward feature selection method. Selected features were used to train and optimize a Random Forest algorithm on the training set (75%) with 5-fold cross-validation. Performance metrics were computed on a held-out test set (25%) with bootstrap 95% confidence intervals (95% CIs). Five residents, 4 general radiologists, and 3 expert neuroradiologists were evaluated on their ability to visually distinguish benign from malignant lesions on the test set. Performance comparisons between reader groups and the model were performed using McNemar test. The impact of clinical and categorizable imaging data on algorithm performance was also assessed. RESULTS A total of 200 patients (116 [58%] women and 84 [42%] men; mean age, 53.0 ± 17.9 years) with 126 of 200 (63%) benign and 74 of 200 (37%) malignant orbital lesions were included in the study. A total of 606 radiomics features were extracted. The best performing model on the training set was composed of 8 features including apparent diffusion coefficient mean value, maximum diameter on T1-WIs, and texture features. Area under the receiver operating characteristic curve, accuracy, sensitivity, and specificity on the test set were respectively 0.869 (95% CI, 0.834-0.898), 0.840 (95% CI, 0.806-0.874), 0.684 (95% CI, 0.615-0.751), and 0.935 (95% CI, 0.905-0.961). The radiomics model outperformed all reader groups, including expert neuroradiologists (P < 0.01). Adding clinical and categorizable imaging data did not significantly impact the algorithm performance (P = 0.49). CONCLUSIONS An MRI radiomics signature is helpful in differentiating benign from malignant orbital lesions and may outperform expert radiologists.
Collapse
Affiliation(s)
| | | | | | - Mathieu Zmuda
- Department of Orbitopalpebral Surgery, Fondation Adolphe de Rothschild Hospital
| | | | | | | |
Collapse
|
24
|
Liu C, Gong J, Yu H, Liu Q, Wang S, Wang J. A CT-Based Radiomics Approach to Predict Nivolumab Response in Advanced Non-Small-Cell Lung Cancer. Front Oncol 2021; 11:544339. [PMID: 33718125 PMCID: PMC7943844 DOI: 10.3389/fonc.2021.544339] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose This study aims to develop a CT-based radiomics model to predict clinical outcomes of advanced non-small-cell lung cancer (NSCLC) patients treated with nivolumab. Methods Forty-six stage IIIB/IV NSCLC patients without EGFR mutation or ALK rearrangement who received nivolumab were enrolled. After segmenting primary tumors depicting on the pre-anti-PD1 treatment CT images, 1,106 radiomics features were computed and extracted to decode the imaging phenotypes of these tumors. A L1-based feature selection method was applied to remove the redundant features and build an optimal feature pool. To predict the risk of progression-free survival (PFS) and overall survival (OS), the selected image features were used to train and test three machine-learning classifiers namely, support vector machine classifier, logistic regression classifier, and Gaussian Naïve Bayes classifier. Finally, the overall patients were stratified into high and low risk subgroups by using prediction scores obtained from three classifiers, and Kaplan–Meier survival analysis was conduct to evaluate the prognostic values of these patients. Results To predict the risk of PFS and OS, the average area under a receiver operating characteristic curve (AUC) value of three classifiers were 0.73 ± 0.07 and 0.61 ± 0.08, respectively; the corresponding average Harrell’s concordance indexes for three classifiers were 0.92 and 0.79. The average hazard ratios (HR) of three models for predicting PFS and OS were 6.22 and 3.54, which suggested the significant difference of the two subgroup’s PFS and OS (p<0.05). Conclusion The pre-treatment CT-based radiomics model provided a promising way to predict clinical outcomes for advanced NSCLC patients treated with nivolumab.
Collapse
Affiliation(s)
- Chang Liu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jing Gong
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Hui Yu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Quan Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Shengping Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jialei Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Thoracic Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
25
|
Bortolotto C, Lancia A, Stelitano C, Montesano M, Merizzoli E, Agustoni F, Stella G, Preda L, Filippi AR. Radiomics features as predictive and prognostic biomarkers in NSCLC. Expert Rev Anticancer Ther 2020; 21:257-266. [PMID: 33216651 DOI: 10.1080/14737140.2021.1852935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Radiomics extracts a large amount of quantitative information from medical images using specific data characterization algorithms. This information, called radiomic features, can be combined with clinical data to build prediction models for prognostic evaluation and treatment selection.Areas covered: We outlined a series of studies investigating the correlation between radiomics features and outcome (prognostic) as well as response to therapy (predictive) in non-small cell lung cancer (NSCLC). We performed our analysis both in the setting of early and advanced stage of disease, with a focus on the different therapies and imaging modalities adopted.Expert opinion: The prognostic and predictive potential of the radiomic approach, combined with clinical models, could help decision-making process and guide toward the creation of an optimal and 'tailored' therapeutic strategy for lung cancer patients. However, due to the low reproducibility of most of the conducted studies and the lack of validated results, such a desirable scenario has not yet been translated to routine clinical practice.
Collapse
Affiliation(s)
| | - Andrea Lancia
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Chiara Stelitano
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marianna Montesano
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elisa Merizzoli
- Radiation Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Giulia Stella
- Respiratory Disease Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Lorenzo Preda
- Radiology Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
26
|
Abstract
Radiomics describes the extraction of multiple features from medical images, including molecular imaging modalities, that with bioinformatic approaches, provide additional clinically relevant information that may be invisible to the human eye. This information may complement standard radiological interpretation with data that may better characterize a disease or that may provide predictive or prognostic information. Progressing from predefined image features, often describing heterogeneity of voxel intensities within a volume of interest, there is increasing use of machine learning to classify disease characteristics and deep learning methods based on artificial neural networks that can learn features without a priori definition and without the need for preprocessing of images. There have been advances in standardization and harmonization of methods to a level that should support multicenter studies. However, in this relatively early phase of research in the field, there are limited aspects that have been adopted into routine practice. Most of the reports in the molecular imaging field describe radiomic approaches in cancer using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). In this review, we will describe radiomics in molecular imaging and summarize the pertinent literature in lung cancer where reports are most prevalent and mature.
Collapse
Affiliation(s)
- Gary J R Cook
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; King's College London & Guy's and St Thomas' PET Centre, St Thomas' Hospital, London, UK.
| | - Vicky Goh
- Cancer Imaging Department, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK; Radiology Department, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| |
Collapse
|
27
|
Kothari G, Korte J, Lehrer EJ, Zaorsky NG, Lazarakis S, Kron T, Hardcastle N, Siva S. A systematic review and meta-analysis of the prognostic value of radiomics based models in non-small cell lung cancer treated with curative radiotherapy. Radiother Oncol 2020; 155:188-203. [PMID: 33096167 DOI: 10.1016/j.radonc.2020.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Radiomics allows extraction of quantifiable features from imaging. This study performs a systematic review and meta-analysis of the performance of radiomics based prognostic models in non-small cell lung cancer (NSCLC). MATERIALS AND METHODS A literature review was performed following PRISMA guidelines. Medline, EMBASE and Cochrane databases were searched for articles investigating radiomics features predictive of overall survival (OS) in NSCLC treated with curative intent radiotherapy. A random-effects meta-analysis of Harrell's Concordance Index (C-index) was performed on the performance of radiomics models. RESULTS Of the 2746 articles retrieved, 40 studies of 55 datasets and 6223 patients were eligible for inclusion in the systematic review. There was significant heterogeneity in the methodology for feature selection and model development. Twelve datasets reported the C-index of radiomics based models in predicting OS and were included in the meta-analysis. The C-index random effects estimate was 0.57 (95% CI 0.53-0.62). There was significant heterogeneity (I2 = 70.3%). CONCLUSIONS Based on this review, radiomics based models for lung cancer have to date demonstrated modest prognostic capabilities. Future research should consider using standardised radiomics features, robust feature selection and model development, and deep learning techniques, absolving the need for pre-defined features, to improve imaging-based models.
Collapse
Affiliation(s)
- Gargi Kothari
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - James Korte
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Biomedical Engineering, School of Engineering, University of Melbourne, Melbourne, Australia
| | - Eric J Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Penn State Cancer Institute, Hershey, USA; Department of Public Health Sciences, Penn State College of Medicine, Hershey, USA
| | - Smaro Lazarakis
- Health Sciences Library, Peter MacCallum Cancer Centre, Parkville, Australia
| | - Tomas Kron
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, Australia; Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Nicholas Hardcastle
- Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, Australia; Centre for Medical Radiation Physics, University of Wollongong, Wollongong, Australia
| | - Shankar Siva
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Peter MacCallum Cancer Centre, Melbourne, Australia
| |
Collapse
|
28
|
Shiyam Sundar LK, Muzik O, Buvat I, Bidaut L, Beyer T. Potentials and caveats of AI in hybrid imaging. Methods 2020; 188:4-19. [PMID: 33068741 DOI: 10.1016/j.ymeth.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/18/2022] Open
Abstract
State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research.
Collapse
Affiliation(s)
- Lalith Kumar Shiyam Sundar
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | | | - Irène Buvat
- Laboratoire d'Imagerie Translationnelle en Oncologie, Inserm, Institut Curie, Orsay, France
| | - Luc Bidaut
- College of Science, University of Lincoln, Lincoln, UK
| | - Thomas Beyer
- QIMP Team, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
29
|
Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J 2020; 72:86-97. [PMID: 32735493 DOI: 10.1177/0846537120941434] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Lung cancer remains the most common cause of cancer death worldwide. Recent advances in lung cancer screening, radiotherapy, surgical techniques, and systemic therapy have led to increasing complexity in diagnosis, treatment decision-making, and assessment of recurrence. Artificial intelligence (AI)-based prediction models are being developed to address these issues and may have a future role in screening, diagnosis, treatment selection, and decision-making around salvage therapy. Imaging plays an essential role in all components of lung cancer management and has the potential to play a key role in AI applications. Artificial intelligence has demonstrated value in prognostic biomarker discovery in lung cancer diagnosis, treatment, and response assessment, putting it at the forefront of the next phase of personalized medicine. However, although exploratory studies demonstrate potential utility, there is a need for rigorous validation and standardization before AI can be utilized in clinical decision-making. In this review, we will provide a summary of the current literature implementing AI for outcome prediction in lung cancer. We will describe the anticipated impact of AI on the management of patients with lung cancer and discuss the challenges of clinical implementation of these techniques.
Collapse
Affiliation(s)
- Jaryd R Christie
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada
| | - Pencilla Lang
- Division of Radiation Oncology, 6221Western University, London, Ontario, Canada
| | - Lauren M Zelko
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada
| | - David A Palma
- Division of Radiation Oncology, 6221Western University, London, Ontario, Canada
| | - Mohamed Abdelrazek
- Department of Medical Imaging, 6221Western University, London, Ontario, Canada
| | - Sarah A Mattonen
- Department of Medical Biophysics, 6221Western University, London, Ontario, Canada.,Department of Oncology, 6221Western University, London, Ontario, Canada
| |
Collapse
|
30
|
Dercle L, Henry T, Carré A, Paragios N, Deutsch E, Robert C. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives. Methods 2020; 188:44-60. [PMID: 32697964 DOI: 10.1016/j.ymeth.2020.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Radiation therapy is a pivotal cancer treatment that has significantly progressed over the last decade due to numerous technological breakthroughs. Imaging is now playing a critical role on deployment of the clinical workflow, both for treatment planning and treatment delivery. Machine-learning analysis of predefined features extracted from medical images, i.e. radiomics, has emerged as a promising clinical tool for a wide range of clinical problems addressing drug development, clinical diagnosis, treatment selection and implementation as well as prognosis. Radiomics denotes a paradigm shift redefining medical images as a quantitative asset for data-driven precision medicine. The adoption of machine-learning in a clinical setting and in particular of radiomics features requires the selection of robust, representative and clinically interpretable biomarkers that are properly evaluated on a representative clinical data set. To be clinically relevant, radiomics must not only improve patients' management with great accuracy but also be reproducible and generalizable. Hence, this review explores the existing literature and exposes its potential technical caveats, such as the lack of quality control, standardization, sufficient sample size, type of data collection, and external validation. Based upon the analysis of 165 original research studies based on PET, CT-scan, and MRI, this review provides an overview of new concepts, and hypotheses generating findings that should be validated. In particular, it describes evolving research trends to enhance several clinical tasks such as prognostication, treatment planning, response assessment, prediction of recurrence/relapse, and prediction of toxicity. Perspectives regarding the implementation of an AI-based radiotherapy workflow are presented.
Collapse
Affiliation(s)
- Laurent Dercle
- Department of Radiology, New York Presbyterian Hospital, Columbia University Medical Center, New York, USA
| | - Theophraste Henry
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Nuclear Medicine and Endocrine Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Alexandre Carré
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Eric Deutsch
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | - Charlotte Robert
- Molecular Radiotherapy and Innovative Therapeutics, INSERM UMR1030, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France; Department of Radiation Oncology, Gustave Roussy Cancer Campus, Villejuif, France.
| |
Collapse
|
31
|
Yang B, Zhong J, Zhong J, Ma L, Li A, Ji H, Zhou C, Duan S, Wang Q, Zhu C, Tian J, Zhang L, Wang F, Zhu H, Lu G. Development and Validation of a Radiomics Nomogram Based on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography and Clinicopathological Factors to Predict the Survival Outcomes of Patients With Non-Small Cell Lung Cancer. Front Oncol 2020; 10:1042. [PMID: 32766134 PMCID: PMC7379864 DOI: 10.3389/fonc.2020.01042] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: In this study, we developed and validated a radiomics nomogram by combining the radiomic features extracted from 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) images and clinicopathological factors to evaluate the overall survival (OS) of patients with non-small cell lung cancer (NSCLC). Patients and Methods: A total of 315 consecutive patients with NSCLC (221 in the training cohort and 94 in the validation cohort) were enrolled in this study. A total of 840 radiomic features were extracted from the CT and PET images. Three radiomic scores (rad-scores) were calculated using the least absolute shrinkage and selection operator (LASSO) Cox regression based on subsets of CT, PET, and PET/CT radiomic features. A multivariate Cox regression analysis was performed for each rad-score combined with clinicopathological factors to determine the independent risk factors. The OS nomogram was constructed based on the PET/CT rad-score and independent clinicopathological factors. Validation and calibration were conducted to evaluate the performance of the model in the training and validation cohorts, respectively. Results: A total of 144 (45.71%) women and 171 (54.29%) men with NSCLC were enrolled in this study. The PET/CT rad-score combined with the clinical model had the best C-index (0.776 and 0.789 for the training and validation cohorts, respectively). Distant metastasis, stage, carcinoembryonic antigen (CEA), and targeted therapy were independent risk factors for patients with NSCLC. The validation curve showed that the OS nomogram had a strong predictive power in patients' survival. The calibration curve showed that the predicted survival time was significantly close to the observed one. Conclusion: A radiomic nomogram based on 18F-FDG PET/CT rad-score and clinicopathological factors had good predictive performance for the survival outcome, offering feasible, and practical guidance for individualized management of patients with NSCLC.
Collapse
Affiliation(s)
- Bin Yang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jian Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jing Zhong
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Lu Ma
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ang Li
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Hengshan Ji
- Department of Nuclear Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Changsheng Zhou
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | - Qinggen Wang
- Department of Medical Imaging, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Chaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Beijing, China
| | - Jiahe Tian
- Department of Nuclear Medicine, The Chinese PLA General Hospital, Beijing, China
| | - Longjiang Zhang
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Wang
- Department of Nuclear Medicine, First People's Hospital of Nanjing, Nanjing, China
| | - Hong Zhu
- Department of Nuclear Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
32
|
Implementation of eHealth and AI integrated diagnostics with multidisciplinary digitized data: are we ready from an international perspective? Eur Radiol 2020; 30:5510-5524. [PMID: 32377810 PMCID: PMC7476980 DOI: 10.1007/s00330-020-06874-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/18/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022]
Abstract
Digitization of medicine requires systematic handling of the increasing amount of health data to improve medical diagnosis. In this context, the integration of the versatile diagnostic information, e.g., from anamnesis, imaging, histopathology, and clinical chemistry, and its comprehensive analysis by artificial intelligence (AI)–based tools is expected to improve diagnostic precision and the therapeutic conduct. However, the complex medical environment poses a major obstacle to the translation of integrated diagnostics into clinical research and routine. There is a high need to address aspects like data privacy, data integration, interoperability standards, appropriate IT infrastructure, and education of staff. Besides this, a plethora of technical, political, and ethical challenges exists. This is complicated by the high diversity of approaches across Europe. Thus, we here provide insights into current international activities on the way to digital comprehensive diagnostics. This includes a technical view on challenges and solutions for comprehensive diagnostics in terms of data integration and analysis. Current data communications standards and common IT solutions that are in place in hospitals are reported. Furthermore, the international hospital digitalization scoring and the European funding situation were analyzed. In addition, the regional activities in radiomics and the related publication trends are discussed. Our findings show that prerequisites for comprehensive diagnostics have not yet been sufficiently established throughout Europe. The manifold activities are characterized by a heterogeneous digitization progress and they are driven by national efforts. This emphasizes the importance of clear governance, concerted investments, and cooperation at various levels in the health systems. Key Points • Europe is characterized by heterogeneity in its digitization progress with predominantly national efforts. Infrastructural prerequisites for comprehensive diagnostics are not given and not sufficiently funded throughout Europe, which is particularly true for data integration. • The clinical establishment of comprehensive diagnostics demands for a clear governance, significant investments, and cooperation at various levels in the healthcare systems. • While comprehensive diagnostics is on its way, concerted efforts should be taken in Europe to get consensus concerning interoperability and standards, security, and privacy as well as ethical and legal concerns.
Collapse
|
33
|
Avanzo M, Stancanello J, Pirrone G, Sartor G. Radiomics and deep learning in lung cancer. Strahlenther Onkol 2020; 196:879-887. [PMID: 32367456 DOI: 10.1007/s00066-020-01625-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis-treatment-follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.
Collapse
Affiliation(s)
- Michele Avanzo
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy.
| | | | - Giovanni Pirrone
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| | - Giovanna Sartor
- Department of Medical Physics, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081, Aviano, PN, Italy
| |
Collapse
|
34
|
O'Sullivan S, McDermott R, Keys M, O'Sullivan M, Armstrong J, Faul C. Imaging response assessment following stereotactic body radiotherapy for solid tumour metastases of the spine: Current challenges and future directions. J Med Imaging Radiat Oncol 2020; 64:385-397. [PMID: 32293114 DOI: 10.1111/1754-9485.13032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 01/01/2023]
Abstract
Patients with metastatic disease are routinely serially imaged to assess disease burden and response to systemic and local therapies, which places ever-expanding demands on our healthcare resources. Image interpretation following stereotactic body radiotherapy (SBRT) for spine metastases can be challenging; however, appropriate and accurate assessment is critical to ensure patients are managed correctly and resources are optimised. Here, we take a critical review of the merits and pitfalls of various imaging modalities, current response assessment guidelines, and explore novel imaging approaches and the potential for radiomics to add value in imaging assessment.
Collapse
Affiliation(s)
- Siobhra O'Sullivan
- St Luke's Institute of Cancer Research, St Luke's Radiation Oncology Network, Dublin 6, Ireland.,Department of Radiation Oncology, St Luke's Radiation Oncology Network, Dublin 6, Ireland
| | - Ronan McDermott
- St Luke's Institute of Cancer Research, St Luke's Radiation Oncology Network, Dublin 6, Ireland.,Department of Radiation Oncology, St Luke's Radiation Oncology Network, Dublin 6, Ireland
| | - Maeve Keys
- Department of Radiation Oncology, St Luke's Radiation Oncology Network, Dublin 6, Ireland
| | - Maeve O'Sullivan
- Department of Radiology, Beaumont Hospital, Royal College of Surgeons of Ireland, Dublin 9, Ireland
| | - John Armstrong
- Department of Radiation Oncology, St Luke's Radiation Oncology Network, Dublin 6, Ireland
| | - Clare Faul
- Department of Radiation Oncology, St Luke's Radiation Oncology Network, Dublin 6, Ireland
| |
Collapse
|
35
|
Valladares A, Beyer T, Rausch I. Physical imaging phantoms for simulation of tumor heterogeneity in PET, CT, and MRI: An overview of existing designs. Med Phys 2020; 47:2023-2037. [PMID: 31981214 PMCID: PMC7216968 DOI: 10.1002/mp.14045] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND In oncology, lesion characterization is essential for tumor grading, treatment planning, and follow-up of cancer patients. Hybrid imaging systems, such as Single Photon Emission Computed Tomography (SPECT)/CT, Positron Emission Tomography (PET)/CT, or PET/magnetic resonance imaging (MRI), play an essential role for the noninvasive quantification of tumor characteristics. However, most of the existing approaches are challenged by intra- and intertumor heterogeneity. Novel quantitative imaging parameters that can be derived from textural feature analysis (as part of radiomics) are promising complements for improved characterization of tumor heterogeneity, thus, supporting clinically relevant implementations of personalized medicine concepts. Nevertheless, establishing new quantitative parameters for tumor characterization requires the use of standardized imaging objects to test the reliability of results prior to their implementation in patient studies. METHODS In this review, we summarize existing reports on heterogeneous phantoms with a focus on simulating tumor heterogeneity. We discuss the techniques, materials, advantages, and limitations of the existing phantoms for PET, CT, and MR imaging modalities. CONCLUSIONS Finally, we outline the future directions and requirements for the design of cross modality imaging phantoms.
Collapse
Affiliation(s)
- Alejandra Valladares
- QIMP TeamCentre for Medical Physics and Biomedical EngineeringMedical University of ViennaVienna1090Austria
| | - Thomas Beyer
- QIMP TeamCentre for Medical Physics and Biomedical EngineeringMedical University of ViennaVienna1090Austria
| | - Ivo Rausch
- QIMP TeamCentre for Medical Physics and Biomedical EngineeringMedical University of ViennaVienna1090Austria
| |
Collapse
|
36
|
Kaissis GA, Ziegelmayer S, Lohöfer FK, Harder FN, Jungmann F, Sasse D, Muckenhuber A, Yen HY, Steiger K, Siveke J, Friess H, Schmid R, Weichert W, Makowski MR, Braren RF. Image-Based Molecular Phenotyping of Pancreatic Ductal Adenocarcinoma. J Clin Med 2020; 9:jcm9030724. [PMID: 32155990 PMCID: PMC7141256 DOI: 10.3390/jcm9030724] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
To bridge the translational gap between recent discoveries of distinct molecular phenotypes of pancreatic cancer and tangible improvements in patient outcome, there is an urgent need to develop strategies and tools informing and improving the clinical decision process. Radiomics and machine learning approaches can offer non-invasive whole tumor analytics for clinical imaging data-based classification. The retrospective study assessed baseline computed tomography (CT) from 207 patients with proven pancreatic ductal adenocarcinoma (PDAC). Following expert level manual annotation, Pyradiomics was used for the extraction of 1474 radiomic features. The molecular tumor subtype was defined by immunohistochemical staining for KRT81 and HNF1a as quasi-mesenchymal (QM) vs. non-quasi-mesenchymal (non-QM). A Random Forest machine learning algorithm was developed to predict the molecular subtype from the radiomic features. The algorithm was then applied to an independent cohort of histopathologically unclassifiable tumors with distinct clinical outcomes. The classification algorithm achieved a sensitivity, specificity and ROC-AUC (area under the receiver operating characteristic curve) of 0.84 ± 0.05, 0.92 ± 0.01 and 0.93 ± 0.01, respectively. The median overall survival for predicted QM and non-QM tumors was 16.1 and 20.9 months, respectively, log-rank-test p = 0.02, harzard ratio (HR) 1.59. The application of the algorithm to histopathologically unclassifiable tumors revealed two groups with significantly different survival (8.9 and 39.8 months, log-rank-test p < 0.001, HR 4.33). The machine learning-based analysis of preoperative (CT) imaging allows the prediction of molecular PDAC subtypes highly relevant for patient survival, allowing advanced pre-operative patient stratification for precision medicine applications.
Collapse
Affiliation(s)
- Georgios A. Kaissis
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
- Imperial College of Science, Technology and Medicine, Faculty of Engineering, Department of Computing, SW7 2AZ London, UK
| | - Sebastian Ziegelmayer
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
| | - Fabian K. Lohöfer
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
| | - Felix N. Harder
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
| | - Friederike Jungmann
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
| | - Daniel Sasse
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
| | - Alexander Muckenhuber
- Technical University of Munich, School of Medicine, Institute for Pathology, 81675 Munich, Germany; (A.M.); (H.-Y.Y.); (K.S.); (W.W.)
| | - Hsi-Yu Yen
- Technical University of Munich, School of Medicine, Institute for Pathology, 81675 Munich, Germany; (A.M.); (H.-Y.Y.); (K.S.); (W.W.)
| | - Katja Steiger
- Technical University of Munich, School of Medicine, Institute for Pathology, 81675 Munich, Germany; (A.M.); (H.-Y.Y.); (K.S.); (W.W.)
| | - Jens Siveke
- Institute of Developmental Cancer Therapeutics, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany;
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, parter site Essen, Germany) and German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Helmut Friess
- Technical University of Munich, School of Medicine, Surgical Clinic and Policlinic, 81675 Munich, Germany;
| | - Roland Schmid
- Technical University of Munich, School of Medicine, Department of Internal Medicine II, 81675 Munich, Germany;
| | - Wilko Weichert
- Technical University of Munich, School of Medicine, Institute for Pathology, 81675 Munich, Germany; (A.M.); (H.-Y.Y.); (K.S.); (W.W.)
| | - Marcus R. Makowski
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
| | - Rickmer F. Braren
- Technical University of Munich, School of Medicine, Department of Diagnostic and Interventional Radiology, 81675 Munich, Germany; (G.A.K.); (S.Z.); (F.K.L.); (F.N.H.); (F.J.); (D.S.); (M.R.M.)
- Correspondence: ; Tel.: +49-89-4140-5627
| |
Collapse
|
37
|
A radiomic approach to predicting nodal relapse and disease-specific survival in patients treated with stereotactic body radiation therapy for early-stage non-small cell lung cancer. Strahlenther Onkol 2019; 196:922-931. [PMID: 31722061 DOI: 10.1007/s00066-019-01542-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/23/2019] [Indexed: 12/25/2022]
Abstract
PURPOSE To describe the possibility of building a classifier for patients at risk of lymph node relapse and a predictive model for disease-specific survival in patients with early stage non-small cell lung cancer. METHODS A cohort of 102 patients who received stereotactic body radiation treatment was retrospectively investigated. A set of 45 textural features was computed for the tumor volumes on the treatment planning CT images. Patients were split into two independent cohorts (70 patients, 68.9%, for training; and 32 patients, 31.4%, for validation). Three different models were built in the study. A stepwise backward linear discriminant analysis was applied to identify patients at risk of lymph node progression. The performance of the model was assessed by means of standard metrics derived from the confusion matrix. Furthermore, all textural features were correlated to survival data to build two separate predictive models for progression-free survival (PFS) and disease-specific survival (DS-OS). These models were built from the features/predictors found significant in univariate analysis and elastic net regularization by means of a multivarate Cox regression with backward selection. Low- and high-risk groups were identified by maximizing the separation by means of the Youden method. RESULTS In the total cohort (77, 75.5%, males; and 25, 24.5%, females; median age 76.6 years), 15 patients presented nodal progression at the time of analysis; 19 patients (18.6%) died because of disease-specific causes, 25 (24.5%) died from other reasons, 28 (27.5%) were alive without disease, and 30 (29.4%) with either local or distant progression. The specificity, sensitivity, and accuracy of the classifier resulted 83.1 ± 24.5, 87.4 ± 1.2, and 85.4 ± 12.5 in the validation group (coherent with the findings in the training). The area under the curve for the classifier resulted in 0.84 ± 0.04 and 0.73 ± 0.05 for training and validation, respectively. The mean time for DS-OS and PFS for the low- and high-risk subgroups of patients (in the validation groups) were 88.2 month ± 9.0 month vs. 84.1 month ± 7.8 month (low risk) and 52.7 month ± 5.9 month vs. 44.6 month ± 9.2 month (high risk), respectively. CONCLUSION Radiomics analysis based on planning CT images allowed a classifier and predictive models capable of identifying patients at risk of nodal relapse and high-risk of bad prognosis to be built. The radiomics signatures identified were mostly related to tumor heterogeneity.
Collapse
|