1
|
Gaál E, Farkas A, Türkösi E, Kruppa K, Szakács É, Szőke-Pázsi K, Kovács P, Kalapos B, Darkó É, Said M, Lampar A, Ivanizs L, Valárik M, Doležel J, Molnár I. DArTseq genotyping facilitates identification of Aegilops biuncialis chromatin introgressed into bread wheat Mv9kr1. PLANT MOLECULAR BIOLOGY 2024; 114:122. [PMID: 39508930 PMCID: PMC11543725 DOI: 10.1007/s11103-024-01520-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Wild wheat relative Aegilops biuncialis offers valuable traits for crop improvement through interspecific hybridization. However, gene transfer from Aegilops has been hampered by difficulties in detecting introgressed Ub- and Mb-genome chromatin in the wheat background at high resolution. The present study applied DArTseq technology to genotype two backcrossed populations (BC382, BC642) derived from crosses of wheat line Mv9kr1 with Ae. biuncialis accession, MvGB382 (early flowering and drought-tolerant) and MvGB642 (leaf rust-resistant). A total of 11,952 Aegilops-specific Silico-DArT markers and 8,998 wheat-specific markers were identified. Of these, 7,686 markers were assigned to Ub-genome chromosomes and 4,266 to Mb-genome chromosomes and were ordered using chromosome scale reference assemblies of hexaploid wheat and Ae. umbellulata. Ub-genome chromatin was detected in 5.7% of BC382 and 22.7% of BC642 lines, while 88.5% of BC382 and 84% of BC642 lines contained Mb-genome chromatin, predominantly the chromosomes 4Mb and 5Mb. The presence of alien chromatin was confirmed by microscopic analysis of mitotic metaphase cells using GISH and FISH, which allowed precise determination of the size and position of the introgression events. New Mv9kr1-Ae. biuncialis MvGB382 4Mb and 5Mb disomic addition lines together with a 5DS.5DL-5MbL recombination were identified. A possible effect of the 5MbL distal region on seed length has also been observed. Moreover, previously developed Mv9kr1-MvGB642 introgression lines were more precisely characterized. The newly developed cytogenetic stocks represent valuable genetic resources for wheat improvement, highlighting the importance of utilizing diverse genetic materials to enhance wheat breeding strategies.
Collapse
Affiliation(s)
- Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Balázs Kalapos
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
| | - Mahmoud Said
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, 9 Gamma Street, Giza, 12619, Egypt
| | - Adam Lampar
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary.
| | - Miroslav Valárik
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - Jaroslav Doležel
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Hungarian Research Network, Martonvásár, 2462, Hungary
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, Olomouc, 77900, Czech Republic
| |
Collapse
|
2
|
Farkas A, Gaál E, Ivanizs L, Blavet N, Said M, Holušová K, Szőke-Pázsi K, Spitkó T, Mikó P, Türkösi E, Kruppa K, Kovács P, Darkó É, Szakács É, Bartoš J, Doležel J, Molnár I. Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines. Sci Rep 2023; 13:20499. [PMID: 37993509 PMCID: PMC10665447 DOI: 10.1038/s41598-023-47845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
The annual goatgrass, Aegilops biuncialis is a rich source of genes with considerable agronomic value. This genetic potential can be exploited for wheat improvement through interspecific hybridization to increase stress resistance, grain quality and adaptability. However, the low throughput of cytogenetic selection hampers the development of alien introgressions. Using the sequence of flow-sorted chromosomes of diploid progenitors, the present study enabled the development of chromosome-specific markers. In total, 482 PCR markers were validated on wheat (Mv9kr1) and Ae. biuncialis (MvGB642) crossing partners, and 126 on wheat-Aegilops additions. Thirty-two markers specific for U- or M-chromosomes were used in combination with GISH and FISH for the screening of 44 Mv9kr1 × Ae. biuncialis BC3F3 genotypes. The predominance of chromosomes 4M and 5M, as well as the presence of chromosomal aberrations, may indicate that these chromosomes have a gametocidal effect. A new wheat-Ae. biuncialis disomic 4U addition, 4M(4D) and 5M(5D) substitutions, as well as several introgression lines were selected. Spike morphology and fertility indicated that the Aegilops 4M or 5M compensated well for the loss of 4D and 5D, respectively. The new cytogenetic stocks represent valuable genetic resources for the introgression of key genes alleles into wheat.
Collapse
Affiliation(s)
- András Farkas
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Eszter Gaál
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary.
| | - László Ivanizs
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Nicolas Blavet
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Mahmoud Said
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
- Field Crops Research Institute, Agricultural Research Centre, 9 Gamma Street, Giza, Cairo, 12619, Egypt
| | - Kateřina Holušová
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Kitti Szőke-Pázsi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Tamás Spitkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Mikó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Edina Türkösi
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Klaudia Kruppa
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Péter Kovács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Darkó
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Éva Szakács
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
| | - Jan Bartoš
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - Jaroslav Doležel
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| | - István Molnár
- Department of Biological Resources, Centre for Agricultural Research, Eötvös Lóránd Research Network, Martonvásár, 2462, Hungary
- Institute for Experimental Botany of the Czech Academy of Sciences, Centre of Plant Structural and Functional Genomics, 779 00, Olomouc, Czech Republic
| |
Collapse
|
3
|
Adhikari L, Raupp J, Wu S, Koo DH, Friebe B, Poland J. Genomic characterization and gene bank curation of Aegilops: the wild relatives of wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1268370. [PMID: 37915516 PMCID: PMC10616851 DOI: 10.3389/fpls.2023.1268370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023]
Abstract
Genetic diversity found in crop wild relatives is critical to preserve and utilize for crop improvement to achieve sustainable food production amid climate change and increased demand. We genetically characterized a large collection of 1,041 Aegilops accessions distributed among 23 different species using more than 45K single nucleotide polymorphisms identified by genotyping-by-sequencing. The Wheat Genetics Resource Center (WGRC) Aegilops germplasm collection was curated through the identification of misclassified and redundant accessions. There were 49 misclassified and 28 sets of redundant accessions within the four diploid species. The curated germplasm sets now have improved utility for genetic studies and wheat improvement. We constructed a phylogenetic tree and principal component analysis cluster for all Aegilops species together, giving one of the most comprehensive views of Aegilops. The Sitopsis section and the U genome Aegilops clade were further scrutinized with in-depth population analysis. The genetic relatedness among the pair of Aegilops species provided strong evidence for the species evolution, speciation, and diversification. We inferred genome symbols for two species Ae. neglecta and Ae. columnaris based on the sequence read mapping and the presence of segregating loci on the pertinent genomes as well as genetic clustering. The high genetic diversity observed among Aegilops species indicated that the genus could play an even greater role in providing the critical need for untapped genetic diversity for future wheat breeding and improvement. To fully characterize these Aegilops species, there is an urgent need to generate reference assemblies for these wild wheats, especially for the polyploid Aegilops.
Collapse
Affiliation(s)
- Laxman Adhikari
- Plant Breeding and Genetics Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - John Raupp
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Shuangye Wu
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Dal-Hoe Koo
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Bernd Friebe
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | - Jesse Poland
- Plant Breeding and Genetics Lab, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
- Plant Science Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
4
|
Mapuranga J, Chang J, Yang W. Combating powdery mildew: Advances in molecular interactions between Blumeria graminis f. sp. tritici and wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:1102908. [PMID: 36589137 PMCID: PMC9800938 DOI: 10.3389/fpls.2022.1102908] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Wheat powdery mildew caused by a biotrophic fungus Blumeria graminis f. sp. tritici (Bgt), is a widespread airborne disease which continues to threaten global wheat production. One of the most chemical-free and cost-effective approaches for the management of wheat powdery mildew is the exploitation of resistant cultivars. Accumulating evidence has reported that more than 100 powdery mildew resistance genes or alleles mapping to 63 different loci (Pm1-Pm68) have been identified from common wheat and its wild relatives, and only a few of them have been cloned so far. However, continuous emergence of new pathogen races with novel degrees of virulence renders wheat resistance genes ineffective. An essential breeding strategy for achieving more durable resistance is the pyramiding of resistance genes into a single genotype. The genetics of host-pathogen interactions integrated with temperature conditions and the interaction between resistance genes and their corresponding pathogen a virulence genes or other resistance genes within the wheat genome determine the expression of resistance genes. Considerable progress has been made in revealing Bgt pathogenesis mechanisms, identification of resistance genes and breeding of wheat powdery mildew resistant cultivars. A detailed understanding of the molecular interactions between wheat and Bgt will facilitate the development of novel and effective approaches for controlling powdery mildew. This review gives a succinct overview of the molecular basis of interactions between wheat and Bgt, and wheat defense mechanisms against Bgt infection. It will also unleash the unsung roles of epigenetic processes, autophagy and silicon in wheat resistance to Bgt.
Collapse
|
5
|
Men W, Fan Z, Ma C, Zhao Y, Wang C, Tian X, Chen Q, Miao J, He J, Qian J, Sehgal SK, Li H, Liu W. Mapping of the novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis based on ph1b-induced homoeologous recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2993-3003. [PMID: 35831461 DOI: 10.1007/s00122-022-04162-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
A novel powdery mildew resistance gene Pm2Mb from Aegilops biuncialis was transferred into common wheat and mapped to chromosome 2MbL bin FL 0.49-0.66 by molecular cytogenetic analysis of 2Mb recombinants. Aegilops biuncialis, a wild relative of common wheat, is highly resistant to powdery mildew. Previous studies identified that chromosome 2Mb in Chinese Spring (CS)-Ae. biuncialis 2Mb disomic addition line TA7733 conferred high resistance to powdery mildew, and the resistance gene was temporarily designated as Pm2Mb. In this study, a total of 65 CS-Ae. biuncialis 2Mb recombinants were developed by ph1b-induced homoeologous recombination and they were grouped into 12 different types based on the presence of different markers of 2Mb-specificity. Segment sizes and breakpoints of each 2Mb recombinant type were further characterized using in situ hybridization and molecular marker analyses. Powdery mildew responses of each type were assessed by inoculation of each 2Mb recombinant-derived F2 progenies using the isolate E05. Combined analyses of in situ hybridization, molecular markers and powdery mildew resistance data of the 2Mb recombinants, the gene Pm2Mb was cytologically located to an interval of FL 0.49-0.66 in the long arm of 2Mb, where 19 2Mb-specific markers were located. Among the 65 2Mb recombinants, T-11 (T2DS.2DL-2MbL) and T-12 (Ti2DS.2DL-2MbL-2DL) contained a small 2MbL segment harboring Pm2Mb. Besides, a physical map of chromosome 2Mb was constructed with 70 2Mb-specific markers in 10 chromosomal bins and the map showed that submetacentric chromosome 2Mb of Ae. biuncialis was rearranged by a terminal intrachromosomal translocation. The newly developed 2Mb recombinants with powdery mildew resistance, the 2Mb-specific molecular markers and the physical map of chromosome 2Mb will benefit wheat disease breeding as well as fine mapping and cloning of Pm2Mb.
Collapse
Affiliation(s)
- Wenqiang Men
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Ziwei Fan
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Chao Ma
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Yue Zhao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Chaoli Wang
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Xiubin Tian
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Qifan Chen
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jingnan Miao
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jinqiu He
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jiajun Qian
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Sunish K Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Huanhuan Li
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Wenxuan Liu
- The State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
6
|
Ding Z, Jiang C. Transcriptome Profiling to the Effects of Drought Stress on Different Propagation Modes of Tea Plant (Camellia sinensis). Front Genet 2022; 13:907026. [PMID: 36035143 PMCID: PMC9399340 DOI: 10.3389/fgene.2022.907026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Tea plant (Camellia sinensis) is an important economic beverage crop. Drought stress seriously affects the growth and development of tea plant and the accumulation of metabolites, as well as the production, processing, yield and quality of tea. Therefore, it is necessary to understand the reaction mechanism of tea plant under drought conditions and find efficient control methods. Based on transcriptome sequencing technology, this study studied the difference of metabolic level between sexual and asexual tea plants under drought stress. In this study, there were multiple levels of up-regulation and down-regulation of differential genes related to cell composition, molecular function and biological processes. Transcriptomic data show that the metabolism of tea plants with different propagation modes of QC and ZZ is different under drought conditions. In the expression difference statistics, it can be seen that the differential genes of QC are significantly more than ZZ; GO enrichment analysis also found that although differential genes in biological process are mainly enriched in the three pathways of metabolic, single organism process and cellular process, cellular component is mainly enriched in cell, cell part, membrane, and molecular function, and binding, catalytic activity, and transporter activity; the enrichment order of differential genes in these pathways is different in QC and ZZ. This difference is caused by the way of reproduction. The further study of these differential genes will lay a foundation for the cultivation methods and biotechnology breeding to improve the quality of tea.
Collapse
Affiliation(s)
- Zhou Ding
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Changjun Jiang
- School of Tea and Food Science Technology, Anhui Agricultural University, Hefei, China
- State Key Laboratory of Tea Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Changjun Jiang,
| |
Collapse
|
7
|
Identification of New QTLs for Dietary Fiber Content in Aegilops biuncialis. Int J Mol Sci 2022; 23:ijms23073821. [PMID: 35409181 PMCID: PMC8999039 DOI: 10.3390/ijms23073821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Grain dietary fiber content is an important health-promoting trait of bread wheat. A dominant dietary fiber component of wheat is the cell wall polysaccharide arabinoxylan and the goatgrass Aegilops biuncialis has high β-glucan content, which makes it an attractive gene source to develop wheat lines with modified fiber composition. In order to support introgression breeding, this work examined genetic variability in grain β-glucan, pentosan, and protein content in a collection of Ae. biuncialis. A large variation in grain protein and edible fiber content was revealed, reflecting the origin of Ae. biuncialis accessions from different eco-geographical habitats. Association analysis using DArTseq-derived SNPs identified 34 QTLs associated with β-glucan, pentosan, water-extractable pentosan, and protein content. Mapping the markers to draft chromosome assemblies of diploid progenitors of Ae. biuncialis underlined the role of genes on chromosomes 1Mb, 4Mb, and 5Mb in the formation of grain β-glucan content, while other QTLs on chromosome groups 3, 6, and 1 identified genes responsible for total- and water-extractable pentosan content. Functional annotation of the associated marker sequences identified fourteen genes, nine of which were identified in other monocots. The QTLs and genes identified in the present work are attractive targets for chromosome-mediated gene transfer to improve the health-promoting properties of wheat-derived foods.
Collapse
|
8
|
RNA-Seq-based DNA marker analysis of the genetics and molecular evolution of Triticeae species. Funct Integr Genomics 2021; 21:535-542. [PMID: 34405283 DOI: 10.1007/s10142-021-00799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/08/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
The release of high-quality chromosome-level genome sequences of members of the Triticeae tribe has greatly facilitated genetic and genomic analyses of important crops such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to the large diploid genome size of Triticeae plants (ca. 5 Gbp), transcript analysis is an important method for identifying genetic and genomic differences among Triticeae species. In this review, we summarize our results of RNA-Seq analyses of diploid wheat accessions belonging to the genera Aegilops and Triticum. We also describe studies of the molecular relationships among these accessions and provide insight into the evolution of common hexaploid wheat. DNA markers based on polymorphisms within species can be used to map loci of interest. Even though the genome sequence of diploid Aegilops tauschii, the D-genome donor of common wheat, has been released, the diploid barley genome continues to provide key information about the physical structures of diploid wheat genomes. We describe how a series of RNA-Seq analyses of wheat relatives has helped uncover the structural and evolutionary features of genomic and genetic systems in wild and cultivated Triticeae species.
Collapse
|
9
|
Safdari P, Höckerstedt L, Brosche M, Salojärvi J, Laine AL. Genotype-Specific Expression and NLR Repertoire Contribute to Phenotypic Resistance Diversity in Plantago lanceolata. FRONTIERS IN PLANT SCIENCE 2021; 12:675760. [PMID: 34322142 PMCID: PMC8311189 DOI: 10.3389/fpls.2021.675760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
High levels of phenotypic variation in resistance appears to be nearly ubiquitous across natural host populations. Molecular processes contributing to this variation in nature are still poorly known, although theory predicts resistance to evolve at specific loci driven by pathogen-imposed selection. Nucleotide-binding leucine-rich repeat (NLR) genes play an important role in pathogen recognition, downstream defense responses and defense signaling. Identifying the natural variation in NLRs has the potential to increase our understanding of how NLR diversity is generated and maintained, and how to manage disease resistance. Here, we sequenced the transcriptomes of five different Plantago lanceolata genotypes when inoculated by the same strain of obligate fungal pathogen Podosphaera plantaginis. A de novo transcriptome assembly of RNA-sequencing data yielded 24,332 gene models with N50 value of 1,329 base pairs and gene space completeness of 66.5%. The gene expression data showed highly varying responses where each plant genotype demonstrated a unique expression profile in response to the pathogen, regardless of the resistance phenotype. Analysis on the conserved NB-ARC domain demonstrated a diverse NLR repertoire in P. lanceolata consistent with the high phenotypic resistance diversity in this species. We find evidence of selection generating diversity at some of the NLR loci. Jointly, our results demonstrate that phenotypic resistance diversity results from a crosstalk between different defense mechanisms. In conclusion, characterizing the architecture of resistance in natural host populations may shed unprecedented light on the potential of evolution to generate variation.
Collapse
Affiliation(s)
- Pezhman Safdari
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Layla Höckerstedt
- Climate System Research, Finnish Meteorological Institute, Helsinki, Finland
| | - Mikael Brosche
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
| | - Jarkko Salojärvi
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Anna-Liisa Laine
- Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Song L, Zhao H, Zhang Z, Zhang S, Liu J, Zhang W, Zhang N, Ji J, Li L, Li J. Molecular Cytogenetic Identification of Wheat- Aegilops Biuncialis 5M b Disomic Addition Line with Tenacious and Black Glumes. Int J Mol Sci 2020; 21:E4053. [PMID: 32517065 PMCID: PMC7312955 DOI: 10.3390/ijms21114053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/23/2020] [Accepted: 06/03/2020] [Indexed: 12/02/2022] Open
Abstract
Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.
Collapse
Affiliation(s)
- Liqiang Song
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Hui Zhao
- College of Bioscience and Bioengineering, Hebei University of Science and Technology, Shijiazhuang 050018, China;
| | - Zhi Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Shuai Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Jiajia Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Wei Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
| | - Na Zhang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Ji
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| | - Lihui Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Z.Z.); (L.L.)
| | - Junming Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Shijiazhuang 050022, China; (L.S.); (S.Z.); (J.L.); (W.Z.); (N.Z.); (J.J.)
- State Key Laboratory of Plant Cell and Chromosomal Engineering, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
Dong Z, Tian X, Ma C, Xia Q, Wang B, Chen Q, Sehgal SK, Friebe B, Li H, Liu W. Physical Mapping of Pm57, a Powdery Mildew Resistance Gene Derived from Aegilops searsii. Int J Mol Sci 2020; 21:E322. [PMID: 31947730 PMCID: PMC6982159 DOI: 10.3390/ijms21010322] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/21/2019] [Accepted: 12/31/2019] [Indexed: 12/01/2022] Open
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici (Bgt) is one of many severe diseases that threaten bread wheat (Triticum aestivum L.) yield and quality worldwide. The discovery and deployment of powdery mildew resistance genes (Pm) can prevent this disease epidemic in wheat. In a previous study, we transferred the powdery mildew resistance gene Pm57 from Aegilops searsii into common wheat and cytogenetically mapped the gene in a chromosome region with the fraction length (FL) 0.75-0.87, which represents 12% segment of the long arm of chromosome 2Ss#1. In this study, we performed RNA-seq using RNA extracted from leaf samples of three infected and mock-infected wheat-Ae. searsii 2Ss#1 introgression lines at 0, 12, 24, and 48 h after inoculation with Bgt isolates. Then we designed 79 molecular markers based on transcriptome sequences and physically mapped them to Ae. searsii chromosome 2Ss#1- in seven intervals. We used these markers to identify 46 wheat-Ae. searsii 2Ss#1 recombinants induced by ph1b, a deletion mutant of pairing homologous (Ph) genes. After analyzing the 46 ph1b-induced 2Ss#1L recombinants in the region where Pm57 is located with different Bgt-responses, we physically mapped Pm57 gene on the long arm of 2Ss#1 in a 5.13 Mb genomic region, which was flanked by markers X67593 (773.72 Mb) and X62492 (778.85 Mb). By comparative synteny analysis of the corresponding region on chromosome 2B in Chinese Spring (T. aestivum L.) with other model species, we identified ten genes that are putative plant defense-related (R) genes which includes six coiled-coil nucleotide-binding site-leucine-rich repeat (CNL), three nucleotide-binding site-leucine-rich repeat (NL) and a leucine-rich receptor-like repeat (RLP) encoding proteins. This study will lay a foundation for cloning of Pm57, and benefit the understanding of interactions between resistance genes of wheat and powdery mildew pathogens.
Collapse
Affiliation(s)
- Zhenjie Dong
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Xiubin Tian
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Chao Ma
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Qing Xia
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Beilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Qifan Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA;
| | - Bernd Friebe
- Wheat Genetic and Genomic Resources Center, Department of Plant Pathology, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS 66506-5502, USA;
| | - Huanhuan Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| | - Wenxuan Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; (Z.D.); (X.T.); (C.M.); (Q.X.); (B.W.); (Q.C.)
| |
Collapse
|