1
|
Nisha FA, Tagoe JNA, Pease AB, Horne SM, Ugrinov A, Geddes BA, Prüß BM. Plant seedlings of peas, tomatoes, and cucumbers exude compounds that are needed for growth and chemoattraction of Rhizobium leguminosarum bv. viciae 3841 and Azospirillum brasilense Sp7. Can J Microbiol 2024; 70:150-162. [PMID: 38427979 DOI: 10.1139/cjm-2023-0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
This study characterizes seedling exudates of peas, tomatoes, and cucumbers at the level of chemical composition and functionality. A plant experiment confirmed that Rhizobium leguminosarum bv. viciae 3841 enhanced growth of pea shoots, while Azospirillum brasilense Sp7 supported growth of pea, tomato, and cucumber roots. Chemical analysis of exudates after 1 day of seedling incubation in water yielded differences between the exudates of the three plants. Most remarkably, cucumber seedling exudate did not contain detectable sugars. All exudates contained amino acids, nucleobases/nucleosides, and organic acids, among other compounds. Cucumber seedling exudate contained reduced glutathione. Migration on semi solid agar plates containing individual exudate compounds as putative chemoattractants revealed that R. leguminosarum bv. viciae was more selective than A. brasilense, which migrated towards any of the compounds tested. Migration on semi solid agar plates containing 1:1 dilutions of seedling exudate was observed for each of the combinations of bacteria and exudates tested. Likewise, R. leguminosarum bv. viciae and A. brasilense grew on each of the three seedling exudates, though at varying growth rates. We conclude that the seedling exudates of peas, tomatoes, and cucumbers contain everything that is needed for their symbiotic bacteria to migrate and grow on.
Collapse
Affiliation(s)
- Fatema A Nisha
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Janice N A Tagoe
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Amanda B Pease
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Shelley M Horne
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, ND, USA
| | - Barney A Geddes
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| | - Birgit M Prüß
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
2
|
Ferrarezi JA, Defant H, de Souza LF, Azevedo JL, Hungria M, Quecine MC. Meta-omics integration approach reveals the effect of soil native microbiome diversity in the performance of inoculant Azospirillum brasilense. FRONTIERS IN PLANT SCIENCE 2023; 14:1172839. [PMID: 37457347 PMCID: PMC10340089 DOI: 10.3389/fpls.2023.1172839] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/19/2023] [Indexed: 07/18/2023]
Abstract
Plant growth promoting bacteria (PGPB) have been used as integrative inputs to minimize the use of chemical fertilizers. However, a holistic comprehension about PGPB-plant-microbiome interactions is still incipient. Furthermore, the interaction among PGPB and the holobiont (host-microbiome association) represent a new frontier to plant breeding programs. We aimed to characterize maize bulk soil and rhizosphere microbiomes in irradiated soil (IS) and a native soil (NS) microbial community gradient (dilution-to-extinction) with Azospirillum brasilense Ab-V5, a PGPB commercial inoculant. Our hypothesis was that plant growth promotion efficiency is a result of PGPB niche occupation and persistence according to the holobiont conditions. The effects of Ab-V5 and NS microbial communities were evaluated in microcosms by a combined approach of microbiomics (species-specific qPCR, 16S rRNA metataxonomics and metagenomics) and plant phenomics (conventional and high-throughput methods). Our results revealed a weak maize growth promoting effect of Ab-V5 inoculation in undiluted NS, contrasting the positive effects of NS dilutions 10-3, 10-6, 10-9 and IS with Ab-V5. Alpha diversity in NS + Ab-V5 soil samples was higher than in all other treatments in a time course of 25 days after sowing (DAS). At 15 DAS, alpha diversity indexes were different between NS and IS, but similar in all NS dilutions in rhizospheric samples. These differences were not persistent at 25 DAS, demonstrating a stabilization process in the rhizobiomes. In NS 10-3 +Ab-V5 and NS 10-6 Ab-V5, Ab-V5 persisted in the maize rhizosphere until 15 DAS in higher abundances compared to NS. In NS + Ab-V5, abundance of six taxa were positively correlated with response to (a)biotic stresses in plant-soil interface. Genes involved in bacterial metabolism of riboses and amino acids, and cresol degradation were abundant on NS 10-3 + Ab-V5, indicating that these pathways can contribute to plant growth promotion and might be a result of Ab-V5 performance as a microbial recruiter of beneficial functions to the plant. Our results demonstrated the effects of holobiont on Ab-V5 performance. The meta-omics integration supported by plant phenomics opens new perspectives to better understanding of inoculants-holobiont interaction and for developing better strategies for optimization in the use of microbial products.
Collapse
Affiliation(s)
- Jessica Aparecida Ferrarezi
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Heloísa Defant
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Leandro Fonseca de Souza
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - João Lúcio Azevedo
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Maria Carolina Quecine
- Laboratory of Genetics of Microorganisms “Prof. Joao Lucio de Azevedo”, Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
3
|
Matongera N, Ndhlela T, van Biljon A, Kamutando CN, Labuschagne M. Combining ability and testcross performance of multi-nutrient maize under stress and non-stress environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1070302. [PMID: 36760637 PMCID: PMC9902879 DOI: 10.3389/fpls.2023.1070302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
While significant progress has been made by several international breeding institutions in improving maize nutritional quality, stacking of nutritional traits like zinc (Zn), quality protein, and provitamin A has not received much attention. In this study, 11 newly introduced Zn-enhanced inbred lines were inter-mated with seven testers from normal, provitamin A and quality protein maize (QPM) nutritional backgrounds in order to estimate the general combining ability (GCA) and specific combining ability (SCA) for grain yield (GY) and secondary traits under stress conditions [(combined heat and drought stress (HMDS) and managed low nitrogen (LN)] and non-stress conditions [(summer rainfed; OPT) and well-watered (irrigated winter; WW)] in Zimbabwe. Lines L6 and L7 had positive GCA effects for GY and secondary traits under OPT and LN conditions, and L8 and L9 were good general combiners for GY under HMDS conditions. Superior hybrids with high GY and desirable secondary traits were identified as L10/T7 and L9/T7 (Zn x normal), L2/T4, L4/T4, L3/T5 (Zn x provitamin A), and L8/T6 and L11/T3 (Zn x QPM), suggesting the possibility of developing Zn-enhanced hybrids with high yield potential using different nutritional backgrounds. Both additive and dominance gene effects were important in controlling most of the measured traits. This suggests that selecting for desirable traits during inbred line development followed by hybridization and testing of specific crosses under different management conditions could optimize the breeding strategy for stacked nutritionally-enhanced maize genotypes.
Collapse
Affiliation(s)
- Nakai Matongera
- Scientific and Industrial Research and Development Centre (SIRDC), Harare, Zimbabwe
- Global Maize Program, International Maize and Wheat Improvement Centre (CIMMYT), Harare, Zimbabwe
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Thokozile Ndhlela
- Global Maize Program, International Maize and Wheat Improvement Centre (CIMMYT), Harare, Zimbabwe
| | - Angeline van Biljon
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Casper N. Kamutando
- Department of Plant Production Sciences and Technologies, University of Zimbabwe, Harare, Zimbabwe
| | - Maryke Labuschagne
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
4
|
Yassue RM, Carvalho HF, Gevartosky R, Sabadin F, Souza PH, Bonatelli ML, Azevedo JL, Quecine MC, Fritsche-Neto R. On the genetic architecture in a public tropical maize panel of the symbiosis between corn and plant growth-promoting bacteria aiming to improve plant resilience. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:63. [PMID: 37309313 PMCID: PMC10236062 DOI: 10.1007/s11032-021-01257-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
Exploring the symbiosis between plants and plant growth-promoting bacteria (PGPB) is a new challenge for sustainable agriculture. Even though many works have reported the beneficial effects of PGPB in increasing plant resilience for several stresses, its potential is not yet widely explored. One of the many reasons is the differential symbiosis performance depending on the host genotype. This opens doors to plant breeding programs to explore the genetic variability and develop new cultivars with higher responses to PGPB interaction and, therefore, have higher resilience to stress. Hence, we aimed to study the genetic architecture of the symbiosis between PGPB and tropical maize germplasm, using a public association panel and its impact on plant resilience. Our findings reveal that the synthetic PGPB population can modulate and impact root architecture traits and improve resilience to nitrogen stress, and 37 regions were significant for controlling the symbiosis between PGPB and tropical maize. In addition, we found two overlapping SNPs in the GWAS analysis indicating strong candidates for further investigations. Furthermore, genomic prediction analysis with genomic relationship matrix computed using only significant SNPs obtained from GWAS analysis substantially increased the predictive ability for several traits endorsing the importance of these genomic regions for the response of PGPB. Finally, the public tropical panel reveals a significant genetic variability to the symbiosis with the PGPB and can be a source of alleles to improve plant resilience. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01257-6.
Collapse
Affiliation(s)
- Rafael Massahiro Yassue
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Humberto Fanelli Carvalho
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Raysa Gevartosky
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Felipe Sabadin
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Pedro Henrique Souza
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Maria Leticia Bonatelli
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - João Lúcio Azevedo
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Maria Carolina Quecine
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, São Paulo Brazil
| |
Collapse
|
5
|
Fritsche-Neto R, Galli G, Borges KLR, Costa-Neto G, Alves FC, Sabadin F, Lyra DH, Morais PPP, Braatz de Andrade LR, Granato I, Crossa J. Optimizing Genomic-Enabled Prediction in Small-Scale Maize Hybrid Breeding Programs: A Roadmap Review. FRONTIERS IN PLANT SCIENCE 2021; 12:658267. [PMID: 34276721 PMCID: PMC8281958 DOI: 10.3389/fpls.2021.658267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/10/2021] [Indexed: 06/13/2023]
Abstract
The usefulness of genomic prediction (GP) for many animal and plant breeding programs has been highlighted for many studies in the last 20 years. In maize breeding programs, mostly dedicated to delivering more highly adapted and productive hybrids, this approach has been proved successful for both large- and small-scale breeding programs worldwide. Here, we present some of the strategies developed to improve the accuracy of GP in tropical maize, focusing on its use under low budget and small-scale conditions achieved for most of the hybrid breeding programs in developing countries. We highlight the most important outcomes obtained by the University of São Paulo (USP, Brazil) and how they can improve the accuracy of prediction in tropical maize hybrids. Our roadmap starts with the efforts for germplasm characterization, moving on to the practices for mating design, and the selection of the genotypes that are used to compose the training population in field phenotyping trials. Factors including population structure and the importance of non-additive effects (dominance and epistasis) controlling the desired trait are also outlined. Finally, we explain how the source of the molecular markers, environmental, and the modeling of genotype-environment interaction can affect the accuracy of GP. Results of 7 years of research in a public maize hybrid breeding program under tropical conditions are discussed, and with the great advances that have been made, we find that what is yet to come is exciting. The use of open-source software for the quality control of molecular markers, implementing GP, and envirotyping pipelines may reduce costs in an efficient computational manner. We conclude that exploring new models/tools using high-throughput phenotyping data along with large-scale envirotyping may bring more resolution and realism when predicting genotype performances. Despite the initial costs, mostly for genotyping, the GP platforms in combination with these other data sources can be a cost-effective approach for predicting the performance of maize hybrids for a large set of growing conditions.
Collapse
Affiliation(s)
- Roberto Fritsche-Neto
- Laboratory of Allogamous Plant Breeding, Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Giovanni Galli
- Laboratory of Allogamous Plant Breeding, Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Karina Lima Reis Borges
- Laboratory of Allogamous Plant Breeding, Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Germano Costa-Neto
- Laboratory of Allogamous Plant Breeding, Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Filipe Couto Alves
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States
| | - Felipe Sabadin
- Laboratory of Allogamous Plant Breeding, Genetics Department, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Danilo Hottis Lyra
- Department of Computational and Analytical Sciences, Rothamsted Research, Harpenden, United Kingdom
| | | | | | - Italo Granato
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), Institut National de la Recherche Agronomique (INRA), Univ. Montpellier, SupAgro, Montpellier, France
| | - Jose Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Carretera México - Veracruz, Texcoco, Mexico
- Colegio de Posgraduado, Montecillo, Mexico
| |
Collapse
|
6
|
Costa-Neto G, Crossa J, Fritsche-Neto R. Enviromic Assembly Increases Accuracy and Reduces Costs of the Genomic Prediction for Yield Plasticity in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:717552. [PMID: 34691099 PMCID: PMC8529011 DOI: 10.3389/fpls.2021.717552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/03/2021] [Indexed: 05/21/2023]
Abstract
Quantitative genetics states that phenotypic variation is a consequence of the interaction between genetic and environmental factors. Predictive breeding is based on this statement, and because of this, ways of modeling genetic effects are still evolving. At the same time, the same refinement must be used for processing environmental information. Here, we present an "enviromic assembly approach," which includes using ecophysiology knowledge in shaping environmental relatedness into whole-genome predictions (GP) for plant breeding (referred to as enviromic-aided genomic prediction, E-GP). We propose that the quality of an environment is defined by the core of environmental typologies and their frequencies, which describe different zones of plant adaptation. From this, we derived markers of environmental similarity cost-effectively. Combined with the traditional additive and non-additive effects, this approach may better represent the putative phenotypic variation observed across diverse growing conditions (i.e., phenotypic plasticity). Then, we designed optimized multi-environment trials coupling genetic algorithms, enviromic assembly, and genomic kinships capable of providing in-silico realization of the genotype-environment combinations that must be phenotyped in the field. As proof of concept, we highlighted two E-GP applications: (1) managing the lack of phenotypic information in training accurate GP models across diverse environments and (2) guiding an early screening for yield plasticity exerting optimized phenotyping efforts. Our approach was tested using two tropical maize sets, two types of enviromics assembly, six experimental network sizes, and two types of optimized training set across environments. We observed that E-GP outperforms benchmark GP in all scenarios, especially when considering smaller training sets. The representativeness of genotype-environment combinations is more critical than the size of multi-environment trials (METs). The conventional genomic best-unbiased prediction (GBLUP) is inefficient in predicting the quality of a yet-to-be-seen environment, while enviromic assembly enabled it by increasing the accuracy of yield plasticity predictions. Furthermore, we discussed theoretical backgrounds underlying how intrinsic envirotype-phenotype covariances within the phenotypic records can impact the accuracy of GP. The E-GP is an efficient approach to better use environmental databases to deliver climate-smart solutions, reduce field costs, and anticipate future scenarios.
Collapse
Affiliation(s)
- Germano Costa-Neto
- Department of Genetics, “Luiz de Queiroz” Agriculture College, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, United States
- *Correspondence: Germano Costa-Neto
| | - Jose Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
- Colegio de Posgraduado, Mexico City, Mexico
| | - Roberto Fritsche-Neto
- Department of Genetics, “Luiz de Queiroz” Agriculture College, University of São Paulo (ESALQ/USP), Piracicaba, Brazil
- Breeding Analytics and Data Management Unit, International Rice Research Institute (IRRI), Los Baños, Philippines
| |
Collapse
|
7
|
Chaikam V, Gowda M, Martinez L, Alvarado Beltrán G, Zhang X, Prasanna BM. Diallelic Analysis of Tropical Maize Germplasm Response to Spontaneous Chromosomal Doubling. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1224. [PMID: 32957659 PMCID: PMC7570170 DOI: 10.3390/plants9091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 11/30/2022]
Abstract
Chromosome doubling is an important step in the production of maize doubled haploid (DH) lines to induce fertility in the male and female reproductive organs of haploid plants. Chromosomal doubling is routinely accomplished by treating haploid seedlings with mitosis-inhibiting chemicals. However, chromosomal doubling involves several labor-intensive steps and toxic chemicals. Spontaneous chromosomal doubling without any chemical treatments occurs at high frequency in haploids from a few maize genotypes. This study focused on elucidating the genetic components of two traits important for using spontaneous doubling in maize-breeding programs, namely, haploid male fertility (HMF) and haploid fertility (HF). In two different sets of diallel crosses, haploids were derived and assessed for HMF and HF in two environments in replicated trials. The results revealed significant genotypic variations for both traits. The general combining ability (GCA) and specific combining (SCA) were significant for both traits. Significant and positive GCA effects of up to 14% and 9% were found for HMF and HF, respectively. No significant reciprocal effects and genotype-by-environment (G×E) interactions were found for HF in both experiments, but HMF showed significant effects for both in one of the experiments. The GCA effects were more important than the SCA effects for HMF and HF across environments, implying that selection could facilitate their improvement. The high correlations between F1-hybrid performance and mid-parent values, as well as that between F1-hybrid performance and GCA effects, also supports the assumption that these traits are controlled by a few genes. SCA effects also played a role, especially when lines with low spontaneous doubling were used as parents. Overall, spontaneous doubling can be introgressed and improved in elite germplasm with selection, and it has the potential to be employed in DH pipelines.
Collapse
Affiliation(s)
- Vijay Chaikam
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya; (V.C.); (M.G.)
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya; (V.C.); (M.G.)
| | - Leocadio Martinez
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico 06600, Mexico; (L.M.); (G.A.B.); (X.Z.)
| | - Gregório Alvarado Beltrán
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico 06600, Mexico; (L.M.); (G.A.B.); (X.Z.)
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), Apdo, Postal 6-641, Mexico 06600, Mexico; (L.M.); (G.A.B.); (X.Z.)
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF Campus, UN Avenue, Gigiri, P.O. Box 1041–00621, Nairobi, Kenya; (V.C.); (M.G.)
| |
Collapse
|
8
|
Vieira Velloso CC, de Oliveira CA, Gomes EA, Lana UGDP, de Carvalho CG, Guimarães LJM, Pastina MM, de Sousa SM. Genome-guided insights of tropical Bacillus strains efficient in maize growth promotion. FEMS Microbiol Ecol 2020; 96:5891423. [DOI: 10.1093/femsec/fiaa157] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
ABSTRACT
Plant growth promoting bacteria (PGPB) are an efficient and sustainable alternative to mitigate biotic and abiotic stresses in maize. This work aimed to sequence the genome of two Bacillus strains (B116 and B119) and to evaluate their plant growth-promoting (PGP) potential in vitro and their capacity to trigger specific responses in different maize genotypes. Analysis of the genomic sequences revealed the presence of genes related to PGP activities. Both strains were able to produce biofilm and exopolysaccharides, and solubilize phosphate. The strain B119 produced higher amounts of IAA-like molecules and phytase, whereas B116 was capable to produce more acid phosphatase. Maize seedlings inoculated with either strains were submitted to polyethylene glycol-induced osmotic stress and showed an increase of thicker roots, which resulted in a higher root dry weight. The inoculation also increased the total dry weight and modified the root morphology of 16 out of 21 maize genotypes, indicating that the bacteria triggered specific responses depending on plant genotype background. Maize root remodeling was related to growth promotion mechanisms found in genomic prediction and confirmed by in vitro analysis. Overall, the genomic and phenotypic characterization brought new insights to the mechanisms of PGP in tropical Bacillus.
Collapse
Affiliation(s)
- Camila Cristina Vieira Velloso
- Universidade Federal de São João del-Rei, Rua Padre João Pimentel, 80 - Dom Bosco, São João del-Rei - MG, 36301-158, Brazil
| | - Christiane Abreu de Oliveira
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Eliane Aparecida Gomes
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Ubiraci Gomes de Paula Lana
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Chainheny Gomes de Carvalho
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
| | | | - Maria Marta Pastina
- Universidade Federal de São João del-Rei, Rua Padre João Pimentel, 80 - Dom Bosco, São João del-Rei - MG, 36301-158, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| | - Sylvia Morais de Sousa
- Universidade Federal de São João del-Rei, Rua Padre João Pimentel, 80 - Dom Bosco, São João del-Rei - MG, 36301-158, Brazil
- Centro Universitário de Sete Lagoas, Avenida Marechal Castelo Branco, 2765 - Santo Antonio, Sete Lagoas - MG, 35701-242, Brazil
- Embrapa Milho e Sorgo,Rodovia MG 424 Km 45, Zona Rural, Sete Lagoas - MG, 35701-970, Brazil
| |
Collapse
|
9
|
Dellagi A, Quillere I, Hirel B. Beneficial soil-borne bacteria and fungi: a promising way to improve plant nitrogen acquisition. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4469-4479. [PMID: 32157312 PMCID: PMC7475097 DOI: 10.1093/jxb/eraa112] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/09/2020] [Indexed: 05/20/2023]
Abstract
Nitrogen (N) is an essential element for plant productivity, thus, it is abundantly applied to the soil in the form of organic or chemical fertilizers that have negative impacts on the environment. Exploiting the potential of beneficial microbes and identifying crop genotypes that can capitalize on symbiotic associations may be possible ways to significantly reduce the use of N fertilizers. The best-known example of symbiotic association that can reduce the use of N fertilizers is the N2-fixing rhizobial bacteria and legumes. Bacterial taxa other than rhizobial species can develop associative symbiotic interactions with plants and also fix N. These include bacteria of the genera Azospirillum, Azotobacter, and Bacillus, some of which are commercialized as bio-inoculants. Arbuscular mycorrhizal fungi are other microorganisms that can develop symbiotic associations with most terrestrial plants, favoring access to nutrients in a larger soil volume through their extraradical mycelium. Using combinations of different beneficial microbial species is a promising strategy to boost plant N acquisition and foster a synergistic beneficial effect between symbiotic microorganisms. Complex biological mechanisms including molecular, metabolic, and physiological processes dictate the establishment and efficiency of such multipartite symbiotic associations. In this review, we present an overview of the current knowledge and future prospects regarding plant N nutrition improvement through the use of beneficial bacteria and fungi associated with plants, individually or in combination.
Collapse
Affiliation(s)
- Alia Dellagi
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Isabelle Quillere
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| |
Collapse
|
10
|
Pereira LC, Bertuzzi Pereira C, Correia LV, Matera TC, dos Santos RF, de Carvalho C, Osipi EAF, Braccini AL. Corn Responsiveness to Azospirillum: Accessing the Effect of Root Exudates on the Bacterial Growth and Its Ability to Fix Nitrogen. PLANTS 2020; 9:plants9070923. [PMID: 32708226 PMCID: PMC7411751 DOI: 10.3390/plants9070923] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/26/2023]
Abstract
Corn has shown different degrees of positive response to inoculation with the nitrogen- fixing bacteria of the genera Azospirillum. Part of it has been attributed to the plant genotypic variation, including the root exudates, that are used by the bacteria as energy source. In this study, we grew two corn hybrids that differ for their response to Azospirillum, to investigate the effect of different exudates profiles on the bacteria growth and nitrogenase activity. Employing high performance liquid chromatography, we identified nine amino acids (asparagine, aspartic acid, serine, glutamic acid, valine, phenylalanine, threonine, tryptophan and alanine), six sugars (glucose, sucrose, xylose, arabinose, fructose and galactose) and four organic acids (citrate, malate, succinate and fumarate). The less responsive corn genotype showed reduced plant growth (root volume, shoot dry mass and shoot N content), a lower concentration of Azospirillum cells within the root tissues, a higher content of asparagine and glucose and a reduced amount of metabolites that serve as bacterial energy source (all organic acids + five sugars, excluding glucose). The genotypes did not interfere in the ability of Azospirillum to colonize the substrate, but the metabolites released by the less responsive one reduced the nitrogenase activity.
Collapse
Affiliation(s)
- Lucas Caiubi Pereira
- Department of Agronomy, Universidade Estadual de Maringá, Maringá-PR, CEP 87020-900, Brazil; (C.B.P.); (L.V.C.); (T.C.M.); (R.F.d.S.); (A.L.B.)
- Correspondence: ; Tel.: +55-44-30118963
| | - Carolina Bertuzzi Pereira
- Department of Agronomy, Universidade Estadual de Maringá, Maringá-PR, CEP 87020-900, Brazil; (C.B.P.); (L.V.C.); (T.C.M.); (R.F.d.S.); (A.L.B.)
| | - Larissa Vinis Correia
- Department of Agronomy, Universidade Estadual de Maringá, Maringá-PR, CEP 87020-900, Brazil; (C.B.P.); (L.V.C.); (T.C.M.); (R.F.d.S.); (A.L.B.)
| | - Thaisa Cavalieri Matera
- Department of Agronomy, Universidade Estadual de Maringá, Maringá-PR, CEP 87020-900, Brazil; (C.B.P.); (L.V.C.); (T.C.M.); (R.F.d.S.); (A.L.B.)
| | - Rayssa Fernanda dos Santos
- Department of Agronomy, Universidade Estadual de Maringá, Maringá-PR, CEP 87020-900, Brazil; (C.B.P.); (L.V.C.); (T.C.M.); (R.F.d.S.); (A.L.B.)
| | | | | | - Alessandro Lucca Braccini
- Department of Agronomy, Universidade Estadual de Maringá, Maringá-PR, CEP 87020-900, Brazil; (C.B.P.); (L.V.C.); (T.C.M.); (R.F.d.S.); (A.L.B.)
| |
Collapse
|
11
|
Hybrid Breeding for MLN Resistance: Heterosis, Combining Ability, and Hybrid Prediction. PLANTS 2020; 9:plants9040468. [PMID: 32276322 PMCID: PMC7238107 DOI: 10.3390/plants9040468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 11/18/2022]
Abstract
Prior knowledge on heterosis and quantitative genetic parameters on maize lethal necrosis (MLN) can help the breeders to develop numerous resistant or tolerant hybrids with optimum resources. Our objectives were to (1) estimate the quantitative genetic parameters for MLN disease severity, (2) investigate the efficiency of the prediction of hybrid performance based on parental per se and general combining ability (GCA) effects, and (3) examine the potential of hybrid prediction for MLN resistance or tolerance based on markers. Fifty elite maize inbred lines were selected based on their response to MLN under artificial inoculation. Crosses were made in a half diallel mating design to produce 307 F1 hybrids. All hybrids were evaluated in MLN quarantine facility in Naivasha, Kenya for two seasons under artificial inoculation. All 50 inbreds were genotyped with genotyping-by-sequencing (GBS) SNPs. The phenotypic variation was significant for all traits and the heritability was moderate to high. We observed that hybrids were superior to the mean performance of the parents for disease severity (−14.57%) and area under disease progress curve (AUDPC) (14.9%). Correlations were significant and moderate between line per se and GCA; and mean of parental value with hybrid performance for both disease severity and AUDPC value. Very low and negative correlation was observed between parental lines marker based genetic distance and heterosis. Nevertheless, the correlation of GCA effects was very high with hybrid performance which can suggests as a good predictor of MLN resistance. Genomic prediction of hybrid performance for MLN is high for both traits. We therefore conclude that there is potential for prediction of hybrid performance for MLN. Overall, the estimated quantitative genetic parameters suggest that through targeted approach, it is possible to develop outstanding lines and hybrids for MLN resistance.
Collapse
|
12
|
Vidotti MS, Lyra DH, Morosini JS, Granato ÍSC, Quecine MC, de Azevedo JL, Fritsche-Neto R. Additive and heterozygous (dis)advantage GWAS models reveal candidate genes involved in the genotypic variation of maize hybrids to Azospirillum brasilense. PLoS One 2019; 14:e0222788. [PMID: 31536609 PMCID: PMC6752820 DOI: 10.1371/journal.pone.0222788] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/07/2019] [Indexed: 11/18/2022] Open
Abstract
Maize genotypes can show different responsiveness to inoculation with Azospirillum brasilense and an intriguing issue is which genes of the plant are involved in the recognition and growth promotion by these Plant Growth-Promoting Bacteria (PGPB). We conducted Genome-Wide Association Studies (GWAS) using additive and heterozygous (dis)advantage models to find candidate genes for root and shoot traits under nitrogen (N) stress and N stress plus A. brasilense. A total of 52,215 Single Nucleotide Polymorphism (SNP) markers were used for GWAS analyses. For the six root traits with significant inoculation effect, the GWAS analyses revealed 25 significant SNPs for the N stress plus A. brasilense treatment, in which only two were overlapped with the 22 found for N stress only. Most were found by the heterozygous (dis)advantage model and were more related to exclusive gene ontology terms. Interestingly, the candidate genes around the significant SNPs found for the maize-A. brasilense association were involved in different functions previously described for PGPB in plants (e.g. signaling pathways of the plant's defense system and phytohormone biosynthesis). Our findings are a benchmark in the understanding of the genetic variation among maize hybrids for the association with A. brasilense and reveal the potential for further enhancement of maize through this association.
Collapse
Affiliation(s)
- Miriam Suzane Vidotti
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Júlia Silva Morosini
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | | | - Maria Carolina Quecine
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - João Lúcio de Azevedo
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Roberto Fritsche-Neto
- Department of Genetics, “Luiz de Queiroz” College of Agriculture, University of São Paulo, Piracicaba, São Paulo, Brazil
| |
Collapse
|