1
|
Shirahama S, Okunuki Y, Lee MY, Karg MM, Refaian N, Krasniqi D, Connor KM, Gregory-Ksander MS, Ksander BR. Retinal microglia exacerbate uveitis by functioning as local antigen-presenting cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.23.586440. [PMID: 38585800 PMCID: PMC10996501 DOI: 10.1101/2024.03.23.586440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Autoimmune uveitis is a major cause of blindness in the working-age population of developed countries. Experimental autoimmune uveitis (EAU) depends on activation of interphotoreceptor retinoid-binding protein (IRBP) specific CD4 + effector T cells that migrate systemically and infiltrate into the retina. Following systemic induction of retinal antigen-specific T cells, the development of EAU can be broken down into three phases: early phase when inflammatory cells begin to infiltrate the retina, amplification phase, and peak phase. Although studied extensively, the function of local antigen-presenting cells (APCs) within the retina remains unclear. Two potential types of APCs are present during uveitis, resident microglia and infiltrating CD11c + dendritic cells (DCs). MHC class II (MHC II) is expressed within the retina on both CD11c + DCs and microglia during the amplification phase of EAU. Therefore, we used microglia specific (P2RY12 and TMEM119) and CD11c + DC specific MHC II knockout mice to study the function of APCs within the retina using the conventional and adoptive transfer methods of inducing EAU. Microglia were essential during all phases of EAU development: the early phase when microglia were MHC Il negative, and amplification and peak phases when microglia were MHC II positive. Unexpectedly, retinal infiltrating MHC Il + CD11c + DCs were present within the retina but their antigen-presenting function was not required for all phases of uveitis. Our data indicate microglia are the critical APCs within the retina and an important therapeutic target that can prevent and/or diminish uveitis even in the presence of circulating IRBP-specific CD4 + effector T cells.
Collapse
|
2
|
Arnold K, Dehio P, Lötscher J, Singh KD, García-Gómez D, Hess C, Sinues P, Balmer ML. Real-Time Volatile Metabolomics Analysis of Dendritic Cells. Anal Chem 2023. [PMID: 37311562 DOI: 10.1021/acs.analchem.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Dendritic cells (DCs) actively sample and present antigen to cells of the adaptive immune system and are thus vital for successful immune control and memory formation. Immune cell metabolism and function are tightly interlinked, and a better understanding of this interaction offers potential to develop immunomodulatory strategies. However, current approaches for assessing the immune cell metabolome are often limited by end-point measurements, may involve laborious sample preparation, and may lack unbiased, temporal resolution of the metabolome. In this study, we present a novel setup coupled to a secondary electrospray ionization-high resolution mass spectrometric (SESI-HRMS) platform allowing headspace analysis of immature and activated DCs in real-time with minimal sample preparation and intervention, with high technical reproducibility and potential for automation. Distinct metabolic signatures of DCs treated with different supernatants (SNs) of bacterial cultures were detected during real-time analyses over 6 h compared to their respective controls (SN only). Furthermore, the technique allowed for the detection of 13C-incorporation into volatile metabolites, opening the possibility for real-time tracing of metabolic pathways in DCs. Moreover, differences in the metabolic profile of naı̈ve and activated DCs were discovered, and pathway-enrichment analysis revealed three significantly altered pathways, including the TCA cycle, α-linolenic acid metabolism, and valine, leucine, and isoleucine degradation.
Collapse
Affiliation(s)
- Kim Arnold
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Philippe Dehio
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
| | - Kapil Dev Singh
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Diego García-Gómez
- Department of Analytical Chemistry, Nutrition and Food Science, University of Salamanca, 37008 Salamanca, Spain
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
- Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, United Kingdom
| | - Pablo Sinues
- University Children's Hospital Basel (UKBB), 4056 Basel, Switzerland
- Department of Biomedical Engineering, University of Basel, 4123 Allschwil, Switzerland
| | - Maria L Balmer
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland
- Department of Biomedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- University Clinic for Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, 3010 Bern, Switzerland
- Diabetes Center Bern (DCB), 3010 Bern, Switzerland
| |
Collapse
|
3
|
Immune regulation of poly unsaturated fatty acids and free fatty acid receptor 4. J Nutr Biochem 2023; 112:109222. [PMID: 36402250 DOI: 10.1016/j.jnutbio.2022.109222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 09/24/2022] [Accepted: 11/10/2022] [Indexed: 11/19/2022]
Abstract
Fatty acid metabolism contributes to energy supply and plays an important role in regulating immunity. Free fatty acids (FFAs) bind to free fatty acid receptors (FFARs) on the cell surface and mediate effects through the intra-cellular FFAR signaling pathways. FFAR4, also known as G-protein coupled receptor 120 (GPR120), has been identified as the primary receptor of omega-3 polyunsaturated fatty acids (ω-3 PUFAs). FFAR4 is a promising target for treating metabolic and inflammatory disorders due to its immune regulatory functions and the discovery of highly selective and efficient agonists. This review summarizes the reported immune regulatory functions of ω-3 PUFAs and FFAR4 in immune cells and immune-related diseases. We also speculate possible involvements of ω-3 PUFAs and FFAR4 in other types of inflammatory disorders.
Collapse
|
4
|
Dugan B, Conway J, Duggal NA. Inflammaging as a target for healthy ageing. Age Ageing 2023; 52:7024516. [PMID: 36735849 DOI: 10.1093/ageing/afac328] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 11/11/2022] [Indexed: 02/05/2023] Open
Abstract
Life expectancy has been on the rise for the past few decades, but healthy life expectancy has not kept pace, leading to a global burden of age-associated disorders. Advancing age is accompanied by a chronic increase in basal systemic inflammation, termed inflammaging, contributing towards an increased risk of developing chronic diseases in old age. This article reviews the recent literature to formulate hypotheses regarding how age-associated inflammaging plays a crucial role in driving chronic diseases and ill health in older adults. Here, we discuss how non-pharmacological intervention strategies (diet, nutraceutical supplements, phytochemicals, physical activity, microbiome-based therapies) targeting inflammaging restore health in older adults. We also consider alternative existing pharmacological interventions (Caloric restriction mimetics, p38 mitogen-activated protein kinase inhibitors) and explore novel targets (senolytics) aimed at combating inflammaging and optimising the ageing process to increase healthy lifespan.
Collapse
Affiliation(s)
- Ben Dugan
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Jessica Conway
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| | - Niharika A Duggal
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
5
|
Shu Q, Zhao C, Yu J, Liu Y, Hu S, Meng J, Zhang J. Causal analysis of serum polyunsaturated fatty acids with juvenile idiopathic arthritis and ocular comorbidity. Eur J Clin Nutr 2023; 77:75-81. [PMID: 35974138 DOI: 10.1038/s41430-022-01196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND & OBJECTIVE To investigate the causal effects of plasma Polyunsaturated fatty acids (PUFAs) on the risk of juvenile idiopathic arthritis (JIA) and ocular comorbidity through Mendelian randomization (MR) analysis. METHODS Genetic variants (formerly single nucleotide polymorphisms, SNPs) that are strongly associated with PUFAs levels (P < 5×10-8) were selected as instrumental variables. Summary-level MR was performed with outcome estimates for JIA (n = 31,142) and JIA associated iridocyclitis (n = 94,197). The inverse variance-weighted (IVW) method was employed as the main approach to combine the estimation for each SNP. Two set of models with summary statistics were conducted and multiple sensitivity analyses were applied for testing of pleiotropic bias. RESULTS In model 1, genetically predicted n-6 PUFAs linoleic acid (LA) and arachidonic acid (AA) were associated with lower and higher risk of JIA associated iridocyclitis using IVW (ORLA = 0.940, 95% CI: 0.895-0.988, P = 0.015; ORAA = 1.053, 95% CI: 1.007-1.101, P = 0.024). No such association was observed between each plasma PUFAs and JIA susceptibility (P > 0.05). In further MR analysis, results from model 2 also showed a consistent trend. Besides, multiple sensitivity analyses revealed that there was no obvious evidence for unknown pleiotropy (P > 0.05). CONCLUSIONS Our MR study provides genetic evidence on the possible causality that plasma LA level might protect against JIA associated iridocyclitis, whereas AA was responsible for opposite effect.
Collapse
Affiliation(s)
- Qinxin Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Chenyang Zhao
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jing Yu
- Department of Geriatrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P. R. China
| | - Yusen Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Shuqiong Hu
- Wuhan Aier Eye Hospital of Wuhan University, Wuhan, Hubei Province, P. R. China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China
- Chongqing Eye Institute, Chongqing, China
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Zhang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Chongqing Key Laboratory of Ophthalmology, Chongqing, China.
- Chongqing Eye Institute, Chongqing, China.
- Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
6
|
Hellmich C, Wojtowicz EE. You are what you eat: How to best fuel your immune system. Front Immunol 2022; 13:1003006. [PMID: 36211413 PMCID: PMC9533172 DOI: 10.3389/fimmu.2022.1003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/26/2022] Open
Abstract
Normal bone marrow (BM) homeostasis ensures consistent production of progenitor cells and mature blood cells. This requires a reliable supply of nutrients in particular free fatty acids, carbohydrates and protein. Furthermore, rapid changes can occur in response to stress such as infection which can alter the demand for each of these metabolites. In response to infection the haematopoietic stem cells (HSCs) must respond and expand rapidly to facilitate the process of emergency granulopoiesis required for the immediate immune response. This involves a shift from the use of glycolysis to oxidative phosphorylation for energy production and therefore an increased demand for metabolites. Thus, the right balance of each dietary component helps to maintain not only normal homeostasis but also the ability to quickly respond to systemic stress. In addition, some dietary components can drive chronic inflammatory changes in the absence of infection or immune stress, which in turn can impact on overall immune function. The optimal nutrition for the best immunological outcomes would therefore be a diet that supports the functions of immune cells allowing them to initiate effective responses against pathogens but also to resolve the response rapidly when necessary and to avoid any underlying chronic inflammation. In this review we discuss how these key dietary components can alter immune function, what is their impact on bone marrow metabolism and how changes in dietary intake of each of these can improve the outcomes of infections.
Collapse
Affiliation(s)
- Charlotte Hellmich
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Department of Haematology, Norfolk and Norwich University Hospitals NHS Trust, Norwich, United Kingdom
| | - Edyta E. Wojtowicz
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
7
|
Zhai Y, He X, Li Y, Han R, Ma Y, Gao P, Qian Z, Gu Y, Li S. A splenic-targeted versatile antigen courier: iPSC wrapped in coalescent erythrocyte-liposome as tumor nanovaccine. SCIENCE ADVANCES 2021; 7:eabi6326. [PMID: 34433569 PMCID: PMC8386930 DOI: 10.1126/sciadv.abi6326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/01/2021] [Indexed: 05/05/2023]
Abstract
The major obstacles for tumor vaccine to be surmounted are the lack of versatile property and immunity-inducing effectiveness. Induced pluripotent stem cells (iPSCs) expressed various antigens the same as multiple types of tumors, providing a promising source of wide-spectrum cancer vaccines. The damaged erythrocyte membrane entrapped by spleen could be developed as antigen deliverer for enhancing acquired immunity. Here, the modified lipid materials were used to dilate erythrocyte membrane to fabricate coalescent nanovector, which not only preserved the biological characteristics of erythrocyte membrane but also remedied the defect of insufficient drug loading capacity. After wrapping iPSC protein, the nanovaccine iPSC@RBC-Mlipo exhibited obvious splenic accumulation, systemic specific antitumor immunity evocation, and effective tumor expansion and metastasis inhibition in mice. Hence, our research may provide a prospective strategy of efficient tumor vaccine for clinical practice.
Collapse
Affiliation(s)
- Yuewen Zhai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Xiaorong He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Ran Han
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Yuying Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China
| | - Peng Gao
- Chia Tai Tianqing Pharmaceutical Group Co. Ltd., No.1099, Fuying Road, Jiangning District, Jiangsu Province, Nanjing, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, 29th JiangJun Street, Jiangsu Province, Nanjing 211106, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China.
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing 211198, Jiangsu Province, China.
| |
Collapse
|
8
|
Das UN. Molecular biochemical aspects of salt (sodium chloride) in inflammation and immune response with reference to hypertension and type 2 diabetes mellitus. Lipids Health Dis 2021; 20:83. [PMID: 34334139 PMCID: PMC8327432 DOI: 10.1186/s12944-021-01507-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 07/14/2021] [Indexed: 12/18/2022] Open
Abstract
Obesity, insulin resistance, type 2 diabetes mellitus (T2DM) and hypertension (HTN) are common that are associated with low-grade systemic inflammation. Diet, genetic factors, inflammation, and immunocytes and their cytokines play a role in their pathobiology. But the exact role of sodium, potassium, magnesium and other minerals, trace elements and vitamins in the pathogenesis of HTN and T2DM is not known. Recent studies showed that sodium and potassium can modulate oxidative stress, inflammation, alter the autonomic nervous system and induce dysfunction of the innate and adaptive immune responses in addition to their action on renin-angiotensin-aldosterone system. These actions of sodium, potassium and magnesium and other minerals, trace elements and vitamins are likely to be secondary to their action on pro-inflammatory cytokines IL-6, TNF-α and IL-17 and metabolism of essential fatty acids that may account for their involvement in the pathobiology of insulin resistance, T2DM, HTN and autoimmune diseases.
Collapse
Affiliation(s)
- Undurti N Das
- UND Life Sciences, 2221 NW 5th St, Battle Ground, WA, 98604, USA.
| |
Collapse
|
9
|
Guo X, Chen Z, Xing Y. Immune-mediated uveitis and lifestyle factors: A review. Ophthalmic Res 2021; 64:687-695. [PMID: 34348329 DOI: 10.1159/000518496] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Xiaoyu Guo
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China,
| | - Zhen Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Nutrition-Based Management of Inflammaging in CKD and Renal Replacement Therapies. Nutrients 2021; 13:nu13010267. [PMID: 33477671 PMCID: PMC7831904 DOI: 10.3390/nu13010267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Access to renal transplantation guarantees a substantial improvement in the clinical condition and quality of life (QoL) for end-stage renal disease (ESRD) patients. In recent years, a greater number of older patients starting renal replacement therapies (RRT) have shown the long-term impact of conservative therapies for advanced CKD and the consequences of the uremic milieu, with a frail clinical condition that impacts not only their survival but also limits their access to transplantation. This process, referred to as “inflammaging,” might be reversible with a tailored approach, such as RRT accompanied by specific nutritional support. In this review, we summarize the evidence demonstrating the presence of several proinflammatory substances in the Western diet (WD) and the positive effect of unprocessed food consumption and increased fruit and vegetable intake, suggesting a new approach to reduce inflammaging with the improvement of ESRD clinical status. We conclude that the Mediterranean diet (MD), because of its modulative effects on microbiota and its anti-inflammaging properties, may be a cornerstone in a more precise nutritional support for patients on the waiting list for kidney transplantation.
Collapse
|
11
|
Takeda A, Yanai R, Murakami Y, Arima M, Sonoda KH. New Insights Into Immunological Therapy for Retinal Disorders. Front Immunol 2020; 11:1431. [PMID: 32719682 PMCID: PMC7348236 DOI: 10.3389/fimmu.2020.01431] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022] Open
Abstract
In the twentieth century, a conspicuous lack of effective treatment strategies existed for managing several retinal disorders, including age-related macular degeneration; diabetic retinopathy (DR); retinopathy of prematurity (ROP); retinitis pigmentosa (RP); uveitis, including Behçet's disease; and vitreoretinal lymphoma (VRL). However, in the first decade of this century, advances in biomedicine have provided new treatment strategies in the field of ophthalmology, particularly biologics that target vascular endothelial growth factor or tumor necrosis factor (TNF)-α. Furthermore, clinical trials on gene therapy specifically for patients with autosomal recessive or X-linked RP have commenced. The overall survival rates of patients with VRL have improved, owing to earlier diagnoses and better treatment strategies. However, some unresolved problems remain such as primary or secondary non-response to biologics or chemotherapy, and the lack of adequate strategies for treating most RP patients. In this review, we provide an overview of the immunological mechanisms of the eye under normal conditions and in several retinal disorders, including uveitis, DR, ROP, RP, and VRL. In addition, we discuss recent studies that describe the inflammatory responses that occur during the course of these retinal disorders to provide new insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Department of Ophthalmology, Clinical Research Institute, Kyushu Medical Center, National Hospital Organization, Fukuoka, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
12
|
Silva AR, Moraes BPT, Gonçalves-de-Albuquerque CF. Mediterranean Diet: Lipids, Inflammation, and Malaria Infection. Int J Mol Sci 2020; 21:ijms21124489. [PMID: 32599864 PMCID: PMC7350014 DOI: 10.3390/ijms21124489] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/05/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022] Open
Abstract
The Mediterranean diet (MedDiet) consists of consumption of vegetables and healthy oils and have beneficial effects on metabolic and inflammatory diseases. Our goal here is to discuss the role of fatty acid content in MedDiet, mostly omega-3, omega-6, and omega-9 on malaria. Malaria affects millions of people around the globe. The parasite Plasmodium causes the disease. The metabolic and inflammatory alterations in the severe forms have damaging consequences to the host. The lipid content in the MedDiet holds anti-inflammatory and pro-resolutive features in the host and have detrimental effects on the Plasmodium. The lipids from the diet impact the balance of pro- and anti-inflammation, thus, lipids intake from the diet is critical to parasite elimination and host tissue damage caused by an immune response. Herein, we go into the cellular and molecular mechanisms and targets of the MedDiet fatty acids in the host and the parasite, reviewing potential benefits of the MedDiet, on inflammation, malaria infection progression, and clinical outcome.
Collapse
Affiliation(s)
- Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro 21040-900, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| | - Bianca P. T. Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Neurociências da Universidade Federal Fluminense (UFF), Niterói 24020-141, Brazil
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20210-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, UNIRIO, Rio de Janeiro 20210-010, Brazil
- Correspondence: or (A.R.S.); or (C.F.G.-d.-A.)
| |
Collapse
|
13
|
Correction: Dendritic cells mediate the anti-inflammatory action of omega-3 long-chain polyunsaturated fatty acids in experimental autoimmune uveitis. PLoS One 2020; 15:e0231277. [PMID: 32218588 PMCID: PMC7100929 DOI: 10.1371/journal.pone.0231277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
14
|
Radzikowska U, Rinaldi AO, Çelebi Sözener Z, Karaguzel D, Wojcik M, Cypryk K, Akdis M, Akdis CA, Sokolowska M. The Influence of Dietary Fatty Acids on Immune Responses. Nutrients 2019; 11:E2990. [PMID: 31817726 PMCID: PMC6950146 DOI: 10.3390/nu11122990] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/25/2019] [Accepted: 12/02/2019] [Indexed: 12/16/2022] Open
Abstract
Diet-derived fatty acids (FAs) are essential sources of energy and fundamental structural components of cells. They also play important roles in the modulation of immune responses in health and disease. Saturated and unsaturated FAs influence the effector and regulatory functions of innate and adaptive immune cells by changing membrane composition and fluidity and by acting through specific receptors. Impaired balance of saturated/unsaturated FAs, as well as n-6/n-3 polyunsaturated FAs has significant consequences on immune system homeostasis, contributing to the development of many allergic, autoimmune, and metabolic diseases. In this paper, we discuss up-to-date knowledge and the clinical relevance of the influence of dietary FAs on the biology, homeostasis, and functions of epithelial cells, macrophages, dendritic cells, neutrophils, innate lymphoid cells, T cells and B cells. Additionally, we review the effects of dietary FAs on the pathogenesis of many diseases, including asthma, allergic rhinitis, food allergy, atopic dermatitis, rheumatoid arthritis, multiple sclerosis as well as type 1 and 2 diabetes.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
- Department of Regenerative Medicine and Immune Regulation, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Arturo O Rinaldi
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Zeynep Çelebi Sözener
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Department of Chest Disease, Division of Allergy and Clinical Immunology, Ankara University School of Medicine, 06100 Ankara, Turkey
| | - Dilara Karaguzel
- Department of Biology, Faculty of Science, Hacettepe University, 06800 Ankara, Turkey
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, 90-752 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Medicine and Diabetology, Medical University of Lodz, 90-549 Lodz, Poland
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265 Davos Wolfgang, Switzerland
- Christine Kühne-Center for Allergy Research and Education, 7265 Davos Wolfgang, Switzerland
| |
Collapse
|
15
|
Ridley RB, Young BM, Lee J, Walsh E, Ahmed CM, Lewin AS, Ildefonso CJ. AAV Mediated Delivery of Myxoma Virus M013 Gene Protects the Retina against Autoimmune Uveitis. J Clin Med 2019; 8:jcm8122082. [PMID: 31795515 PMCID: PMC6947576 DOI: 10.3390/jcm8122082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Uveoretinitis is an ocular autoimmune disease caused by the activation of autoreactive T- cells targeting retinal antigens. The myxoma M013 gene is known to block NF-κB (Nuclear Factor kappa-light-chain-enhancer of activated B cells) and inflammasome activation, and its gene delivery has been demonstrated to protect the retina against lipopolysaccharide (LPS)-induced uveitis. In this report we tested the efficacy of M013 in an experimental autoimmune uveoretinitis (EAU) mouse model. B10RIII mice were injected intravitreally with AAV (adeno associated virus) vectors delivering either secreted GFP (sGFP) or sGFP-TatM013. Mice were immunized with interphotorecptor retinoid binding protein residues 161–180 (IRBP161–180) peptide in complete Freund’s adjuvant a month later. Mice were evaluated by fundoscopy and spectral domain optical coherence tomography (SD-OCT) at 14 days post immunization. Eyes were evaluated by histology and retina gene expression changes were measured by reverse transcribed quantitative PCR (RT-qPCR). No significant difference in ERG or retina layer thickness was observed between sGFP and sGFP-TatM013 treated non-uveitic mice, indicating safety of the vector. In EAU mice, expression of sGFP-TatM013 strongly lowered the clinical score and number of infiltrative cells within the vitreous humor when compared to sGFP treated eyes. Retina structure was protected, and pro-inflammatory genes expression was significantly decreased. These results indicate that gene delivery of myxoma M013 could be of clinical benefit against autoimmune diseases.
Collapse
Affiliation(s)
- Raela B. Ridley
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Brianna M. Young
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Jieun Lee
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Erin Walsh
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
| | - Chulbul M. Ahmed
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Alfred S. Lewin
- Department of Molecular Genetics & Microbiology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (J.L.); (C.M.A.); (A.S.L.)
| | - Cristhian J. Ildefonso
- Department of Ophthalmology, University of Florida College of Medicine, Gainesville, FL 32610, USA; (R.B.R.); (B.M.Y.); (E.W.)
- Correspondence: ; Tel.: +1-352-273-8786
| |
Collapse
|