1
|
Huang H, Majumder T, Khot B, Suriyaarachchi H, Yang T, Shao Q, Tirukovalluru S, Liu G. The role of microtubule-associated protein tau in netrin-1 attractive signaling. J Cell Sci 2024; 137:jcs261244. [PMID: 38197773 PMCID: PMC10906489 DOI: 10.1242/jcs.261244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/24/2023] [Indexed: 01/11/2024] Open
Abstract
Direct binding of netrin receptors with dynamic microtubules (MTs) in the neuronal growth cone plays an important role in netrin-mediated axon guidance. However, how netrin-1 (NTN1) regulates MT dynamics in axon turning remains a major unanswered question. Here, we show that the coupling of netrin-1 receptor DCC with tau (MAPT)-regulated MTs is involved in netrin-1-promoted axon attraction. Tau directly interacts with DCC and partially overlaps with DCC in the growth cone of primary neurons. Netrin-1 induces this interaction and the colocalization of DCC and tau in the growth cone. The netrin-1-induced interaction of tau with DCC relies on MT dynamics and TUBB3, a highly dynamic β-tubulin isotype in developing neurons. Netrin-1 increased cosedimentation of DCC with tau and TUBB3 in MTs, and knockdown of either tau or TUBB3 mutually blocked this effect. Downregulation of endogenous tau levels by tau shRNAs inhibited netrin-1-induced axon outgrowth, branching and commissural axon attraction in vitro, and led to defects in spinal commissural axon projection in vivo. These findings suggest that tau is a key MT-associated protein coupling DCC with MT dynamics in netrin-1-promoted axon attraction.
Collapse
Affiliation(s)
- Huai Huang
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tanushree Majumder
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Bhakti Khot
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Harindi Suriyaarachchi
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Tao Yang
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Qiangqiang Shao
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Shraddha Tirukovalluru
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| | - Guofa Liu
- Department of Biological Sciences, University of Toledo, M. S. 601, 2801 W. Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
2
|
Atkins M, Nicol X, Fassier C. Microtubule remodelling as a driving force of axon guidance and pruning. Semin Cell Dev Biol 2023; 140:35-53. [PMID: 35710759 DOI: 10.1016/j.semcdb.2022.05.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/26/2022] [Accepted: 05/31/2022] [Indexed: 01/28/2023]
Abstract
The establishment of neuronal connectivity relies on the microtubule (MT) cytoskeleton, which provides mechanical support, roads for axonal transport and mediates signalling events. Fine-tuned spatiotemporal regulation of MT functions by tubulin post-translational modifications and MT-associated proteins is critical for the coarse wiring and subsequent refinement of neuronal connectivity. The defective regulation of these processes causes a wide range of neurodevelopmental disorders associated with connectivity defects. This review focuses on recent studies unravelling how MT composition, post-translational modifications and associated proteins influence MT functions in axon guidance and/or pruning to build functional neuronal circuits. We here summarise experimental evidence supporting the key role of this network as a driving force for growth cone steering and branch-specific axon elimination. We further provide a global overview of the MT-interactors that tune developing axon behaviours, with a special emphasis on their emerging versatility in the regulation of MT dynamics/structure. Recent studies establishing the key and highly selective role of the tubulin code in the regulation of MT functions in axon pathfinding are also reported. Finally, our review highlights the emerging molecular links between these MT regulation processes and guidance signals that wire the nervous system.
Collapse
Affiliation(s)
- Melody Atkins
- INSERM, UMR-S 1270, Institut du Fer à Moulin, Sorbonne Université, F-75005 Paris, France
| | - Xavier Nicol
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France
| | - Coralie Fassier
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, F-75012 Paris, France.
| |
Collapse
|
3
|
Lin C, Li W, Fan X. S1P promotes corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Open Life Sci 2022; 17:1324-1332. [PMID: 36313859 PMCID: PMC9559473 DOI: 10.1515/biol-2022-0491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/15/2022] Open
Abstract
Corneal disease was the most critical cause of vision loss. This study aimed to research a new method and provide a theoretical basis for treating corneal injury. A mice corneal epithelial injury model was constructed by the method of mechanical curettage. Models were treated with sphingosine 1-phosphate (S1P) and si-Spns2. An immunofluorescence assay was used to detect βIII-tubulin. The expressions of neurotrophic factor, S1P transporter, and extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway-related proteins were detected by western blot. Hematoxylin-eosin staining was processed to detect the effect of SIP on corneal repair in mice. si-Spns2 inhibited the effect of S1P. S1P significantly repaired the corneal injury, while si-Spns2 treatment made it more severe. Moreover, S1P could significantly increase the levels of NGF, BDNF, GDNF, Spns2, and p-ERK1/2. si-Spns2 inhibits the effect of S1P in the expression of these proteins. S1P significantly increased axonal differentiation of trigeminal ganglion neurons, which was inhibited after si-Spns2 treatment. S1P promoted corneal trigeminal neuron differentiation and corneal nerve repair via upregulating nerve growth factor expression in a mouse model. Treatment of corneal injury by S1P may be an effective approach.
Collapse
Affiliation(s)
- Chaoqun Lin
- Department of Neurosurgery, University of Chinese Academy of Sciences-Shenzhen Hospital (Guangming District), Shenzhen 518106, Guangdong, China
| | - Weina Li
- Department of Glaucoma and Cataract, Liuzhou Aier Eye Hospital, Affiliated Hospital of Aier Ophthalmology College of Central South University, 151 Liushi Road, Yufeng District, Liuzhou 545005, Guangxi, China
| | - Xuezheng Fan
- Department of Neurosurgery, University of Chinese Academy of Sciences-Shenzhen Hospital (Guangming District), Shenzhen 518106, Guangdong, China
| |
Collapse
|
4
|
Sánchez-Huertas C, Herrera E. With the Permission of Microtubules: An Updated Overview on Microtubule Function During Axon Pathfinding. Front Mol Neurosci 2021; 14:759404. [PMID: 34924953 PMCID: PMC8675249 DOI: 10.3389/fnmol.2021.759404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 01/27/2023] Open
Abstract
During the establishment of neural circuitry axons often need to cover long distances to reach remote targets. The stereotyped navigation of these axons defines the connectivity between brain regions and cellular subtypes. This chemotrophic guidance process mostly relies on the spatio-temporal expression patterns of extracellular proteins and the selective expression of their receptors in projection neurons. Axon guidance is stimulated by guidance proteins and implemented by neuronal traction forces at the growth cones, which engage local cytoskeleton regulators and cell adhesion proteins. Different layers of guidance signaling regulation, such as the cleavage and processing of receptors, the expression of co-receptors and a wide variety of intracellular cascades downstream of receptors activation, have been progressively unveiled. Also, in the last decades, the regulation of microtubule (MT) assembly, stability and interactions with the submembranous actin network in the growth cone have emerged as crucial effector mechanisms in axon pathfinding. In this review, we will delve into the intracellular signaling cascades downstream of guidance receptors that converge on the MT cytoskeleton of the growing axon. In particular, we will focus on the microtubule-associated proteins (MAPs) network responsible of MT dynamics in the axon and growth cone. Complementarily, we will discuss new evidences that connect defects in MT scaffold proteins, MAPs or MT-based motors and axon misrouting during brain development.
Collapse
Affiliation(s)
- Carlos Sánchez-Huertas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández (CSIC-UMH), Alicante, Spain
| | | |
Collapse
|
5
|
McNamara MC, Aykar SS, Alimoradi N, Niaraki Asli AE, Pemathilaka RL, Wrede AH, Montazami R, Hashemi NN. Behavior of Neural Cells Post Manufacturing and After Prolonged Encapsulation within Conductive Graphene-Laden Alginate Microfibers. Adv Biol (Weinh) 2021; 5:e2101026. [PMID: 34626101 DOI: 10.1002/adbi.202101026] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Engineering conductive 3D cell scaffoldings offer advantages toward the creation of physiologically relevant platforms with integrated real-time sensing capabilities. Dopaminergic neural cells are encapsulated into graphene-laden alginate microfibers using a microfluidic approach, which is unmatched for creating highly-tunable microfibers. Incorporating graphene increases the conductivity of the alginate microfibers by 148%, creating a similar conductivity to native brain tissue. The cell encapsulation procedure has an efficiency of 50%, and of those cells, ≈30% remain for the entire 6-day observation period. To understand how the microfluidic encapsulation affects cell genetics, tyrosine hydroxylase, tubulin beta 3 class 3, interleukin 1 beta, and tumor necrosis factor alfa are analyzed primarily with real-time reverse transcription-quantitative polymerase chain reaction and secondarily with enzyme-linked immunosorbent assay, immediately after manufacturing, after encapsulation in polymer matrix for 6 days, and after encapsulation in the graphene-polymer composite for 6 days. Preliminary data shows that the manufacturing process and combination with alginate matrix affect the expression of the studied genes immediately after manufacturing. In addition, the introduction of graphene further changes gene expressions. Long-term encapsulation of neural cells in alginate and 6-day exposure to graphene also leads to changes in gene expressions.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nima Alimoradi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | | | | | - Alex H Wrede
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.,Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
6
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
7
|
McNamara MC, Aykar SS, Montazami R, Hashemi NN. Targeted Microfluidic Manufacturing to Mimic Biological Microenvironments: Cell-Encapsulated Hollow Fibers. ACS Macro Lett 2021; 10:732-736. [PMID: 35549107 DOI: 10.1021/acsmacrolett.1c00159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
At present, the blood-brain barrier (BBB) poses a challenge for treating a wide range of central nervous system disorders; reliable BBB models are still needed to understand and manipulate the transfer of molecules into the brain, thereby improving the efficiency of treatments. In this study, hollow, cell-laden microfibers are fabricated and investigated as a starting point for generating BBB models. The genetic effects of the manufacturing process are analyzed to understand the implications of encapsulating cells in this manner. These fibers are created using different manufacturing parameters to understand the effects on wall thickness and overall diameter. Then, dopaminergic rat cells are encapsulated into hollow fibers, which maintained at least 60% live cells throughout the three-day observation period. Lastly, genetic changes tyrosine hydroxylase (TH) and tubulin beta 3 class III (TUBB-3) are investigated to elucidate the effects on cell health and behavior; while the TH levels in encapsulated cells were similar to control cells, showing similar levels of TH synthesis, TUBB-3 was downregulated, indicating lower amounts of cellular neurogenesis.
Collapse
Affiliation(s)
- Marilyn C McNamara
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Saurabh S Aykar
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Reza Montazami
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Nicole N Hashemi
- Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Abstract
Abnormalities in cranial motor nerve development cause paralytic strabismus syndromes, collectively referred to as congenital cranial dysinnervation disorders, in which patients cannot fully move their eyes. These disorders can arise through one of two mechanisms: (a) defective motor neuron specification, usually by loss of a transcription factor necessary for brainstem patterning, or (b) axon growth and guidance abnormalities of the oculomotor, trochlear, and abducens nerves. This review focuses on our current understanding of axon guidance mechanisms in the cranial motor nerves and how disease-causing mutations disrupt axon targeting. Abnormalities of axon growth and guidance are often limited to a single nerve or subdivision, even when the causative gene is ubiquitously expressed. Additionally, when one nerve is absent, its normal target muscles attract other motor neurons. Study of these disorders highlights the complexities of axon guidance and how each population of neurons uses a unique but overlapping set of axon guidance pathways. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Mary C Whitman
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
9
|
Accogli A, Addour-Boudrahem N, Srour M. Neurogenesis, neuronal migration, and axon guidance. HANDBOOK OF CLINICAL NEUROLOGY 2020; 173:25-42. [PMID: 32958178 DOI: 10.1016/b978-0-444-64150-2.00004-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Development of the central nervous system (CNS) is a complex, dynamic process that involves a precisely orchestrated sequence of genetic, environmental, biochemical, and physical factors from early embryonic stages to postnatal life. Duringthe past decade, great strides have been made to unravel mechanisms underlying human CNS development through the employment of modern genetic techniques and experimental approaches. In this chapter, we review the current knowledge regarding the main developmental processes and signaling mechanisms of (i) neurogenesis, (ii) neuronal migration, and (iii) axon guidance. We discuss mechanisms related to neural stem cells proliferation, migration, terminal translocation of neuronal progenitors, and axon guidance and pathfinding. For each section, we also provide a comprehensive overview of the underlying regulatory processes, including transcriptional, posttranscriptional, and epigenetic factors, and a myriad of signaling pathways that are pivotal to determine the fate of neuronal progenitors and newly formed migrating neurons. We further highlight how impairment of this complex regulating system, such as mutations in its core components, may cause cortical malformation, epilepsy, intellectual disability, and autism in humans. A thorough understanding of normal human CNS development is thus crucial to decipher mechanisms responsible for neurodevelopmental disorders and in turn guide the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Andrea Accogli
- Unit of Medical Genetics, Istituto Giannina Gaslini Pediatric Hospital, Genova, Italy; Departments of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal-Child Science, Università degli Studi di Genova, Genova, Italy
| | | | - Myriam Srour
- Research Institute, McGill University Health Centre, Montreal, QC, Canada; Department of Pediatrics, Division of Pediatric Neurology, McGill University, Montreal, QC, Canada.
| |
Collapse
|