1
|
Sinha K, Chakraborty S, Bardhan A, Saha R, Chakraborty S, Biswas S. A New Differential Gene Expression Based Simulated Annealing for Solving Gene Selection Problem: A Case Study on Eosinophilic Esophagitis and Few Other Gastro-intestinal Diseases. Biochem Genet 2024:10.1007/s10528-024-10987-z. [PMID: 39643769 DOI: 10.1007/s10528-024-10987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Identifying the set of genes collectively responsible for causing a disease from differential gene expression data is called gene selection problem. Though many complex methodologies have been applied to solve gene selection, formulated as an optimization problem, this study introduces a new simple, efficient, and biologically plausible solution procedure where the collective power of the targeted gene set to discriminate between diseased and normal gene expression profiles was focused. It uses Simulated Annealing to solve the underlying optimization problem and termed here as Differential Gene Expression Based Simulated Annealing (DGESA). The Ranked Variance (RV) method has been applied to prioritize genes to form reference set to compare with the outcome of DGESA. In a case study on Eosinophilic Esophagitis (EoE) and other gastrointestinal diseases, RV identified the top 40 high-variance genes, overlapping with disease-causing genes from DGESA. DGESA identified 40 gene pathways each for EoE, Crohn's Disease (CD), and Ulcerative Colitis (UC), with 10 genes for EoE, 8 for CD, and 7 for UC confirmed in literature. For EoE, confirmed genes include KRT79, CRISP2, IL36G, SPRR2B, SPRR2D, and SPRR2E. For CD, validated genes are NPDC1, SLC2A4RG, LGALS8, CDKN1A, XAF1, and CYBA. For UC, confirmed genes include TRAF3, BAG6, CCDC80, CDC42SE2, and HSPA9. RV and DGESA effectively elucidate molecular signatures in gastrointestinal diseases. Validating genes like SPRR2B, SPRR2D, SPRR2E, and STAT6 for EoE demonstrates DGESA's efficacy, highlighting potential targets for future research.
Collapse
Affiliation(s)
- Koushiki Sinha
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Sanchari Chakraborty
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Arohit Bardhan
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Riju Saha
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Srijan Chakraborty
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India
| | - Surama Biswas
- Department of CSE, Meghnad Saha Institute of Technology, Behind Urbana Complex Near Ruby General Hospital, Anandapur Rd, Uchhepota, Kolkata, West Bengal, 700150, India.
| |
Collapse
|
2
|
Su Y, Liu J, Wu Q, Gao Z, Wang J, Li H, Zheng C. AMPFLDAP: Adaptive Message Passing and Feature Fusion on Heterogeneous Network for LncRNA-Disease Associations Prediction. Interdiscip Sci 2024; 16:608-622. [PMID: 38581626 DOI: 10.1007/s12539-024-00610-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 04/08/2024]
Abstract
Exploration of the intricate connections between long noncoding RNA (lncRNA) and diseases, referred to as lncRNA-disease associations (LDAs), plays a pivotal and indispensable role in unraveling the underlying molecular mechanisms of diseases and devising practical treatment approaches. It is imperative to employ computational methods for predicting lncRNA-disease associations to circumvent the need for superfluous experimental endeavors. Graph-based learning models have gained substantial popularity in predicting these associations, primarily because of their capacity to leverage node attributes and relationships within the network. Nevertheless, there remains much room for enhancing the performance of these techniques by incorporating and harmonizing the node attributes more effectively. In this context, we introduce a novel model, i.e., Adaptive Message Passing and Feature Fusion (AMPFLDAP), for forecasting lncRNA-disease associations within a heterogeneous network. Firstly, we constructed a heterogeneous network involving lncRNA, microRNA (miRNA), and diseases based on established associations and employing Gaussian interaction profile kernel similarity as a measure. Then, an adaptive topological message passing mechanism is suggested to address the information aggregation for heterogeneous networks. The topological features of nodes in the heterogeneous network were extracted based on the adaptive topological message passing mechanism. Moreover, an attention mechanism is applied to integrate both topological and semantic information to achieve the multimodal features of biomolecules, which are further used to predict potential LDAs. The experimental results demonstrated that the performance of the proposed AMPFLDAP is superior to seven state-of-the-art methods. Furthermore, to validate its efficacy in practical scenarios, we conducted detailed case studies involving three distinct diseases, which conclusively demonstrated AMPFLDAP's effectiveness in the prediction of LDAs.
Collapse
Affiliation(s)
- Yansen Su
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China.
| | - Jingjing Liu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Qingwen Wu
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Zhen Gao
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Jing Wang
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, 5089 Wangjiang West Road, Hefei, 230088, Anhui, China
| | - Haitao Li
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| | - Chunhou Zheng
- Key Laboratory of Intelligent Computing and Signal Processing, Anhui University, 111 Jiulong Road, Hefei, 230601, Anhui, China
| |
Collapse
|
3
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
4
|
Anbazhagan M, Geem D, Venkateswaran S, Pelia R, Kolachala VL, Dodd A, Maddipatla SC, Cutler DJ, Matthews JD, Chinnadurai R, Kugathasan S. Characterization of Intestinal Mesenchymal Stromal Cells From Patients With Inflammatory Bowel Disease for Autologous Cell Therapy. Stem Cells Transl Med 2023; 12:112-122. [PMID: 36869704 PMCID: PMC9985114 DOI: 10.1093/stcltm/szad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/19/2022] [Indexed: 03/05/2023] Open
Abstract
Therapy with mesenchymal stromal cells (MSCs) has shown promise in inflammatory bowel disease-leveraging their immunosuppressive and regenerative properties. However, the potential immunogenic complications of allogenic MSCs sourced from different tissues raise concern. Thus, we assessed the fitness and functionality of autologous intestinal MSCs as a potential platform for cellular therapy. Mucosal biopsy-derived MSCs from Crohn's disease (n = 11), ulcerative colitis (n = 12), and controls (n = 14) were analyzed by microscopy and flow cytometry for doubling-time, morphology, differentiation potential, and immunophenotype. Gene expression, cell-subtype composition, along with surface marker and secretome changes after IFN-γ priming were measured by bulk and single-cell RNA sequencing coupled with a 30-plex Luminex panel. MSCs expanded ex vivo demonstrate canonical MSC markers, similar growth kinetics, and tripotency regardless of the patient phenotype. Global transcription patterns were similar at baseline though inflammatory bowel disease (IBD) rectal MSCs showed changes in select immunomodulatory genes. IFN-γ priming resulted in upregulation of shared immunoregulatory genes (particularly in PD-1 signaling) and overrode the transcriptional differences observed at baseline. Furthermore, MSCs secrete key immunomodulatory molecules at baseline and in response to IFN-γ including CXCL10, CXCL9, and MCP-1. Overall, MSCs from IBD patients have normal transcriptional and immunomodulatory properties with therapeutic potential and can be sufficiently expanded.
Collapse
Affiliation(s)
- Murugadas Anbazhagan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Duke Geem
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Suresh Venkateswaran
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Ranjit Pelia
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Vasantha L Kolachala
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Anne Dodd
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Sushma C Maddipatla
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - David J Cutler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jason D Matthews
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Department of Pediatrics, Emory University School of Medicine & Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Dirvanskyte P, Gurram B, Bolton C, Warner N, Jones KDJ, Griffin HR, Park JY, Keller KM, Gilmour KC, Hambleton S, Muise AM, Wysocki C, Uhlig HH. Chromosomal Numerical Aberrations and Rare Copy Number Variation in Patients with Inflammatory Bowel Disease. J Crohns Colitis 2023; 17:49-60. [PMID: 35907265 PMCID: PMC9880952 DOI: 10.1093/ecco-jcc/jjac103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND AIMS Inflammatory bowel diseases [IBD] have a complex polygenic aetiology. Rare genetic variants can cause monogenic intestinal inflammation. The impact of chromosomal aberrations and large structural abnormalities on IBD susceptibility is not clear. We aimed to comprehensively characterise the phenotype and prevalence of patients with IBD who possess rare numerical and structural chromosomal abnormalities. METHODS We performed a systematic literature search of databases PubMed and Embase; and analysed gnomAD, Clinvar, the 100 000 Genomes Project, and DECIPHER databases. Further, we analysed international paediatric IBD cohorts to investigate the role of IL2RA duplications in IBD susceptibility. RESULTS A meta-analysis suggests that monosomy X [Turner syndrome] is associated with increased expressivity of IBD that exceeds the population baseline (1.86%, 95% confidence interval [CI] 1.48 to 2.34%) and causes a younger age of IBD onset. There is little evidence that Klinefelter syndrome, Trisomy 21, Trisomy 18, mosaic Trisomy 9 and 16, or partial trisomies contribute to IBD susceptibility. Copy number analysis studies suggest inconsistent results. Monoallelic loss of X-linked or haploinsufficient genes is associated with IBD by hemizygous or heterozygous deletions, respectively. However, haploinsufficient gene deletions are detected in healthy reference populations, suggesting that the expressivity of IBD might be overestimated. One duplication that has previously been identified as potentially contributing to IBD risk involves the IL2RA/IL15R loci. Here we provide additional evidence that a microduplication of this locus may predispose to very-early-onset IBD by identifying a second case in a distinct kindred. However, the penetrance of intestinal inflammation in this genetic aberration is low [<2.6%]. CONCLUSIONS Turner syndrome is associated with increased susceptibility to intestinal inflammation. Duplication of the IL2RA/IL15R loci may contribute to disease risk.
Collapse
Affiliation(s)
- Paulina Dirvanskyte
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Bhaskar Gurram
- Department of Pediatrics, UT Southwestern Medical Center, Dallas TX, USA
| | - Chrissy Bolton
- Institute of Child Health, University College London, London, UK
- Paediatric Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Centre, Hospital for Sick Children, Toronto, ON, Canada
| | - Kelsey D J Jones
- Paediatric Gastroenterology Department, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Helen R Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | | | - Jason Y Park
- Department of Pathology and the Eugene McDermott Center for Human Growth and Development. UT Southwestern Medical Center, Dallas, TX, USA
| | | | - Kimberly C Gilmour
- Laboratory of Immunology and Cellular Therapy, Great Ormond Street Hospital for Children, NHS Foundation Trust, London, UK
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, Hospital for Sick Children, Toronto, ON, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Cell Biology Program, Sick Kids Research Institute, Hospital for Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christian Wysocki
- Department of Pediatrics, and Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit and Biomedical Research Centre, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
- Department of Paediatrics, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
6
|
Ren M, Yang Y, Heng KHY, Ng LY, Chong CYY, Ng YT, Gorur-Shandilya S, Lee RMQ, Lim KL, Zhang J, Koh TW. MED13 and glycolysis are conserved modifiers of α-synuclein-associated neurodegeneration. Cell Rep 2022; 41:111852. [PMID: 36543134 DOI: 10.1016/j.celrep.2022.111852] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (α-syn) is important in synucleinopathies such as Parkinson's disease (PD). While genome-wide association studies (GWASs) of synucleinopathies have identified many risk loci, the underlying genes have not been shown for most loci. Using Drosophila, we screened 3,471 mutant chromosomes for genetic modifiers of α-synuclein and identified 12 genes. Eleven modifiers have human orthologs associated with diseases, including MED13 and CDC27, which lie within PD GWAS loci. Drosophila Skd/Med13 and glycolytic enzymes are co-upregulated by α-syn-associated neurodegeneration. While elevated α-syn compromises mitochondrial function, co-expressing skd/Med13 RNAi and α-syn synergistically increase the ratio of oxidized-to-reduced glutathione. The resulting neurodegeneration can be suppressed by overexpressing a glycolytic enzyme or treatment with deferoxamine, suggesting that compensatory glycolysis is neuroprotective. In addition, the functional relationship between α-synuclein, MED13, and glycolytic enzymes is conserved between flies and mice. We propose that hypoxia-inducible factor and MED13 are part of a druggable pathway for PD.
Collapse
Affiliation(s)
- Mengda Ren
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | | | - Lu Yi Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Yan Ting Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; China National Health and Disease Human Brain Tissue Resource Center, Hangzhou, Zhejiang 310002, China
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
7
|
Huang C, Zhao Q, Zhou X, Huang R, Duan Y, Haybaeck J, Yang Z. The progress of protein synthesis factors eIFs, eEFs and eRFs in inflammatory bowel disease and colorectal cancer pathogenesis. Front Oncol 2022; 12:898966. [DOI: 10.3389/fonc.2022.898966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Colorectal diseases are threatening human health, especially inflammatory bowel disease (IBD) and colorectal cancer (CRC). IBD is a group of chronic, recurrent and incurable disease, which may affect the entire gastrointestinal tract, increasing the risk of CRC. Eukaryotic gene expression is a complicated process, which is mainly regulated at the level of gene transcription and mRNA translation. Protein translation in tissue is associated with a sequence of steps, including initiation, elongation, termination and recycling. Abnormal regulation of gene expression is the key to the pathogenesis of CRC. In the early stages of cancer, it is vital to identify new diagnostic and therapeutic targets and biomarkers. This review presented current knowledge on aberrant expression of eIFs, eEFs and eRFs in colorectal diseases. The current findings of protein synthesis on colorectal pathogenesis showed that eIFs, eEFs and eRFs may be potential targets for CRC treatment.
Collapse
|
8
|
Krela-Kaźmierczak I, Zakerska-Banaszak O, Skrzypczak-Zielińska M, Łykowska-Szuber L, Szymczak-Tomczak A, Zawada A, Rychter AM, Ratajczak AE, Skoracka K, Skrzypczak D, Marcinkowska E, Słomski R, Dobrowolska A. Where Do We Stand in the Behavioral Pathogenesis of Inflammatory Bowel Disease? The Western Dietary Pattern and Microbiota-A Narrative Review. Nutrients 2022; 14:nu14122520. [PMID: 35745251 PMCID: PMC9230670 DOI: 10.3390/nu14122520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 02/06/2023] Open
Abstract
Despite the increasing knowledge with regard to IBD (inflammatory bowel disease), including ulcerative colitis (UC) and Crohn’s disease (CD), the etiology of these conditions is still not fully understood. Apart from immunological, environmental and nutritional factors, which have already been well documented, it is worthwhile to look at the possible impact of genetic factors, as well as the composition of the microbiota in patients suffering from IBD. New technologies in biochemistry allow to obtain information that can add to the current state of knowledge in IBD etiology.
Collapse
Affiliation(s)
- Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Oliwia Zakerska-Banaszak
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | | | - Liliana Łykowska-Szuber
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Aleksandra Szymczak-Tomczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Agnieszka Zawada
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Anna Maria Rychter
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Alicja Ewa Ratajczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Kinga Skoracka
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Doctoral School, Poznan University of Medical Sciences, 61-701 Poznań, Poland
| | - Dorota Skrzypczak
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
- Correspondence: (I.K.-K.); (O.Z.-B.); (D.S.)
| | - Emilia Marcinkowska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| | - Ryszard Słomski
- Institute of Human Genetics, Polish Academy of Sciences, 60-479 Poznań, Poland; (M.S.-Z.); (R.S.)
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznań, Poland; (L.Ł.-S.); (A.S.-T.); (A.Z.); (A.M.R.); (A.E.R.); (K.S.); (E.M.); (A.D.)
| |
Collapse
|
9
|
Zeng RZ, Lv XD, Liu GF, Gu GL, Li SQ, Chen L, Fan JH, Liang ZL, Wang HQ, Lu F, Zhan LL, Lv XP. The Correlation Between MYO9B Gene Polymorphism and Inflammatory Bowel Disease in the Guangxi Zhuang Population. Int J Gen Med 2021; 14:9163-9172. [PMID: 34880655 PMCID: PMC8646109 DOI: 10.2147/ijgm.s338142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022] Open
Abstract
Objective To analyze the correlation between site rs962917 of the MYO9B gene and inflammatory bowel disease (IBD) in the Guangxi Zhuang nationality population. Methods The intestinal mucosa tissue of 153 IBD subjects (Han and Zhuang patients only) in the Guangxi Zhuang autonomous region comprised the case group, and the intestinal mucosa tissue of 155 healthy subjects (Han and Zhuang patients only) in the same region represented the control group. Deoxyribonucleic acid was extracted from the intestinal mucosa tissue of each experimental group, and the MYO9B gene-target fragment containing the single nucleotide polymorphism (SNP) site rs962917 was designed. Finally, polymerase chain reaction products were obtained by amplification, analyzed, and compared using the sequencing results. Results The results indicated that the genotype frequency of the MYO9B SNP site rs962917 between Crohn’s disease (CD) and control groups of Zhuang and Han participants differed significantly (P < 0.05). Furthermore, the genotype frequency of MYO9B site rs962917 differed significantly between the Zhuang and Han population groups (P < 0.05). Conclusion Site rs962917 of the MYO9B gene is related to CD susceptibility and incidence among the Guangxi Zhuang population.
Collapse
Affiliation(s)
- Rui-Zhi Zeng
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Dan Lv
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Geng-Feng Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Guang-Li Gu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shi-Quan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lan Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Jun-Hua Fan
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhao-Liang Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui-Qin Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Fei Lu
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Ling-Ling Zhan
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Ping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
10
|
Ramirez K, Fernández R, Collet S, Kiyar M, Delgado-Zayas E, Gómez-Gil E, Van Den Eynde T, T'Sjoen G, Guillamon A, Mueller SC, Pásaro E. Epigenetics Is Implicated in the Basis of Gender Incongruence: An Epigenome-Wide Association Analysis. Front Neurosci 2021; 15:701017. [PMID: 34489625 PMCID: PMC8418298 DOI: 10.3389/fnins.2021.701017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction The main objective was to carry out a global DNA methylation analysis in a population with gender incongruence before gender-affirming hormone treatment (GAHT), in comparison to a cisgender population. Methods A global CpG (cytosine-phosphate-guanine) methylation analysis was performed on blood from 16 transgender people before GAHT vs. 16 cisgender people using the Illumina© Infinium Human Methylation 850k BeadChip, after bisulfite conversion. Changes in the DNA methylome in cisgender vs. transgender populations were analyzed with the Partek® Genomics Suite program by a 2-way ANOVA test comparing populations by group and their sex assigned at birth. Results The principal components analysis (PCA) showed that both populations (cis and trans) differ in the degree of global CpG methylation prior to GAHT. The 2-way ANOVA test showed 71,515 CpGs that passed the criterion FDR p < 0.05. Subsequently, in male assigned at birth population we found 87 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2) of which 22 were located in islands. The most significant CpGs were related to genes: WDR45B, SLC6A20, NHLH1, PLEKHA5, UBALD1, SLC37A1, ARL6IP1, GRASP, and NCOA6. Regarding the female assigned at birth populations, we found 2 CpGs that passed both criteria (FDR p < 0.05; fold change ≥ ± 2), but none were located in islands. One of these CpGs, related to the MPPED2 gene, is shared by both, trans men and trans women. The enrichment analysis showed that these genes are involved in functions such as negative regulation of gene expression (GO:0010629), central nervous system development (GO:0007417), brain development (GO:0007420), ribonucleotide binding (GO:0032553), and RNA binding (GO:0003723), among others. Strengths and Limitations It is the first time that a global CpG methylation analysis has been carried out in a population with gender incongruence before GAHT. A prospective study before/during GAHT would provide a better understanding of the influence of epigenetics in this process. Conclusion The main finding of this study is that the cis and trans populations have different global CpG methylation profiles prior to GAHT. Therefore, our results suggest that epigenetics may be involved in the etiology of gender incongruence.
Collapse
Affiliation(s)
- Karla Ramirez
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain.,Laboratory of Neurophysiology, Center for Biophysics and Biochemistry, Venezuelan Institute for Scientific Research (IVIC), Caracas, Venezuela
| | - Rosa Fernández
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | - Sarah Collet
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Enrique Delgado-Zayas
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| | | | | | - Guy T'Sjoen
- Department of Endocrinology, Ghent University, Ghent, Belgium
| | - Antonio Guillamon
- Department of Psychobiology, Faculty of Psychology, National University of Distance Education (UNED), Madrid, Spain
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Eduardo Pásaro
- Laboratory of Psychobiology, Department of Psychology, Institute Advanced Scientific Research Center (CICA), University of A Coruña, A Coruña, Spain
| |
Collapse
|
11
|
Maronese CA, Zelin E, Moltrasio C, Genovese G, Marzano AV. Genetic screening in new onset inflammatory bowel disease during anti-interleukin 17 therapy: unmet needs and call for action. Expert Opin Biol Ther 2021; 21:1543-1546. [PMID: 34448662 DOI: 10.1080/14712598.2021.1974395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Carlo Alberto Maronese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Enrico Zelin
- Dermatology Clinic, Maggiore Hospital, University of Trieste, Trieste, Italy
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Giovanni Genovese
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
12
|
Copy number variation: Characteristics, evolutionary and pathological aspects. Biomed J 2021; 44:548-559. [PMID: 34649833 PMCID: PMC8640565 DOI: 10.1016/j.bj.2021.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Copy number variants (CNVs) were the subject of extensive research in the past years. They are common features of the human genome that play an important role in evolution, contribute to population diversity, development of certain diseases, and influence host–microbiome interactions. CNVs have found application in the molecular diagnosis of many diseases and in non-invasive prenatal care, but their full potential is only emerging. CNVs are expected to have a tremendous impact on screening, diagnosis, prognosis, and monitoring of several disorders, including cancer and cardiovascular disease. Here, we comprehensively review basic definitions of the term CNV, outline mechanisms and factors involved in CNV formation, and discuss their evolutionary and pathological aspects. We suggest a need for better defined distinguishing criteria and boundaries between known types of CNVs.
Collapse
|
13
|
Ahlawat S, Kumar P, Mohan H, Goyal S, Sharma KK. Inflammatory bowel disease: tri-directional relationship between microbiota, immune system and intestinal epithelium. Crit Rev Microbiol 2021; 47:254-273. [PMID: 33576711 DOI: 10.1080/1040841x.2021.1876631] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human gut microbiota contributes to host nutrition and metabolism, sustains intestinal cell proliferation and differentiation, and modulates host immune system. The alterations in their composition lead to severe gut disorders, including inflammatory bowel disease (IBD) or inflammatory bowel syndrome (IBS). IBD including ulcerative colitis (UC) and Crohn's disease (CD) are gamut of chronic inflammatory disorders of gut, mediated by complex interrelations among genetic, environmental, and internal factors. IBD has debateable aetiology, however in recent years, exploring the central role of a tri-directional relationship between gut microbiota, mucosal immune system, and intestinal epithelium in pathogenesis is getting the most attention. Increasing incidences and early onset explains the exponential rise in IBD burden on health-care systems. Industrialization, hypersensitivity to allergens, lifestyle, hygiene hypothesis, loss of intestinal worms, and gut microbial composition, explains this shifted rise. Hitherto, the interventions modulating gut microbiota composition, microfluidics-based in vitro gastrointestinal models, non-allergic functional foods, nutraceuticals, and faecal microbiota transplantation (FMT) from healthy donors are some of the futuristic approaches for the disease management.
Collapse
Affiliation(s)
- Shruti Ahlawat
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pramod Kumar
- Ministry of Health and Family Welfare, Government of India, Indian Council of Medical Research, New Delhi, India
| | - Hari Mohan
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Goyal
- Department of Medicine, Pt. BD Sharma Post-graduate Institute of Medical Sciences, Rohtak, Haryana, India
| | - Krishna Kant Sharma
- Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
14
|
Bruinooge A, Liu Q, Tian Y, Jiang W, Li Y, Xu W, Bernstein CN, Hu P. Genetic predictors of gene expression associated with psychiatric comorbidity in patients with inflammatory bowel disease - A pilot study. Genomics 2021; 113:919-932. [PMID: 33588072 DOI: 10.1016/j.ygeno.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) affects millions of people in North America, and patients with IBD have a high incidence of psychiatric comorbidities (PC). The genetic mechanisms underlying the link are, in general, poorly understood. MATERIALS AND METHODS A transcriptome-wide association study (TWAS) was performed using genetically regulated gene expression profiles imputed from the genetic profiles of 240 IBD patients in the Manitoba IBD Cohort Study. The imputation was performed using the 44 non-diseased human tissue-specific reference models from the GTEx database. Linear modeling and gene set enrichment analysis were performed to identify genes and pathways that are significantly associated with IBD patients with PC compared to IBD alone in each of the 44 non-diseased human tissues. Finally, an enrichment map was generated to investigate networks of the enriched gene sets associated with IBD patients with PC. RESULTS The genes RBPMS in skeletal muscle (adjusted p = 0.05), KCNA5 in the cerebellar hemisphere of the brain (adjusted p = 0.09), GSR, SMIM34A, and LIPT2 in the frontal cortex of the brain (adjusted p = 0.09 for each) were the top genetically regulated genes with a suggestive association with IBD patients with PC. We identified three gene set networks, which include gene sets and pathways with a suggestive association with IBD patients with PC: one with 7 gene sets overlapping in apolipoprotein B mRNA editing subunit genes, one with 3 gene sets including pigmentation gene sets, and the other one with 3 gene sets including peptidyl tyrosine phosphorylation regulation related gene sets. CONCLUSIONS Our TWAS analysis has identified genes and pathways with a suggestive association with IBD patients with PC. These findings can be potentially used for illustrating the mechanism of developing PC in the patients with IBD and developing diagnosis tool or drug targets for IBD patients with PC.
Collapse
Affiliation(s)
- Allan Bruinooge
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Qian Liu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada
| | - Ye Tian
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada
| | - Wenxin Jiang
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yao Li
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Charles N Bernstein
- Department of Internal Medicine and The University of Manitoba IBD Clinical and Research Centre, University of Manitoba, Winnipeg, MB, Canada
| | - Pingzhao Hu
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, MB, Canada; Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, MB, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Hu S, Vich Vila A, Gacesa R, Collij V, Stevens C, Fu JM, Wong I, Talkowski ME, Rivas MA, Imhann F, Bolte L, van Dullemen H, Dijkstra G, Visschedijk MC, Festen EA, Xavier RJ, Fu J, Daly MJ, Wijmenga C, Zhernakova A, Kurilshikov A, Weersma RK. Whole exome sequencing analyses reveal gene-microbiota interactions in the context of IBD. Gut 2021; 70:285-296. [PMID: 32651235 PMCID: PMC7815889 DOI: 10.1136/gutjnl-2019-319706] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Both the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. DESIGN To evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics. RESULTS We identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15. CONCLUSION This study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.
Collapse
Affiliation(s)
- Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Arnau Vich Vila
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Valerie Collij
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Christine Stevens
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jack M Fu
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Isaac Wong
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael E Talkowski
- Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Medical Sciences, Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Manuel A Rivas
- Department of Biomedical Data Science, Stanford University, Stanford, California, USA
| | - Floris Imhann
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Laura Bolte
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Hendrik van Dullemen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Gerard Dijkstra
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marijn C Visschedijk
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Eleonora A Festen
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Ramnik J Xavier
- Center for Microbiome Informatics and Therapeutic, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts, USA
| | - Jingyuan Fu
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
- Department of Pediatrics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Mark J Daly
- Program in Medical and Population Genetics, Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Sun J, Chen F, Chen C, Zhang Z, Zhang Z, Tian W, Yu J, Wang K. Intestinal mRNA expression profile and bioinformatics analysis in a methamphetamine-induced mouse model of inflammatory bowel disease. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1669. [PMID: 33490181 PMCID: PMC7812166 DOI: 10.21037/atm-20-7741] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Background Methamphetamine use has become a serious global public health problem and puts increasing burdens on healthcare services. Abdominal complications caused by methamphetamine use are uncommon and often go ignored by clinicians. The exact intestinal pathological alterations and transcriptomic responses associated with methamphetamine use are not well understood. This study sought to investigate the transcriptome in a methamphetamine-induced mouse model of inflammatory bowel disease (IBD) using next-generation RNA sequencing. Methods Tissues from the ileum of methamphetamine-treated mice (n=5) and control mice (n=5) were dissected, processed and applied to RNA-sequencing. Bioinformatics and histopathological analysis were then performed. The expression profiles of intestinal tissue samples were analyzed and their expression profiles were integrated to obtain the differentially expressed genes and analyzed using bioinformatics. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of the differentially expressed genes were performed using Metascape. Results A total of 326 differentially expressed genes were identified; of these genes, 120 were upregulated and 206 were downregulated. The Gene Ontology analysis showed that the biological processes of the differentially expressed genes were focused primarily on the regulation of cellular catabolic processes, endocytosis, and autophagy. The main cellular components included the endoplasmic and endocytic vesicles, cytoskeleton, adherens junctions, focal adhesions, cell body, and lysosomes. Molecular functions included protein transferase, GTPase and proteinase activities, actin-binding, and protein-lipid complex binding. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the differentially expressed genes were mainly involved in bacterial invasion of epithelial cells, protein processing in the endoplasmic reticulum, regulation of the actin cytoskeleton, and T-cell receptor signaling pathways. A set of overlapping genes between IBD and methamphetamine-treated intestinal tissues was discovered. Conclusions The present study is the first to analyze intestinal samples from methamphetamine-treated mice using high-throughput RNA sequencing. This study revealed key molecules that might be involved in the pathogenesis of a special type of methamphetamine-induced IBD. These results offer new insights into the relationship between methamphetamine abuse and IBD.
Collapse
Affiliation(s)
- Jiaxue Sun
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fengrong Chen
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Cheng Chen
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zherui Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zunyue Zhang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Weiwei Tian
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Juehua Yu
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China.,The Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kunhua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
17
|
Ronchetti S, Gentili M, Ricci E, Migliorati G, Riccardi C. Glucocorticoid-Induced Leucine Zipper as a Druggable Target in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2020; 26:1017-1025. [PMID: 31961437 DOI: 10.1093/ibd/izz331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex pathogenesis, affecting people of all ages. They are characterized by alternating phases of clinical relapse and remission, depending on the fine balance between immune cells and the gut microbiota. The cross talk between cells of the immune system and the gut microbiota can result in either tolerance or inflammation, according to multifactorial triggers, ranging from environmental factors to genetic susceptibility. Glucocorticoid (GC) administration remains the first-line treatment for IBDs, although long-term use is limited by development of serious adverse effects. Recently, new alternative pharmacological therapies have been developed, although these are not always effective in IBD patients. There is a constant demand for effective new drug targets to guarantee total remission and improve the quality of life for IBD patients. The glucocorticoid-induced leucine zipper (GILZ) has been implicated as a promising candidate for this purpose, in view of its powerful anti-inflammatory effects that mimic those of GCs while avoiding their unwanted adverse reactions. Here we present and discuss the latest findings about the involvement of GILZ in IBDs.
Collapse
Affiliation(s)
- Simona Ronchetti
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | - Marco Gentili
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | - Erika Ricci
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| | | | - Carlo Riccardi
- Department of Medicine, Pharmacology Division, University of Perugia, Italy
| |
Collapse
|