1
|
Yoshizawa S, Ishida Y, Nakashima C, Murotani F, Hara T, Yoshii K, Yamada H, Fukuda Y, Nozaki R, Koiwai K, Hirono I, Kondo H. Systemic immune responses do not affect significant immune responses in the skin. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109756. [PMID: 38992802 DOI: 10.1016/j.fsi.2024.109756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
Fish skin plays an important role in defending against pathogens in water, primarily through the secretion of skin mucus containing various immune-related factors. Local immune responses in the skin activate systemic immune responses by inflammatory cytokines. However, it remains unclear whether immune responses in the skin occur after systemic immune responses caused by pathogen invasion into the fish body. This study aimed to clarify the relationship between systemic immune responses and skin responses after intraperitoneal injection of formalin-killed cells (FKC) of Vibrio anguillarum. Although systemic inflammatory responses were observed in the spleen after injection, expression changes in the skin did not show significant differences. In contrast, expression of hemoglobin subunit genes significantly increased in the skin after FKC injection, suggesting that erythrocytes infiltrate extravascularly.
Collapse
Affiliation(s)
- Soichiro Yoshizawa
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Yuki Ishida
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Chihiro Nakashima
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Fuyuka Murotani
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Tomouiki Hara
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Keisuke Yoshii
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Hidetoshi Yamada
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Yutaka Fukuda
- Fisheries Research Division, Oita Prefectural Agriculture, Forestry and Fisheries Research Center, Oita, Japan
| | - Reiko Nozaki
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Keiichiro Koiwai
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Ikuo Hirono
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan
| | - Hidehiro Kondo
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato-ku, Tokyo, 108-8477, Japan.
| |
Collapse
|
2
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
3
|
Ali S, Ullah W, Kamarulzaman AFS, Hassan M, Rauf M, Khattak MNK, Dawar FU. Proteomic profile of epidermal mucus from Labeo rohita reveals differentially abundant proteins after Aeromonas hydrophila infection. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 5:100115. [PMID: 37771818 PMCID: PMC10523009 DOI: 10.1016/j.fsirep.2023.100115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
We report the proteomic profile of Epidermal Mucus (EM) from Labeo rohita and identified the differentially abundant proteins (DAPs) against Aeromonas hydrophila infection through label-free liquid chromatography-mass spectrometry (LC-MS/MS). Using discovery-based proteomics, a total of 2039 proteins were quantified in nontreated group and 1,328 proteins in the treated group, of which 114 were identified as DAPs in both the groups. Of the 114 DAPs, 68 proteins were upregulated and 46 proteins were downregulated in the treated group compared to nontreated group. Functional annotations of these DAPs shows their association with metabolism, cellular process, molecular process, cytoskeletal, stress, and particularly immune system. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and Fisher's exact test between the two groups shows that most of the proteins were immune-related, which were significantly associated with the proteasome, phagosome, and Salmonella infection pathways. Overall, this study shows a basic and primary way for further functional research of the involvement of vitellogenin 2, alpha-2-macroglobulin-like protein, toll-like receptors (TLR-13), calpain, keratin-like proteins, and heat shock proteins against bacterial infection. Nonetheless, this first-ever comprehensive report of a proteomic sketch of EM from L. rohita after A. hydrophila infection provides systematic protein information to broadly understand the biological role of fish EM against bacterial infection.
Collapse
Affiliation(s)
- Shandana Ali
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | - Waheed Ullah
- Department of Microbiology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | | | - Maizom Hassan
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Muhammad Rauf
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Nasir Khan Khattak
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farman Ullah Dawar
- Laboratory of Fisheries and Aquaculture, Department of Zoology, Kohat University of Science and Technology Kohat, 26000 Khyber Pakhtunkhwa, Pakistan
- Laboratory of Marine Biotechnology, College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, Jiangsu 210098, China
| |
Collapse
|
4
|
Sukeda M, Prakash H, Nagasawa T, Nakao M, Somamoto T. Non-specific cytotoxic cell receptor protein-1 (NCCRP-1) is involved in anti-parasite innate CD8 + T cell-mediated cytotoxicity in ginbuna crucian carp. FISH & SHELLFISH IMMUNOLOGY 2023:108904. [PMID: 37353062 DOI: 10.1016/j.fsi.2023.108904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 06/25/2023]
Abstract
CD8+ cytotoxic T cells (CTLs) are a main cellular component of adaptive immunity. Our previous research has shown that CD8+ cells demonstrate spontaneous cytotoxic activity against the parasite Ichthyophthirius multifiliis in ginbuna crucian carp, suggesting that CD8+ cells play an important role in innate immunity. Herein, we investigated the molecules and cellular signal pathways involved in the cytotoxic response of ginbuna crucian carp. We considered non-specific cytotoxic receptor protein-1 (NCCRP-1) as candidate molecule for parasite recognition. We detected NCCRP-1 protein in CD8+ cells and the thymus as well as in other cells and tissues. CD8+ cells expressed mRNA for NCCRP-1, Jak2, and T cell-related molecules. In addition, treatment with a peptide containing the presumed antigen recognition site of ginbuna NCCRP-1 significantly inhibited the cytotoxic activity of CD8+ cells against the parasites. The cytotoxic activity of CD8+ cells was significantly inhibited by treatment with the JAK1/2 inhibitor baricitinib. These results suggest that teleost CTLs recognize I. multifiliis through NCCRP-1 and are activated by JAK/STAT signaling.
Collapse
Affiliation(s)
- Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Harsha Prakash
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
5
|
Comprehensive transcriptomics and proteomics analysis of Carassius auratus gills in response to Aeromonas hydrophila. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2022; 4:100077. [PMID: 36589261 PMCID: PMC9798182 DOI: 10.1016/j.fsirep.2022.100077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/11/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
As one of the mucosal barriers, fish gills represent the first line of defense against pathogen infection. However, the exact mechanism of gill mucosal immune response to bacterial infection still needs further investigation in fish. Here, to investigate pathological changes and molecular mechanisms of the mucosal immune response in the gills of crucian carp (Carassius auratus) challenged by Aeromonas hydrophila, the transcriptomics and proteomics were performed by using multi-omics analyses of RNA-seq coupled with iTRAQ techniques. The results demonstrated gill immune response were mostly related to the activation of complement and coagulation cascades, antigen processing and presentation, phagosome, NOD-like receptor (NLR) and nuclear factor κB (NFκB) signaling pathway. Selected 21 immune-related DEGs (ie., Clam, nfyal, snrpf, acin1b, psme, sf3b5, rbm8a, rbm25, prpf18, g3bp2, snrpd3l, tecrem-2, cfl-A, C7, lysC, ddx5, hsp90, α-2M, C9, C3 and slc4a1a) were verified for their immune roles in the A. hydrophila infection via using qRT-PCR assay. Meanwhile, some complement (C3, C7, C9, CFD, DF and FH) and antigen presenting (HSP90, MHC Ⅱ, CALR, CANX and PSME) proteins were significantly participated in the process of defense against infections in gill tissues, and protein-protein interaction (PPI) network displayed the immune signaling pathways and interactions among these DEPs. The correlation analysis indicated that the iTRAQ and qRT-PCR results was significantly correlated (Pearson's correlation coefficient = 0.70, p < 0.01). To our knowledge, the transcriptomics and proteomics of gills firstly identified by multi-omics analyses contribute to understanding on the molecular mechanisms of local mucosal immunity in cyprinid species.
Collapse
|
6
|
Key Performance Indicators of Common Carp (Cyprinus carpio L.) Wintering in a Pond and RAS under Different Feeding Schemes. SUSTAINABILITY 2022. [DOI: 10.3390/su14073724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Overwintering impacts common carp performance, yet the nature of changes is not known. The aim of the study was to compare the zootechnical and key performance indicators (KPI) of Cyprinus carpio wintering in a pond with no supplementary feeding (MCF), in a Recirculating Aquaculture System (RAS) fed typical (30% of protein and 8% of fat) carp diet (AFC), and in a RAS fed high protein (42%) and fat (12%) diet (ABF). The analysis showed that ABF fish had the highest final body weight and the Fulton’s condition factor, as well as the lowest food conversion rate compared with AFC and MCF fish. Histomorphological assessment revealed that MCF fish had thinner skin layers, a depleted population of mucous cells in skin, an excessive interlamellar mass in the gills, and no supranuclear vacuoles in the intestine compared to fish from RAS. At the molecular level, higher transcript levels of il-1β and il-6 transcripts were found in the gills of MCF than in fish from RAS. The transcript level of the intestinal muc5b was the highest in ABF fish. Relative expression of il-1β and il-6 in gills were presumably the highest due to lamellar fusions in MCF fish. Described KPIs may assist carp production to ensure sustainability and food security in the European Union.
Collapse
|
7
|
Roh H, Kim N, Lee Y, Park J, Kim BS, Lee MK, Park CI, Kim DH. Dual-Organ Transcriptomic Analysis of Rainbow Trout Infected With Ichthyophthirius multifiliis Through Co-Expression and Machine Learning. Front Immunol 2021; 12:677730. [PMID: 34305907 PMCID: PMC8296305 DOI: 10.3389/fimmu.2021.677730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Bo Seong Kim
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - Mu Kun Lee
- Korean Aquatic Organism Disease Inspector Association, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|
8
|
Zhong Y, Duan Z, Su M, Lin Y, Zhang J. Inflammatory responses associated with hyposaline stress in gill epithelial cells of the spotted scat Scatophagus argus. FISH & SHELLFISH IMMUNOLOGY 2021; 114:142-151. [PMID: 33940172 DOI: 10.1016/j.fsi.2021.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
The molecular processes of immune responses in mucosal tissues such as fish gills under environmental stress are poorly understood. In the present study, pro-inflammatory response under hyposaline stress and its regulation by cortisol/corticosteroid receptors (CRs) in gill epithelial cells of the spotted scat Scatophagus argus were analyzed. The fish were transferred to freshwater for 6 days (144 h) of acclimation. Following freshwater exposure, the cortisol concentration increased transiently before returning to the control level over time. mRNA expression of pro-inflammatory cytokines (TNF-a, IL-1b and IL-6) was stimulated by cortisol through CR signals at early stages of acclimation, but hyposaline stress inhibited their levels by the end of the experimental period. The transcriptional profile of anti-inflammatory cytokine IL-10 was quite different from these pro-inflammatory cytokines, and its value fluctuated within a narrow range during the experimental period. Full-length cDNAs of mineralocorticoid receptor (MR) and glucocorticoid receptor 1 (GR1) (different kinds of CRs) were cloned from the gills. Our results showed that MR and GR displayed mutually antagonistic effects during hyposaline stress. MR responded quickly at early stages, and its expression decreased with the drop of cortisol concentration. By contrast, GR expression was maintained at high levels after the acclimation of freshwater exposure. The tight coordination of GR and MR helps to shape the effects of stress on the immune system, which in turn, regulates the stress response. Our results confirm the interaction between endocrine and cytokine messengers and a clear difference in the sensitivity of GR and MR during the hyposaline challenge in gill epithelial cells of the spotted scat Scatophagus argus.
Collapse
Affiliation(s)
- Yong Zhong
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhengyu Duan
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China
| | - Maoliang Su
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China
| | - Yanquan Lin
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China; Dafeng South Ocean Marine Technology Company, Shenzhen, China
| | - Junbin Zhang
- Shenzhen Key Laboratory of Marine Bioresource & Eco-environmental Science, College of Life Science, Shenzhen University, Shenzhen, China.
| |
Collapse
|
9
|
Survival of metazoan parasites in fish: Putting into context the protective immune responses of teleost fish. ADVANCES IN PARASITOLOGY 2021; 112:77-132. [PMID: 34024360 DOI: 10.1016/bs.apar.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Defence mechanisms of fish can be divided into specific and non-specific that act in concert and are often interdependent. Most fish in both wild and cultured populations are vulnerable to metazoan parasites. Endoparasitic helminths include several species of digeneans, cestodes, nematodes, and acanthocephalans. Although they may occur in large numbers, helminth infections rarely result in fish mortality. Conversely, some ectoparasites cause mass mortality in farmed fish. Given the importance of fish innate immunity, this review addresses non-specific defence mechanisms of fish against metazoan parasites, with emphasis on granulocyte responses involving mast cells, neutrophils, macrophages, rodlet cells, and mucous cells. Metazoan parasites are important disease agents that affect wild and farmed fish and can induce high economic loss and, as pathogen organisms, deserve considerable attention. The paper will provide our light and transmission electron microscopy data on metazoan parasites-fish innate immune and neuroendocrine systems. Insights about the structure and functions of the cell types listed above and a brief account of the effects and harms of each metazoan taxon to specific fish apparati/organs will be presented.
Collapse
|
10
|
Kordon AO, Abdelhamed H, Karsi A, Pinchuk LM. Adaptive immune responses in channel catfish exposed to Edwardsiella ictaluri live attenuated vaccine and wild type strains through the specific gene expression profiles. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 116:103950. [PMID: 33253752 DOI: 10.1016/j.dci.2020.103950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
We extend the previous findings on the differential activity of immune-related genes in the lymphoid organs of channel catfish in the 7 days post-challenge (dpc) with E. ictaluri live attenuated vaccines (LAVs) and wild type (WT) strains by assessing the expression of these genes in the 21 dpc. The expression of T and B cell-specific genes were significantly elevated in the spleen at 14 dpc and in the AK at 21 dpc in catfish treated with E. ictaluri WT and LAV strains compared to a non-treated control group. The gene expression of IFN-γ correlated with adaptive immunity genes in the lymphoid tissues of catfish. These data indicate that two novel LAVs were able to trigger the activation of T helper1 polarization cytokine IFN-γ gene and specific lymphocyte genes in the spleen followed by their activation in the AK of catfish without causing inflammation, thus providing protective immunity in E. ictaluri infection.
Collapse
Affiliation(s)
- Adef O Kordon
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Hossam Abdelhamed
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Attila Karsi
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Lesya M Pinchuk
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA.
| |
Collapse
|
11
|
Sukeda M, Shiota K, Kondo M, Nagasawa T, Nakao M, Somamoto T. Innate cell-mediated cytotoxicity of CD8 + T cells against the protozoan parasite Ichthyophthirius multifiliis in the ginbuna crucian carp, Carassius auratus langsdorfii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 115:103886. [PMID: 33045272 DOI: 10.1016/j.dci.2020.103886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Cytotoxic T cells are known to have the ability to kill microbe-infected host cells, which makes them essential in the adaptive immunity processes of various vertebrates. In this study, we demonstrated innate cell-mediated cytotoxicity of CD8+ T cells against protozoan parasites found in the ginbuna crucian carp. When isolated effector cells such as CD8+, CD4+ (CD4-1+), or CD8- CD4- (double-negative, DN), from naïve ginbuna crucian carp were co-incubated with target parasites (Ichthyophthirius multifiliis), CD8+ cells from the kidney and gill showed the highest cytotoxic activity. On the other hand, DN cells, which include macrophages and CD4- CD8- lymphocytes, showed the lowest cytotoxic activity against I. multifiliis. Additionally, the cytotoxic activity of CD8+ cells was found to significantly decrease in the presence of a membrane separating the effector cells from I. multifiliis. Furthermore, the serine protease inhibitor 3,4-dichloroisocoumarin and perforin inhibitor concanamycin A significantly inhibited the cytotoxic activity of CD8+ cells. These results demonstrate that CD8+ T cells of ginbuna crucian carp can kill extracellular parasites in a contact-dependent manner via serine proteases and perforin. Therefore, we conclude that CD8+ T cells play an essential role in anti-parasite innate immunity of teleost fish.
Collapse
Affiliation(s)
- Masaki Sukeda
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Koumei Shiota
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Masakazu Kondo
- Department of Applied Aquabiology, National Fisheries University, Japan Fisheries Research and Education Agency, Shimonoseki, Yamaguchi, 759-6595, Japan
| | - Takahiro Nagasawa
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Miki Nakao
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| | - Tomonori Somamoto
- Laboratory of Marine Biochemistry, Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
12
|
Sellaththurai S, Omeka WKM, Nadarajapillai K, Shanaka KASN, Jung S, Lee S, Lee J. Identification, molecular characterization, expression analysis and wound-healing ability of multifunctional calreticulin from big-belly seahorse Hippocampus abdominalis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:410-420. [PMID: 32805417 DOI: 10.1016/j.fsi.2020.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Calreticulin (CRT) is a multifunctional ubiquitous protein that is widely presented in all cells in eukaryotes except erythrocytes. CRT is well known for diverse cellular functions such as endoplasmic reticulum (ER)-specialized protein quality control during protein synthesis and folding, in-vivo Ca2+ homeostasis, antigen presentation, phagocytosis, wound-healing, proliferation, adhesion, and migration of cells. In the current study, we identified CRT from Hippocampus abdominalis (HaCRT) and analyzed expression profiles and functional properties. The cDNA sequence of HaCRT was identified with an open reading frame of 1226 bp. The molecular weight of HaCRT was estimated as 49 kDa. The in-silico study revealed conserved sequence arrangements such as two CRT signature motifs (5'-KHEQSIDCGGGYVKVF-3' and 5'-LMFGPDICG-3'), triplicate repeats (5'-IKDPEAKKPEDWD-3', 5'-IPDPDDTKPEDWD-3', 5'-IPDPDAKKPDDWD-3'), signal peptide and an ER-targeting 5'-KDEL-3' sequence of HaCRT. Close sequence similarity of HaCRT was observed with Hippocampus comes from phylogenetic analysis and pairwise sequence comparison. From quantitative polymerase chain reaction (qPCR) results, HaCRT was ubiquitously distributed in all tested tissues and expression levels of HaCRT were significantly modulated in blood, liver and gill tissues after stimulation with Streptococcus iniae, Edwardsiella tarda, polyinosinic:polycytidylic acid, and lipopolysaccharides. Bacterial- and pathogen-associated molecular patterns-binding activities were observed with recombinant HaCRT (rHaCRT). The treatment of murine macrophages with rHaCRT induced the expression of immune genes, such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), inducible nitric oxide synthase (iNOS), and interleukin-1β (IL-1β). Furthermore, rHaCRT exhibited wound-healing ability. Based on the results from the above study, we suggest that HaCRT play an indispensable role in the immunity of big-belly seahorses by recognition and elimination of pathogens as well as the tissue repairing process.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sukkyoung Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea.
| |
Collapse
|
13
|
Lahnsteiner F. Differences in immune components of blood, spleen and head kidney between diploid and auto- and allotriploid Salmonidae. Tissue Cell 2020; 67:101445. [PMID: 33099197 DOI: 10.1016/j.tice.2020.101445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 01/16/2023]
Abstract
Immune components were investigated in peripheral blood and in spleen and head kidney of autotriploid Salmo trutta f. lacustris, Salvelinus fontinalis, and Salvelinus umbla, and of allotriploid hybrids of S. trutta f. lacustris x Onchorynchus mykiss and S. fontinalis x O. mykiss in comparison to their diploid parents. In peripheral blood the number of lymphocytes was reduced in all investigated autotriploids and in the allotriploid S. trutta f. lacustris x O.mykiss, and the numbers of thrombocytes in autotriploid S. trutta f. lacustris and in both allotriploids. Alternative pathway of complement activity and immunoglobulin concentration were significantly decreased in all investigated auto- and allotriploids, lysozyme activity in autotriploid S. fontinalis and in both allotriploids. In the spleen of the 3 autotriploids the number of erythrocytes was increased, while the number of lymphoid precursor cells was decreased. In their head kidney the erythrocytes numbers were decreased and the numbers of erythropoietic precursor cells and the melanomacrophage centers were increased. Contrary, cytology of spleen and head kidney of the two allotriploid hybrids was similar to diploid controls. Caspase 1, caspase 6, lysozyme, and acid phosphatase activity and immunoglobulin concentration of spleen and head kidney showed specific changes which were related to cytological results. These data indicate alterations in immune system and in lymphoid organs of auto- and allotriploid Salmonidae.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Scharfling 18, A-5310 Mondsee, Fishfarm Kreuzstein, Oberburgau 28, 4866, Unterach, Austria
| |
Collapse
|
14
|
Brunner SR, Varga JFA, Dixon B. Antimicrobial Peptides of Salmonid Fish: From Form to Function. BIOLOGY 2020; 9:E233. [PMID: 32824728 PMCID: PMC7464209 DOI: 10.3390/biology9080233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 02/06/2023]
Abstract
Antimicrobial peptides (AMPs) are small, usually cationic, and amphiphilic molecules that play a crucial role in molecular and cellular host defense against pathogens, tissue damage, and infection. AMPs are present in all metazoans and several have been discovered in teleosts. Some teleosts, such as salmonids, have undergone whole genome duplication events and retained a diverse AMP repertoire. Salmonid AMPs have also been shown to possess diverse and potent antibacterial, antiviral, and antiparasitic activity and are induced by a variety of factors, including dietary components and specific molecules also known as pathogen-associated molecular patterns (PAMPs), which may activate downstream signals to initiate transcription of AMP genes. Moreover, a multitude of cell lines have been established from various salmonid species, making it possible to study host-pathogen interactions in vitro, and several of these cell lines have been shown to express various AMPs. In this review, the structure, function, transcriptional regulation, and immunomodulatory role of salmonid AMPs are highlighted in health and disease. It is important to characterize and understand how salmonid AMPs function as this may lead to a better understanding of host-pathogen interactions with implications for aquaculture and medicine.
Collapse
Affiliation(s)
- Sascha R. Brunner
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Joseph F. A. Varga
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada; (S.R.B.); (J.F.A.V.)
| |
Collapse
|
15
|
Buchmann K. Immune response to Ichthyophthirius multifiliis and role of IgT. Parasite Immunol 2020; 42:e12675. [PMID: 31587318 PMCID: PMC7507210 DOI: 10.1111/pim.12675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis causes white spot disease in freshwater fish worldwide. The theront penetrates external surfaces of the naïve fish where it develops into the feeding trophont stage and elicits a protective immune response both at the affected site as well as at the systemic level. The present work compiles data and presents an overall model of the protective reactions induced. A wide spectrum of inflammatory reactions are established upon invasion but the specific protection is provided by adaptive factors. Immunoglobulin IgT is involved in protection of surfaces in several fish species and is thereby one of the first adaptive immune molecules reacting with the penetrating theront. IgT producing lymphocytes occur in epithelia, dispersed or associated with lymphoid cell aggregations (skin epidermis, fins, gills, nostrils and buccal cavities) but they are also present in central immune organs such as the head kidney, spleen and liver. When theronts invade immunized fish skin, they are encountered by host factors which opsonize the parasite and may result in complement activation, phagocytosis or cell-mediated killing. However, antibody (IgT, IgM and IgD) binding to parasite cilia has been suggested to alter parasite behaviour and induce an escape reaction, whereby specific IgT (or other classes of immunoglobulin in fish surfaces) takes a central role in protection against the parasite.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
16
|
Zebrafish as a Model for Fish Diseases in Aquaculture. Pathogens 2020; 9:pathogens9080609. [PMID: 32726918 PMCID: PMC7460226 DOI: 10.3390/pathogens9080609] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The use of zebrafish as a model for human conditions is widely recognized. Within the last couple of decades, the zebrafish has furthermore increasingly been utilized as a model for diseases in aquacultured fish species. The unique tools available in zebrafish present advantages compared to other animal models and unprecedented in vivo imaging and the use of transgenic zebrafish lines have contributed with novel knowledge to this field. In this review, investigations conducted in zebrafish on economically important diseases in aquacultured fish species are included. Studies are summarized on bacterial, viral and parasitic diseases and described in relation to prophylactic approaches, immunology and infection biology. Considerable attention has been assigned to innate and adaptive immunological responses. Finally, advantages and drawbacks of using the zebrafish as a model for aquacultured fish species are discussed.
Collapse
|
17
|
Król E, Noguera P, Shaw S, Costelloe E, Gajardo K, Valdenegro V, Bickerdike R, Douglas A, Martin SAM. Integration of Transcriptome, Gross Morphology and Histopathology in the Gill of Sea Farmed Atlantic Salmon ( Salmo salar): Lessons From Multi-Site Sampling. Front Genet 2020; 11:610. [PMID: 32636874 PMCID: PMC7316992 DOI: 10.3389/fgene.2020.00610] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022] Open
Abstract
The gill of teleost fish is a multifunctional organ involved in many physiological processes such as gas exchange, osmotic and ionic regulation, acid-base balance and excretion of nitrogenous waste. Due to its extensive interface with the environment, the gill plays a key role as a primary mucosal defense tissue against pathogens, as manifested by the presence of the gill-associated lymphoid tissue (GIALT). In recent years, the prevalence of multifactorial gill pathologies has increased significantly, causing substantial losses in Atlantic salmon aquaculture. The transition from healthy to unhealthy gill phenotypes and the progression of multifactorial gill pathologies, such as proliferative gill disease (PGD), proliferative gill inflammation (PGI) and complex gill disorder (CGD), are commonly characterized by epithelial hyperplasia, lamellar fusion and inflammation. Routine monitoring for PGD relies on visual inspection and non-invasive scoring of the gill tissue (gross morphology), coupled with histopathological examination of gill sections. To explore the underlying molecular events that are associated with the progression of PGD, we sampled Atlantic salmon from three different marine production sites in Scotland and examined the gill tissue at three different levels of organization: gross morphology with the use of PGD scores (macroscopic examination), whole transcriptome (gene expression by RNA-seq) and histopathology (microscopic examination). Our results strongly suggested that the changes in PGD scores of the gill tissue were not associated with the changes in gene expression or histopathology. In contrast, integration of the gill RNA-seq data with the gill histopathology enabled us to identify common gene expression patterns associated with multifactorial gill disease, independently from the origin of samples. We demonstrated that the gene expression patterns associated with multifactorial gill disease were dominated by two processes: a range of immune responses driven by pro-inflammatory cytokines and the events associated with tissue damage and repair, driven by caspases and angiogenin.
Collapse
Affiliation(s)
- Elżbieta Król
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Patricia Noguera
- Fish Health and Welfare, Marine Scotland Science, Aberdeen, United Kingdom
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine, University of Aberdeen, Aberdeen, United Kingdom
| | - Eoin Costelloe
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | - Alex Douglas
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Samuel A. M. Martin
- School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
18
|
Sellaththurai S, Shanaka KASN, Liyanage DS, Yang H, Priyathilaka TT, Lee J. Molecular and functional insights into a novel teleost malectin from big-belly seahorse Hippocampus abdominalis. FISH & SHELLFISH IMMUNOLOGY 2020; 99:483-494. [PMID: 32087279 PMCID: PMC7129624 DOI: 10.1016/j.fsi.2020.02.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 05/05/2023]
Abstract
Malectin is a carbohydrate-binding lectin protein found in the endoplasmic reticulum (ER). It selectivity binds to Glc2-N-glycan and is involved in a glycoprotein quality control mechanism. Even though malectin may play a role in immunity, its role in innate immunity is not fully known. In the present study, we identified and characterized the malectin gene from Hippocampus abdominalis (HaMLEC). We analyzed sequence features, spatial expression levels, temporal expression profiles upon immune responses, bacterial and carbohydrate binding abilities and anti-viral properties to investigate the potential role of HaMLEC in innate immunity. The molecular weight and isoelectric point (pI) were estimated to be 31.99 kDa and 5.17, respectively. The N-terminal signal peptide, malectin superfamily domain and C-terminal transmembrane region were identified from the amino acid sequence of HaMLEC. The close evolutionary relationship of HaMLEC with other teleosts was identified by phylogenetic analysis. According to quantitative PCR (qPCR) results, HaMLEC expression was observed in all the examined tissues and high expression was observed in the ovary and brain, compared to other tested tissues. Temporal expression of HaMLEC in liver and blood tissues were significant modulated upon exposure to immunogens Edwardasiella tarda, Streptococcus iniae, polyinosinic:polycytidylic and lipopolysaccharide. The presence of carbohydrate binding modules (CBMs) of bacterial glycosyl hydrolases were functionally confirmed by a bacterial binding assay. Anti-viral activity significantly reduced viral hemorrhagic septicemia virus (VHSV) replication in cells overexpressing HaMLEC. The observed results suggested that HaMLEC may have a significant role in innate immunity in Hippocampus abdominalis.
Collapse
Affiliation(s)
- Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Thanthrige Thiunuwan Priyathilaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|