1
|
de Freitas FA, Levy D, Reichert CO, Sampaio-Silva J, Giglio PN, de Pádua Covas Lage LA, Demange MK, Pereira J, Bydlowski SP. Influence of Human Bone Marrow Mesenchymal Stem Cells Secretome from Acute Myeloid Leukemia Patients on the Proliferation and Death of K562 and K562-Lucena Leukemia Cell Lineages. Int J Mol Sci 2024; 25:4748. [PMID: 38731966 PMCID: PMC11084554 DOI: 10.3390/ijms25094748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Leukemias are among the most prevalent types of cancer worldwide. Bone marrow mesenchymal stem cells (MSCs) participate in the development of a suitable niche for hematopoietic stem cells, and are involved in the development of diseases such as leukemias, to a yet unknown extent. Here we described the effect of secretome of bone marrow MSCs obtained from healthy donors and from patients with acute myeloid leukemia (AML) on leukemic cell lineages, sensitive (K562) or resistant (K562-Lucena) to chemotherapy drugs. Cell proliferation, viability and death were evaluated, together with cell cycle, cytokine production and gene expression of ABC transporters and cyclins. The secretome of healthy MSCs decreased proliferation and viability of both K562 and K562-Lucena cells; moreover, an increase in apoptosis and necrosis rates was observed, together with the activation of caspase 3/7, cell cycle arrest in G0/G1 phase and changes in expression of several ABC proteins and cyclins D1 and D2. These effects were not observed using the secretome of MSCs derived from AML patients. In conclusion, the secretome of healthy MSCs have the capacity to inhibit the development of leukemia cells, at least in the studied conditions. However, MSCs from AML patients seem to have lost this capacity, and could therefore contribute to the development of leukemia.
Collapse
Affiliation(s)
- Fábio Alessandro de Freitas
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Débora Levy
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Cadiele Oliana Reichert
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Juliana Sampaio-Silva
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
| | - Pedro Nogueira Giglio
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Luís Alberto de Pádua Covas Lage
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Marco Kawamura Demange
- Institute of Orthopedics and Traumatology, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-010, SP, Brazil; (P.N.G.); (M.K.D.)
| | - Juliana Pereira
- Laboratory of Pathogenesis and Therapy in Onco-Immuno-Hematology (LIM-31), Department of Hematology, Hemotherapy and Cell Therapy, Clinic Hospital of Medical School, Sao Paulo University (HCFMUSP), Sao Paulo 05403-900, SP, Brazil; (L.A.d.P.C.L.); (J.P.)
| | - Sérgio Paulo Bydlowski
- Lipids, Oxidation and Cell Biology Team, Laboratory of Immunology (LIM19), Heart Institute (InCor), Medical School of Sao Paulo University (FMUSP), Sao Paulo 05403-900, SP, Brazil; (F.A.d.F.); (D.L.); (C.O.R.); (J.S.-S.)
- National Institute of Science and Technology in Regenerative Medicine (INCT-Regenera), National Council for Scientific and Technological Development (CNPq), Rio de Janeiro 21941-902, RJ, Brazil
- Department of General Physics, Physics Institute, Sao Paulo University, Sao Paulo 05508-090, SP, Brazil
| |
Collapse
|
2
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
3
|
L'Abbate A, Moretti V, Pungolino E, Micheloni G, Valli R, Frattini A, Barcella M, Acquati F, Reinbold RA, Costantino L, Ferrara F, Trojani A, Ventura M, Porta G, Cairoli R. Occurrence of L1M Elements in Chromosomal Rearrangements Associated to Chronic Myeloid Leukemia (CML): Insights from Patient-Specific Breakpoints Characterization. Genes (Basel) 2023; 14:1351. [PMID: 37510256 PMCID: PMC10379433 DOI: 10.3390/genes14071351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic myeloid leukemia (CML) is a rare myeloproliferative disorder caused by the reciprocal translocation t(9;22)(q34;q11) in hematopoietic stem cells (HSCs). This chromosomal translocation results in the formation of an extra-short chromosome 22, called a Philadelphia chromosome (Ph), containing the BCR-ABL1 fusion gene responsible for the expression of a constitutively active tyrosine kinase that causes uncontrolled growth and replication of leukemic cells. Mechanisms behind the formation of this chromosomal rearrangement are not well known, even if, as observed in tumors, repetitive DNA may be involved as core elements in chromosomal rearrangements. We have participated in the explorative investigations of the PhilosoPhi34 study to evaluate residual Ph+ cells in patients with negative FISH analysis on CD34+/lin- cells with gDNA qPCR. Using targeted next-generation deep sequencing strategies, we analyzed the genomic region around the t(9;22) translocations of 82 CML patients and one CML cell line and assessed the relevance of interspersed repeat elements at breakpoints (BP). We found a statistically higher presence of LINE elements, in particular belonging to the subfamily L1M, in BP cluster regions of both chromosome 22 and 9 compared to the whole human genome. These data suggest that L1M elements could be potential drivers of t(9;22) translocation leading to the generation of the BCR-ABL1 chimeric gene and the expression of the active BCR-ABL1-controlled tyrosine kinase chimeric protein responsible for CML.
Collapse
Affiliation(s)
- Alberto L'Abbate
- Institute of Biomembranes, Bioenergetics, and Molecular Biotechnologies, National Research Council (IBIOM-CNR), 70125 Bari, Italy
| | - Vittoria Moretti
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Ester Pungolino
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Giovanni Micheloni
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Roberto Valli
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Annalisa Frattini
- Genetics and Biomedical Research Institute, National Research Council (IRGB-CNR), 20090 Milano, Italy
| | - Matteo Barcella
- Department of Health Science, University degli Studi of Milan, Via Rudini 8, 20142 Milan, Italy
| | - Francesco Acquati
- Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
- Genomic Medicine Research Center, Department of Biotechnology and Life Science, University of Insubria, Via JH Dunant 3, 21100 Varese, Italy
| | - Rolland A Reinbold
- Institute of Biomedical Technologies, National Research Council of Italy, 20054 Segrate, Milano, Italy
| | - Lucy Costantino
- Department of Molecular Genetics, Centro Diagnostico Italiano, 20147 Milano, Italy
| | - Fulvio Ferrara
- Department of Molecular Genetics, Centro Diagnostico Italiano, 20147 Milano, Italy
| | - Alessandra Trojani
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| | - Mario Ventura
- Department of Biology, University of Bari 'Aldo Moro', Via Edoardo Orabona 4, 70124 Bari, Italy
| | - Giovanni Porta
- Genomic Medicine Research Center, Department of Medicine and Surgery, University of Insubria, Via JH Dunant 5 Varese, 21100 Varese, Italy
| | - Roberto Cairoli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy
| |
Collapse
|
4
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
5
|
Yuen SC, Lee SMY, Leung SW. Putative Factors Interfering Cell Cycle Re-Entry in Alzheimer's Disease: An Omics Study with Differential Expression Meta-Analytics and Co-Expression Profiling. J Alzheimers Dis 2021; 85:1373-1398. [PMID: 34924393 DOI: 10.3233/jad-215349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuronal cell cycle re-entry (CCR) is a mechanism, along with amyloid-β (Aβ) oligomers and hyperphosphorylated tau proteins, contributing to toxicity in Alzheimer's disease (AD). OBJECTIVE This study aimed to examine the putative factors in CCR based on evidence corroboration by combining meta-analysis and co-expression analysis of omic data. METHODS The differentially expressed genes (DEGs) and CCR-related modules were obtained through the differential analysis and co-expression of transcriptomic data, respectively. Differentially expressed microRNAs (DEmiRNAs) were extracted from the differential miRNA expression studies. The dysregulations of DEGs and DEmiRNAs as binary outcomes were independently analyzed by meta-analysis based on a random-effects model. The CCR-related modules were mapped to human protein-protein interaction databases to construct a network. The importance score of each node within the network was determined by the PageRank algorithm, and nodes that fit the pre-defined criteria were treated as putative CCR-related factors. RESULTS The meta-analysis identified 18,261 DEGs and 36 DEmiRNAs, including genes in the ubiquitination proteasome system, mitochondrial homeostasis, and CCR, and miRNAs associated with AD pathologies. The co-expression analysis identified 156 CCR-related modules to construct a protein-protein interaction network. Five genes, UBC, ESR1, EGFR, CUL3, and KRAS, were selected as putative CCR-related factors. Their functions suggested that the combined effects of cellular dyshomeostasis and receptors mediating Aβ toxicity from impaired ubiquitination proteasome system are involved in CCR. CONCLUSION This study identified five genes as putative factors and revealed the significance of cellular dyshomeostasis in the CCR of AD.
Collapse
Affiliation(s)
- Sze Chung Yuen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Siu-Wai Leung
- Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China.,Edinburgh Bayes Centre for AI Research in Shenzhen, College of Science and Engineering, University of Edinburgh, Scotland, United Kingdom
| |
Collapse
|
6
|
Pungolino E, D'adda M, De Canal G, Trojani A, Perego A, Elena C, Lunghi F, Turrini M, Borin L, Iurlo A, Latargia ML, Carraro MC, Spina F, Artale S, Anghilieri M, Molteni A, Caramella M, Baruzzo G, Nichelatti M, Di Camillo B, Cairoli R. Nilotinib-induced bone marrow CD34+/lin-Ph+ cells early clearance in newly diagnosed CP-Chronic Myeloid Leukemia: Final report of the PhilosoPhi34 study. Eur J Haematol 2021; 107:436-448. [PMID: 34139044 PMCID: PMC9292618 DOI: 10.1111/ejh.13680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 01/06/2023]
Abstract
Chronic Myeloid Leukemia is a clonal disorder characterized by the presence of the Ph‐chromosome and the BCR‐ABL tyrosine‐kinase (TK). Target‐therapy with Imatinib has greatly improved its outcome. Deeper and faster responses are reported with the second‐generation TKI Nilotinib. Sustained responses may enable TKI discontinuation. However, even in a complete molecular response, some patients experience disease recurrence possibly due to persistence of quiescent leukemic CD34+/lin−Ph+ stem cells (LSCs). Degree and mechanisms of LSCs clearance during TKI treatment are not clearly established. The PhilosoPhi34 study was designed to verify the in‐vivo activity and timecourse of first‐line Nilotinib therapy on BM CD34+/lin−Ph+ cells clearance. Eighty‐seven CP‐CML patients were enrolled. BM cells were collected and tested for Ph+ residual cells, at diagnosis, 3, 6 and 12 months of treatment. FISH analysis of unstimulated CD34+/lin− cells in CCyR patients were positive in 8/65 (12.3%), 5/71 (7%), 0/69 (0%) evaluable tests, respectively. Per‐Protocol analysis response rates were as follows: CCyR 95% at 12 months, MR4.5 31% and 46% at 12 and 36 months, respectively. An exploratory Gene Expression Profiling (GEP) study of CD34+/lin− cells was performed on 30 patients at diagnosis and after, on 79 patients at diagnosis vs 12 months of nilotinib treatment vs 10 healthy subjects. Data demonstrated some genes significantly different expressed: NFKBIA, many cell cycle genes, ABC transporters, JAK‐STAT signaling pathway (JAK2). In addition, a correlation between different expression of some genes (JAK2, OLFM4, ICAM1, NFKBIA) among patients at diagnosis and their achievement of an early and deeper MR was observed.
Collapse
Affiliation(s)
- Ester Pungolino
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Mariella D'adda
- Department of Hematology, ASST Spedali Civili, Brescia, Italy
| | - Gabriella De Canal
- Pathology Department, Cytogenetics, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Alessandra Trojani
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | | | - Chiara Elena
- Hematology Hunit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Francesca Lunghi
- Hematology and Bone Marrow Transplant Unit, San Raffaele Hospital, Milano, Italy
| | - Mauro Turrini
- Division of Hematology, Valduce Hospital, Como, Italy
| | | | - Alessandra Iurlo
- Oncohematology Division, IRCCS Ca' Granda - Maggiore Policlinico Hospital Foundation, University of Milan, Milano, Italy
| | | | | | - Francesco Spina
- Hematology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Salvatore Artale
- Division of Oncology, Ospedale di Gallarate, ASST Valle Olona, Gallarate, Italy
| | | | | | - Marianna Caramella
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Giacomo Baruzzo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Michele Nichelatti
- Clinical Research Coordination Center, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| | - Barbara Di Camillo
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Roberto Cairoli
- Division of Hematology, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
| |
Collapse
|
7
|
Zizioli D, Bernardi S, Varinelli M, Farina M, Mignani L, Bosio K, Finazzi D, Monti E, Polverelli N, Malagola M, Borsani E, Borsani G, Russo D. Development of BCR-ABL1 Transgenic Zebrafish Model Reproducing Chronic Myeloid Leukemia (CML) Like-Disease and Providing a New Insight into CML Mechanisms. Cells 2021; 10:cells10020445. [PMID: 33669758 PMCID: PMC7922348 DOI: 10.3390/cells10020445] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/27/2022] Open
Abstract
Zebrafish has proven to be a versatile and reliable experimental in vivo tool to study human hematopoiesis and model hematological malignancies. Transgenic technologies enable the generation of specific leukemia types by the expression of human oncogenes under specific promoters. Using this technology, a variety of myeloid and lymphoid malignancies zebrafish models have been described. Chronic myeloid leukemia (CML) is a clonal myeloproliferative neoplasia characterized by the BCR-ABL1 fusion gene, derived from the t (9;22) translocation causing the Philadelphia Chromosome (Ph). The BCR-ABL1 protein is a constitutively activated tyrosine kinas inducing the leukemogenesis and resulting in an accumulation of immature leukemic cells into bone marrow and peripheral blood. To model Ph+ CML, a transgenic zebrafish line expressing the human BCR-ABL1 was generated by the Gal4/UAS system, and then crossed with the hsp70-Gal4 transgenic line. The new line named (BCR-ABL1pUAS:CFP/hsp70-Gal4), presented altered expression of hematopoietic markers during embryonic development compared to controls and transgenic larvae showed proliferating hematopoietic cells in the caudal hematopoietic tissue (CHT). The present transgenic zebrafish would be a robust CML model and a high-throughput drug screening tool.
Collapse
Affiliation(s)
- Daniela Zizioli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
- Correspondence: daniela.zizioli@unibs; Tel.: +39-(03)-03717546
| | - Simona Bernardi
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Marco Varinelli
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
| | - Mirko Farina
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| | - Luca Mignani
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
| | - Katia Bosio
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
- Centro di Ricerca Emato-Oncologica AIL (CREA), ASST Spedali Civili, 25123 Brescia, Italy
| | - Dario Finazzi
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
- Laboratorio Centrale Analisi Chimico-Cliniche, ASST Spedali Civili, 25123 Brescia, Italy
| | - Eugenio Monti
- Unit of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.V.); (L.M.); (D.F.); (E.M.)
| | - Nicola Polverelli
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| | - Michele Malagola
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| | - Elisa Borsani
- Division of Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy;
| | - Giuseppe Borsani
- Unit of Biology and Genetic, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Domenico Russo
- Unit of Hematology, Department of Clinical and Experimental Sciences, University of Brescia, Bone Marrow Transplant Unit, ASST Spedali Civili, 25123 Brescia, Italy; (S.B.); (M.F.); (K.B.); (N.P.); (M.M.); (D.R.)
| |
Collapse
|
8
|
Minciacchi VR, Kumar R, Krause DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells 2021; 10:cells10010117. [PMID: 33435150 PMCID: PMC7827482 DOI: 10.3390/cells10010117] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia (CML) has been a "model disease" with a long history. Beginning with the first discovery of leukemia and the description of the Philadelphia Chromosome and ending with the current goal of achieving treatment-free remission after targeted therapies, we describe here the journey of CML, focusing on molecular pathways relating to signaling, metabolism and the bone marrow microenvironment. We highlight current strategies for combination therapies aimed at eradicating the CML stem cell; hopefully the final destination of this long voyage.
Collapse
MESH Headings
- Epigenesis, Genetic
- History, 20th Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/history
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Molecular Targeted Therapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Faculty of Medicine, Medical Clinic II, Johann Wolfgang Goethe University, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-63395-500; Fax: +49-69-63395-519
| |
Collapse
|
9
|
Zhang Y, Zhang Y, Wang J, Yang J, Yang G. Abnormal expression of ABCD3 is an independent prognostic factor for colorectal cancer. Oncol Lett 2020; 19:3567-3577. [PMID: 32269631 PMCID: PMC7114719 DOI: 10.3892/ol.2020.11463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/13/2020] [Indexed: 12/31/2022] Open
Abstract
ATP binding cassette subfamily D member 3 (ABCD3) is a member of the superfamily of ATP-binding cassette (ABC) transporters, which serve crucial roles in the process of tumor cell resistance to chemotherapy. The present study investigated the diagnostic and prognostic capabilities of ABCD3 in colorectal cancer (CRC) by bioinformatics analysis. Gene expression data and corresponding clinical information of patients with CRC were collected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The results demonstrated that ABCD3 mRNA level was decreased in CRC tissues compared with normal tissues following Wilcoxon test analysis. Furthermore, ABCD3 protein expression was significantly higher in normal colon tissues compared with colon adenocarcinoma tissues according to the Human Protein Atlas. In addition, the area under the Receiver Operating Characteristic curve based on comparison between the tumor and normal groups derived from TCGA and GEO databases demonstrated that the use of ABCD3 mRNA level may be used for the diagnosis of CRC. ABCD3 expression was significantly associated with clinical stage, T stage, and lymph node status following Kruskal-Wallis test or Wilcoxon rank sum test, logistic regression and χ2 test. Furthermore, the results from Kaplan-Meier survival analysis indicated that low ABCD3 mRNA expression had a poorer prognosis value compared with ABCD3 high expression in patients with CRC. In addition, results from univariate Cox regression analysis indicated that ABCD3 mRNA expression was associated with overall survival (OS), and results from multivariate Cox analysis indicated that ABCD3 mRNA expression may be considered an independent prognostic factor from other clinical factors, such as clinical stage, sex and age. The results from Gene Set Enrichment Analysis demonstrated that the ABCD3 high-expression phenotype was differentially enriched in five biological processes, including apoptosis, cell cycle, renal cell carcinoma, thyroid cancer and colorectal cancer. The findings from this study demonstrated that ABCD3 mRNA expression may be considered as a potential diagnostic and prognostic biomarker in patients with CRC. ABCD3 expression levels may participate in the regulation of cell apoptosis and cell cycle. In addition, GSEA analysis identified Kyoto Encyclopaedia of Genes and Genomes pathways for renal cell carcinoma, thyroid cancer and CRC involving ABCD3.
Collapse
Affiliation(s)
- Yujiao Zhang
- Department of Respiratory Medicine, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| | - Yaqi Zhang
- Department of Oncology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| | - Jiping Wang
- Department of Radiotherapy, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| | - Jiyuan Yang
- Department of Oncology, The First People's Hospital Affiliated to Yangtze University, Jingzhou, Hubei 434000, P.R. China
| | - Guodong Yang
- Department of Oncology, Huanggang Central Hospital Affiliated to Yangtze University, Huanggang, Hubei 438000, P.R. China
| |
Collapse
|