1
|
Hussain S, Ahmad S, Wasid M. Artificial intelligence-driven intelligent learning models for identification and prediction of cardioneurological disorders: A comprehensive study. Comput Biol Med 2025; 184:109342. [PMID: 39571276 DOI: 10.1016/j.compbiomed.2024.109342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 12/22/2024]
Abstract
The integration of Artificial Intelligence (AI) and Intelligent Learning Models (ILMs) in healthcare has transformed the field, offering precise diagnostics, remote monitoring, personalized treatment, and more. Cardioneurological disorders (CD), affecting the cardiovascular and neurological systems, present significant diagnostic and management challenges. Traditional testing methods often lack sensitivity and specificity, leading to delayed or inaccurate diagnoses. AI-driven ILMs trained on large datasets offer promise for accurate identification and prediction of CD by analyzing complex data patterns. However, there is a lack of comprehensive studies reviewing AI applications for the diagnosis of CD and inter related disorders. This paper comprehensively reviews existing integrated solutions involving AI and ILMs in CD, examining their clinical manifestations, epidemiology, diagnostic challenges, and therapeutic considerations. The study examines recent research on CD, reviews AI-driven models' landscape, evaluates existing models, addresses practical considerations, and outlines future research directions. Through this work, we aim to provide insights into the transformative potential of AI-driven ILMs in improving clinical practice and patient outcomes for CD.
Collapse
Affiliation(s)
- Shahadat Hussain
- School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, India
| | - Shahnawaz Ahmad
- School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, India
| | - Mohammed Wasid
- School of Computer Science Engineering & Technology, Bennett University, Greater Noida 201310, India.
| |
Collapse
|
2
|
Wagner MJ, Morgan C, Rodriguez Lopez S, Lin LQ, Freed DH, Pagano JJ, Khoury M, Conway J. The role of diagnostic modalities in differentiating hypertensive heart disease and hypertrophic cardiomyopathy: strategies in adults for potential application in paediatrics. Cardiol Young 2025; 35:1-15. [PMID: 39849888 DOI: 10.1017/s1047951124026052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Hypertensive heart disease and hypertrophic cardiomyopathy both lead to left ventricular hypertrophy despite differing in aetiology. Elucidating the correct aetiology of the presenting hypertrophy can be a challenge for clinicians, especially in patients with overlapping risk factors. Furthermore, drugs typically used to combat hypertensive heart disease may be contraindicated for the treatment of hypertrophic cardiomyopathy, making the correct diagnosis imperative. In this review, we discuss characteristics of both hypertensive heart disease and hypertrophic cardiomyopathy that may enable clinicians to discriminate the two as causes of left ventricular hypertrophy. We summarise the current literature, which is primarily focused on adult populations, containing discriminative techniques available via diagnostic modalities such as electrocardiography, echocardiography, and cardiac MRI, noting strategies yet to be applied in paediatric populations. Finally, we review pharmacotherapy strategies for each disease with regard to pathophysiology.
Collapse
Affiliation(s)
- Mitchell J Wagner
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine Morgan
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lily Q Lin
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Darren H Freed
- Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph J Pagano
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Michael Khoury
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| | - Jennifer Conway
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
- Division of Pediatric Cardiology, Stollery Children's Hospital, Edmonton, Alberta, Canada
| |
Collapse
|
3
|
Domain G, Biscond M, Dognin N, Strube C, Mondoly P, Réant P, Sarrazin J, Galinier M, Champagne J, Rollin A, Carrié D, Cochet H, Lairez O, Philippon F, Ferrières J, Maury P, Steinberg C. The D-HCM score, a new diagnostic tool for distinguishing hypertrophic cardiomyopathy from hypertensive cardiopathy. ESC Heart Fail 2024; 11:3924-3933. [PMID: 39041575 PMCID: PMC11631314 DOI: 10.1002/ehf2.14988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/24/2024] Open
Abstract
AIM The diagnosis of hypertrophic cardiomyopathy (HCM) with moderate hypertrophy is challenging. Hypertensive heart disease (HHD) is the most common differential diagnosis that mimics the LVH of HCM. The aim of this study was to compare the QRS duration in HCM and HHD to create a novel diagnostic tool to identify primary HCM. METHODS AND RESULTS We conducted an international retrospective multicentre study enrolling patients with true HCM and HHD. A total of 547 individuals with HCM and 139 with HHD were included. The median QRS duration was significantly shorter in HCM than in HHD (88 ms [80-94] vs. 98 ms [88-108]; P < 0.01). Multivariable logistic regression identified for the novel diagnostic HCM (D-HCM) score: absence of antihypertensive drugs (+2); family history of unexplained sudden death (+2); QRS duration [<95 ms] = +1; maximum wall thickness (mm) [≥17] = +1. A cumulative QRS-HCM score ≥2 supports the diagnostic certainty of true HCM with a sensitivity of 79%, specificity of 99%, negative predictive value (NPV) of 55%, and positive predictive value (PPV) of 99%. CONCLUSION The QRS duration in patient with HCM is significantly shorter compared with patients with HHD-related LVH. QRS duration can be used as a diagnosis marker to distinguish between HCM and HHD. The D-HCM score is a novel, simple, and accurate diagnosis tool for HCM patients with mild to moderate phenotypes.
Collapse
Affiliation(s)
- G. Domain
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - M. Biscond
- Collège des Sciences HumainesUniversité de BordeauxBordeauxFrance
| | - N. Dognin
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - C. Strube
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - P. Mondoly
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - P. Réant
- Hôpital Haut‐LévêqueBordeaux UniversityBordeauxFrance
| | - J.F. Sarrazin
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - M. Galinier
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - J. Champagne
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - A. Rollin
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - D. Carrié
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - H. Cochet
- Hôpital Haut‐LévêqueBordeaux UniversityBordeauxFrance
| | - O. Lairez
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - F. Philippon
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| | - J. Ferrières
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - P. Maury
- Hôpital RangueilUniversity of ToulouseToulouseFrance
| | - C. Steinberg
- Institut universitaire de cardiologie et de pneumologie de QuébecQuébecCanada
| |
Collapse
|
4
|
Li R, Lei F, Liu F, Cao L, Cao X, Niu M, Guo S. The transition from hypertension to hypertensive heart disease and heart failure with preserved ejection fraction: a retrospective cross-sectional study of myocardial magnetic resonance strain and tissue characteristics. Quant Imaging Med Surg 2024; 14:7684-7696. [PMID: 39429603 PMCID: PMC11485389 DOI: 10.21037/qims-24-803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024]
Abstract
Background Due to the variability of symptoms and signs associated with heart failure, along with the lack of specific tests for definitive diagnosis, the noninvasive diagnosis of heart failure with preserved ejection fraction (HFpEF) continues to pose significant clinical challenges. This investigation was designed to elucidate the clinical manifestations of HFpEF and to analyze cardiac magnetic resonance (CMR)-derived myocardial strain metrics and tissue characteristics in a cohort exhibiting HFpEF with hypertension (HFpEF-HTN). Methods This retrospective analysis consisted of 128 patients diagnosed HFpEF-HTN, 78 individuals with hypertensive heart disease (HHD), 89 individuals with hypertension (HTN), and 60 normotensive healthy controls and was conducted from August 2021 to February 2024. All participants were recruited from The First Hospital of Lanzhou University and underwent laboratory examinations and 3.0 T CMR. The study compared clinical features and CMR-derived structural and functional parameters across different groups. Logistic regression was employed to determine the association between CMR parameters and HFpEF-HTN. Spearman correlation coefficient analysis was used to clarify the relationship between myocardial strain parameters and left ventricular (LV) ejection fraction and right ventricular (RV) ejection fraction. Additionally, the area under the curve (AUC) from receiver operating characteristic (ROC) analysis was used to compare the diagnostic performance of different CMR parameters for HFpEF-HTN. Results Patients diagnosed with (HFpEF-HTN) were characterized by an older demographic profile, a higher prevalence of smoking history, elevated systolic and diastolic blood pressure, increased levels of N-terminal pro-brain natriuretic peptide, and more advanced New York Heart Association functional class as compared to other studied groups. In terms of myocardial deformation, individuals with HFpEF-HTN exhibited pronounced impairments in both LV and RV function, as evidenced by significantly reduced longitudinal strain (LS), circumferential strain (CS), and radial strain (RS), relative to HTN, HHD, the control cohorts (all P values <0.001). Patients with HFpEF-HTN showed significantly elevated levels of late gadolinium enhancement, native T1, and extracellular volume fraction (ECV) indicative of myocardial interstitial fibrosis as compared to patients with HHD. Additionally, as compared to ECV, LV GCS emerged as a superior diagnostic indicator, demonstrating greater diagnostic accuracy in differentiating HFpEF-HTN patients from those with HHD (AUC =0.85; P<0.001). Moreover, LVEF showed a mild correlation with CMR-derived LV GLS (R=-0.43; P<0.001), LV GCS (R=-0.42; P<0.001), and LV GRS, (R=0.56; P<0.001) in all patients. Conclusions Myocardial strain, T1 mapping, and ECV can be used for the quantitative evaluation of LV and RV ventricular remodeling, dysfunction, and tissue characteristics in patients with HFpEF-HTN and thus hold significant potential for the diagnosis of these patients.
Collapse
Affiliation(s)
- Rui Li
- Department of Radiology, The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Lei
- Department of Radiology, The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Feng Liu
- Department of Radiology, The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Liang Cao
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Xu Cao
- Department of Pulmonology, Baiyin Central Hospital of Gansu Province, Baiyin, China
| | - Meng Niu
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| | - Shunlin Guo
- Department of Radiology, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Zhao Q, Chen Z, Qi C, Xu S, Ren R, Li W, Zhang X, Zhang Y. Cardiac magnetic resonance imaging for discrimination of hypertensive heart disease and hypertrophic cardiomyopathy: a systematic review and meta-analysis. Front Cardiovasc Med 2024; 11:1421013. [PMID: 39156132 PMCID: PMC11327824 DOI: 10.3389/fcvm.2024.1421013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/19/2024] [Indexed: 08/20/2024] Open
Abstract
Introduction Differentiating hypertensive heart disease (HHD) from hypertrophic cardiomyopathy (HCM) is crucial yet challenging due to overlapping clinical and morphological features. Recent studies have explored the use of various cardiac magnetic resonance (CMR) parameters to distinguish between these conditions, but findings have remained inconclusive. This study aims to identify which CMR parameters effectively discriminate between HHD and HCM and to investigate their underlying pathophysiological mechanisms through a meta-analysis. Methods The researchers conducted a systematic and comprehensive search for all studies that used CMR to discriminate between HHD and HCM and calculated the Hedges'g effect size for each of the included studies, which were then pooled using a random-effects model and tested for the effects of potential influencing variables through subgroup and regression analyses. Results In this review, 26 studies encompassing 1,349 HHD and 1,581 HCM cases were included for meta-analysis. Analysis revealed that HHD showed a significant lower in T1 mapping (g = -0.469, P < 0.001), extracellular volume (g = -0.417, P = 0.024), left ventricular mass index (g = -0.437, P < 0.001), and maximal left ventricular wall thickness (g = -2.076, P < 0.001), alongside a significant higher in end-systolic volume index (g = 0.993, P < 0.001) and end-diastolic volume index (g = 0.553, P < 0.001), compared to HCM. Conclusion This study clearly demonstrates that CMR parameters can effectively differentiate between HHD and HCM. HHD is characterized by significantly lower diffuse interstitial fibrosis and myocardial hypertrophy, along with better-preserved diastolic function but lower systolic function, compared to HCM. The findings highlight the need for standardized CMR protocols, considering the significant influence of MRI machine vendors, post-processing software, and study regions on diagnostic parameters. These insights are crucial for improving diagnostic accuracy and optimizing treatment strategies for patients with HHD and HCM. Systematic Review Registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42023470557, PROSPERO (CRD42023470557).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yang Zhang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
6
|
Tian Z, Jin S, Huo H, Zheng Y, Li Y, Liu H, Geng Z, Liu S, Li S, Liu Z, Wang X, Liu T. Myocardial hypertrophy: the differentiation of uremic, hypertensive, and hypertrophic cardiomyopathies by cardiac MRI. Insights Imaging 2024; 15:190. [PMID: 39090412 PMCID: PMC11294291 DOI: 10.1186/s13244-024-01770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES To apply cardiac magnetic resonance imaging (CMR) for detailed myocardial characterization in uremic cardiomyopathy (UC), hypertensive cardiomyopathy (HTN), and hypertrophic cardiomyopathy (HCM) aiming to enrich the understanding of UC's etiology and further support the development of therapeutic strategies. METHODS A total of 152 patients (age: 49.2 ± 9.9 years; 65.8% male) underwent routine CMR from June 2016 to March 2023. Retrospectively, 53 patients with UC, 39 patients with HTN, 30 patients with HCM, and 30 healthy controls were included. Functional analysis, feature tracking of the left ventricle and left atrium, and myocardial T1, T2, and T2* mapping were performed. Statistical analysis included Pearson correlation and ROC analysis to define correlations and discriminators between groups. RESULTS UC patients demonstrated significantly higher native T1 (p < 0.001 for all) and T2 (p < 0.002 for all) values compared with the other three groups. UC patients revealed higher left atrial reservoir strain rate (p < 0.001 for all) and left atrial conduit strain rate (p < 0.001 for all) absolute values as compared with HTN and HCM patients. A significant correlation between T1 and T2 values in UC patients (r = 0.511, p < 0.001) was found. The combination of T1 values and strain parameters was the best discriminator between UC and HTN patients (AUC = 0.872, 95% CI: 0.801-0.943) and between UC and HCM patients (AUC = 0.840, 95% CI: 0.746-0.934). CONCLUSION UC reveals distinguishing tissue characteristics as evidenced by T1 and T2 mapping, as well as distinguishing functional strain parameters as compared with other hypertrophic phenotypes such as HTN and HCM. CRITICAL RELEVANCE STATEMENT The use of CMR imaging in UC patients offers incremental information to elucidate its complex etiology, contributing to ongoing discourse on effective treatment pathways. KEY POINTS This study investigated uremic, hypertensive, and hypertrophic cardiomyopathies using cardiac MRI. UC patients have higher T1 and T2 values and better preserved cardiac function. Combined strain and T1 values distinguish UC from other cardiomyopathies.
Collapse
Affiliation(s)
- Zhaoxin Tian
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shiqi Jin
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Huaibi Huo
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yue Zheng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yue Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Hui Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Zhaodi Geng
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shutong Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Shinuo Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Zequn Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xinru Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Ting Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Kwan AC, Chang EW, Jain I, Theurer J, Tang X, Francisco N, Haddad F, Liang D, Fábián A, Ferencz A, Yuan N, Merkely B, Siegel R, Cheng S, Kovács A, Tokodi M, Ouyang D. Deep Learning-Derived Myocardial Strain. JACC Cardiovasc Imaging 2024; 17:715-725. [PMID: 38551533 DOI: 10.1016/j.jcmg.2024.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Echocardiographic strain measurements require extensive operator experience and have significant intervendor variability. Creating an automated, open-source, vendor-agnostic method to retrospectively measure global longitudinal strain (GLS) from standard echocardiography B-mode images would greatly improve post hoc research applications and may streamline patient analyses. OBJECTIVES This study was seeking to develop an automated deep learning strain (DLS) analysis pipeline and validate its performance across multiple applications and populations. METHODS Interobserver/-vendor variation of traditional GLS, and simulated effects of variation in contour on speckle-tracking measurements were assessed. The DLS pipeline was designed to take semantic segmentation results from EchoNet-Dynamic and derive longitudinal strain by calculating change in the length of the left ventricular endocardial contour. DLS was evaluated for agreement with GLS on a large external dataset and applied across a range of conditions that result in cardiac hypertrophy. RESULTS In patients scanned by 2 sonographers using 2 vendors, GLS had an intraclass correlation of 0.29 (95% CI: -0.01 to 0.53, P = 0.03) between vendor measurements and 0.63 (95% CI: 0.48-0.74, P < 0.001) between sonographers. With minor changes in initial input contour, step-wise pixel shifts resulted in a mean absolute error of 3.48% and proportional strain difference of 13.52% by a 6-pixel shift. In external validation, DLS maintained moderate agreement with 2-dimensional GLS (intraclass correlation coefficient [ICC]: 0.56, P = 0.002) with a bias of -3.31% (limits of agreement: -11.65% to 5.02%). The DLS method showed differences (P < 0.0001) between populations with cardiac hypertrophy and had moderate agreement in a patient population of advanced cardiac amyloidosis: ICC was 0.64 (95% CI: 0.53-0.72), P < 0.001, with a bias of 0.57%, limits of agreement of -4.87% to 6.01% vs 2-dimensional GLS. CONCLUSIONS The open-source DLS provides lower variation than human measurements and similar quantitative results. The method is rapid, consistent, vendor-agnostic, publicly released, and applicable across a wide range of imaging qualities.
Collapse
Affiliation(s)
- Alan C Kwan
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| | - Ernest W Chang
- Leon H. Charney Division of Cardiology, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ishan Jain
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - John Theurer
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Xiu Tang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Nadia Francisco
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Francois Haddad
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - David Liang
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Alexandra Fábián
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Andrea Ferencz
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Neal Yuan
- Division of Cardiology, Department of Medicine, San Francisco VA, University of California-San Francisco, San Francisco, California, USA
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Robert Siegel
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Susan Cheng
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Attila Kovács
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - Márton Tokodi
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary; Department of Surgical Research and Techniques, Semmelweis University, Budapest, Hungary
| | - David Ouyang
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
| |
Collapse
|
8
|
Hassanzadeh A, Shomali N, Kamrani A, Nasiri H, Ahmadian Heris J, Pashaiasl M, Sadeghi M, Sadeghvand S, Valedkarimi Z, Akbari M. Detailed role of mesenchymal stem cell (MSC)-derived exosome therapy in cardiac diseases. EXCLI JOURNAL 2024; 23:401-420. [PMID: 38741729 PMCID: PMC11089093 DOI: 10.17179/excli2023-6538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/05/2024] [Indexed: 05/16/2024]
Abstract
Coronary heart disease (CHD) continues to be the leading cause of morbidity and mortality. There are numerous therapeutic reperfusion methods, including thrombolytic therapy, primary percutaneous coronary intervention, and anti-remodeling drugs like angiotensin-converting enzyme inhibitors and beta-blockers. Despite this, there is no pharmacological treatment that can effectively stop cardiomyocyte death brought on by myocardial ischemia/reperfusion (I/R) injury. For the purpose of regenerating cardiac tissue, mesenchymal stem cell (MSC) therapy has recently gained more attention. The pleiotropic effects of MSCs are instead arbitrated by the secretion of soluble paracrine factors and are unrelated to their capacity for differentiation. One of these paracrine mediators is the extracellular vesicle known as an exosome. Exosomes deliver useful cargo to recipient cells from MSCs, including peptides, proteins, cytokines, lipids, miRNA, and mRNA molecules. Exosomes take part in intercellular communication processes and help tissues and organs that have been injured or are ill heal. Exosomes alone were found to be the cause of MSCs' therapeutic effects in a variety of animal models, according to studies. Here, we have focused on the recent development in the therapeutic capabilities of exosomal MSCs in cardiac diseases.
Collapse
Affiliation(s)
- Ali Hassanzadeh
- Department of Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Navid Shomali
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Kamrani
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, P.O. Box 51376563833, Tabriz, Iran
| | - Mohammadreza Sadeghi
- Department of Molecular Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahram Sadeghvand
- Pediatrics Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Shu H, Xu H, Pan Z, Liu Y, Deng W, Zhao R, Sun Y, Wang Z, Yang J, Gao H, Yao K, Zheng J, Yu Y, Li X. Early detection of myocardial involvement by non-contrast T1ρ mapping of cardiac magnetic resonance in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2024; 15:1335899. [PMID: 38510696 PMCID: PMC10952821 DOI: 10.3389/fendo.2024.1335899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/07/2024] [Indexed: 03/22/2024] Open
Abstract
Objective This study aims to determine the effectiveness of T1ρ in detecting myocardial fibrosis in type 2 diabetes mellitus (T2DM) patients by comparing with native T1 and extracellular volume (ECV) fraction. Methods T2DM patients (n = 35) and healthy controls (n = 30) underwent cardiac magnetic resonance. ECV, T1ρ, native T1, and global longitudinal strain (GLS) values were assessed. Diagnostic performance was analyzed using receiver operating curves. Results The global ECV and T1ρ of T2DM group (ECV = 32.1 ± 3.2%, T1ρ = 51.6 ± 3.8 msec) were significantly higher than those of controls (ECV = 26.2 ± 1.6%, T1ρ = 46.8 ± 2.0 msec) (all P < 0.001), whether there was no significant difference in native T1 between T2DM and controls (P = 0.264). The GLS decreased significantly in T2DM patients compared with controls (-16.5 ± 2.4% vs. -18.3 ± 2.6%, P = 0.015). The T1ρ and native T1 were associated with ECV (Pearson's r = 0.50 and 0.25, respectively, both P < 0.001); the native T1, T1ρ, and ECV were associated with hemoglobin A1c (Pearson's r = 0.41, 0.52, and 0.61, respectively, all P < 0.05); and the ECV was associated with diabetes duration (Pearson's r = 0.41, P = 0.016). The AUC of ECV, T1ρ, GLS, and native T1 were 0.869, 0.810, 0.659, and 0.524, respectively. Conclusion In T2DM patients, T1ρ may be a new non-contrast cardiac magnetic resonance technique for identifying myocardial diffuse fibrosis, and T1ρ may be more sensitive than native T1 in the detection of myocardial diffuse fibrosis.
Collapse
Affiliation(s)
- Hongmin Shu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Huimin Xu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Zixiang Pan
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Yan Liu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Wei Deng
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Ren Zhao
- Department of Cardiology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yan Sun
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhen Wang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jinxiu Yang
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Hui Gao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Kaixuan Yao
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Yongqiang Yu
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| | - Xiaohu Li
- Department of Radiology, the First Affiliated Hospital of Anhui Medical University, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, Hefei, Anhui, China
| |
Collapse
|
10
|
Kargar S. Editorial for "Deep Learning for Discrimination of Hypertrophic Cardiomyopathy and Hypertensive Heart Disease on MRI Native T1 Maps". J Magn Reson Imaging 2024; 59:849-850. [PMID: 37737641 DOI: 10.1002/jmri.29021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
- Soudabeh Kargar
- Animal Imaging Shared Resources, University of Colorado Anschutz Medical Campus, Cancer Center, Aurora, Colorado, USA
| |
Collapse
|
11
|
Zhang J, Zhang J, Jin J, Jiang X, Yang L, Fan S, Zhang Q, Chi M. Artificial intelligence applied in cardiovascular disease: a bibliometric and visual analysis. Front Cardiovasc Med 2024; 11:1323918. [PMID: 38433757 PMCID: PMC10904648 DOI: 10.3389/fcvm.2024.1323918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/19/2024] [Indexed: 03/05/2024] Open
Abstract
Background With the rapid development of technology, artificial intelligence (AI) has been widely used in the diagnosis and prognosis prediction of a variety of diseases, including cardiovascular disease. Facts have proved that AI has broad application prospects in rapid and accurate diagnosis. Objective This study mainly summarizes the research on the application of AI in the field of cardiovascular disease through bibliometric analysis and explores possible future research hotpots. Methods The articles and reviews regarding application of AI in cardiovascular disease between 2000 and 2023 were selected from Web of Science Core Collection on 30 December 2023. Microsoft Excel 2019 was applied to analyze the targeted variables. VOSviewer (version 1.6.16), Citespace (version 6.2.R2), and a widely used online bibliometric platform were used to conduct co-authorship, co-citation, and co-occurrence analysis of countries, institutions, authors, references, and keywords in this field. Results A total of 4,611 articles were selected in this study. AI-related research on cardiovascular disease increased exponentially in recent years, of which the USA was the most productive country with 1,360 publications, and had close cooperation with many countries. The most productive institutions and researchers were the Cedar sinai medical center and Acharya, Ur. However, the cooperation among most institutions or researchers was not close even if the high research outputs. Circulation is the journal with the largest number of publications in this field. The most important keywords are "classification", "diagnosis", and "risk". Meanwhile, the current research hotpots were "late gadolinium enhancement" and "carotid ultrasound". Conclusions AI has broad application prospects in cardiovascular disease, and a growing number of scholars are devoted to AI-related research on cardiovascular disease. Cardiovascular imaging techniques and the selection of appropriate algorithms represent the most extensively studied areas, and a considerable boost in these areas is predicted in the coming years.
Collapse
Affiliation(s)
- Jirong Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jimei Zhang
- College of Public Health, The University of Sydney, NSW, Sydney, Australia
| | - Juan Jin
- The First Department of Cardiovascular, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, HL, China
| | - Xicheng Jiang
- College of basic medicine, Heilongjiang University of Chinese Medicine, Harbin, HL, China
| | - Linlin Yang
- Cardiovascular Disease Branch, Dalian Second People's Hospital, Dalian, LN, China
| | - Shiqi Fan
- Harbin hospital of traditional Chinese medicine, Harbin, HL, China
| | - Qiao Zhang
- School of Pharmacy, Harbin University of Commerce, Harbin, HL, China
| | - Ming Chi
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Deng W, Zhang J, Jia Z, Pan Z, Wang Z, Xu H, Zhong L, Yu Y, Zhao R, Li X. Myocardial involvement characteristics by cardiac MR imaging in neurological and non-neurological Wilson disease patients. Insights Imaging 2024; 15:24. [PMID: 38270718 PMCID: PMC10810766 DOI: 10.1186/s13244-023-01583-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/29/2023] [Indexed: 01/26/2024] Open
Abstract
OBJECTIVES To explore the characteristics of myocardial involvement in Wilson Disease (WD) patients by cardiac magnetic resonance (CMR). METHODS We prospectively included WD patients and age- and sex-matched healthy population. We applied CMR to analyze cardiac function, strain, T1 maps, T2 maps, extracellular volume fraction (ECV) maps, and LGE images. Subgroup analyzes were performed for patients with WD with predominantly neurologic manifestations (WD-neuro +) or only hepatic manifestations (WD-neuro -). RESULTS Forty-one WD patients (age 27.9 ± 8.0 years) and 40 healthy controls (age 25.4 ± 2.9 years) were included in this study. Compared to controls, the T1, T2, and ECV values were significantly increased in the WD group (T1 1085.1 ± 39.1 vs. 1046.5 ± 33.1 ms, T2 54.2 ± 3.3 ms vs. 51.5 ± 2.6 ms, ECV 31.8 ± 3.6% vs. 24.3 ± 3.7%) (all p < 0.001). LGE analysis revealed that LGE in WD patients was predominantly localized to the right ventricular insertion point and interventricular septum. Furthermore, the WD-neuro + group showed more severe myocardial damage compared to WD-neuro - group. The Unified Wilson Disease Rating Scale score was significantly correlated with ECV (Pearson's r = 0.64, p < 0.001). CONCLUSIONS CMR could detect early myocardial involvement in WD patients without overt cardiac function dysfunction. Furthermore, characteristics of myocardial involvement were different between WD-neuro + and WD-neuro - , and myocardial involvement might be more severe in WD-neuro + patients. CRITICAL RELEVANCE STATEMENT Cardiac magnetic resonance enables early detection of myocardial involvement in Wilson disease patients, contributing to the understanding of distinct myocardial characteristics in different subgroups and potentially aiding in the assessment of disease severity. KEY POINTS • CMR detects WD myocardial involvement with increased T1, T2, ECV. • WD-neuro + patients show more severe myocardial damage and correlation with ECV. • Differences of myocardial characteristics exist between WD-neuro + and WD-neuro - patients.
Collapse
Affiliation(s)
- Wei Deng
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Jie Zhang
- Department of Neurology, Institute of Neurology, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Zhuoran Jia
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Zixiang Pan
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Zhen Wang
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Huimin Xu
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China
| | - Liang Zhong
- Duke NUS Medical School, National Heart Centre Singapore, National University of Singapore, Singapore, Singapore
| | - Yongqiang Yu
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
| | - Ren Zhao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
| | - Xiaohu Li
- Department of Radiology, Research Center of Clinical Medical Imaging, Anhui Province Clinical Image Quality Control Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230022, China.
| |
Collapse
|
13
|
Almeida ALC, Melo MDTD, Bihan DCDSL, Vieira MLC, Pena JLB, Del Castillo JM, Abensur H, Hortegal RDA, Otto MEB, Piveta RB, Dantas MR, Assef JE, Beck ALDS, Santo THCE, Silva TDO, Salemi VMC, Rocon C, Lima MSM, Barberato SH, Rodrigues AC, Rabschkowisky A, Frota DDCR, Gripp EDA, Barretto RBDM, Silva SME, Cauduro SA, Pinheiro AC, Araujo SPD, Tressino CG, Silva CES, Monaco CG, Paiva MG, Fisher CH, Alves MSL, Grau CRPDC, Santos MVCD, Guimarães ICB, Morhy SS, Leal GN, Soares AM, Cruz CBBV, Guimarães Filho FV, Assunção BMBL, Fernandes RM, Saraiva RM, Tsutsui JM, Soares FLDJ, Falcão SNDRS, Hotta VT, Armstrong ADC, Hygidio DDA, Miglioranza MH, Camarozano AC, Lopes MMU, Cerci RJ, Siqueira MEMD, Torreão JA, Rochitte CE, Felix A. Position Statement on the Use of Myocardial Strain in Cardiology Routines by the Brazilian Society of Cardiology's Department Of Cardiovascular Imaging - 2023. Arq Bras Cardiol 2023; 120:e20230646. [PMID: 38232246 PMCID: PMC10789373 DOI: 10.36660/abc.20230646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
Central Illustration : Position Statement on the Use of Myocardial Strain in Cardiology Routines by the Brazilian Society of Cardiology's Department Of Cardiovascular Imaging - 2023 Proposal for including strain in the integrated diastolic function assessment algorithm, adapted from Nagueh et al.67 Am: mitral A-wave duration; Ap: reverse pulmonary A-wave duration; DD: diastolic dysfunction; LA: left atrium; LASr: LA strain reserve; LVGLS: left ventricular global longitudinal strain; TI: tricuspid insufficiency. Confirm concentric remodeling with LVGLS. In LVEF, mitral E wave deceleration time < 160 ms and pulmonary S-wave < D-wave are also parameters of increased filling pressure. This algorithm does not apply to patients with atrial fibrillation (AF), mitral annulus calcification, > mild mitral valve disease, left bundle branch block, paced rhythm, prosthetic valves, or severe primary pulmonary hypertension.
Collapse
Affiliation(s)
| | | | | | - Marcelo Luiz Campos Vieira
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
| | - José Luiz Barros Pena
- Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, MG - Brasil
- Hospital Felicio Rocho, Belo Horizonte, MG - Brasil
| | | | - Henry Abensur
- Beneficência Portuguesa de São Paulo, São Paulo, SP - Brasil
| | | | | | | | | | | | | | | | | | - Vera Maria Cury Salemi
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
| | - Camila Rocon
- Hospital do Coração (HCor), São Paulo, SP - Brasil
| | - Márcio Silva Miguel Lima
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | - Eliza de Almeida Gripp
- Hospital Pró-Cardiaco, Rio de Janeiro, RJ - Brasil
- Hospital Universitário Antônio Pedro da Universidade Federal Fluminense (UFF), Rio de Janeiro, RJ - Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | | - Maria Veronica Camara Dos Santos
- Departamento de Cardiologia Pediátrica (DCC/CP) da Sociedade Brasileira de Cardiologia (SBC), São Paulo, SP - Brasil
- Sociedade Brasileira de Oncologia Pediátrica, São Paulo, SP - Brasil
| | | | | | - Gabriela Nunes Leal
- Instituto da Criança e do Adolescente do Hospital das Clinicas Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, SP - Brasil
| | | | | | | | | | | | | | | | | | | | - Viviane Tiemi Hotta
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
- Grupo Fleury, São Paulo, SP - Brasil
| | | | - Daniel de Andrade Hygidio
- Hospital Nossa Senhora da Conceição, Tubarão, SC - Brasil
- Universidade do Sul de Santa Catarina (UNISUL), Tubarão, SC - Brasil
| | - Marcelo Haertel Miglioranza
- EcoHaertel - Hospital Mae de Deus, Porto Alegre, RS - Brasil
- Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS - Brasil
| | | | | | | | | | - Jorge Andion Torreão
- Hospital Santa Izabel, Salvador, BA - Brasil
- Santa Casa da Bahia, Salvador, BA - Brasil
| | - Carlos Eduardo Rochitte
- Instituto do Coração da Faculdade de Medicina da Universidade de São Paulo (Incor/FMUSP), São Paulo, SP - Brasil
- Hospital do Coração (HCor), São Paulo, SP - Brasil
| | - Alex Felix
- Diagnósticos da América SA (DASA), São Paulo, SP - Brasil
- Instituto Nacional de Cardiologia (INC), Rio de Janeiro, RJ - Brasil
| |
Collapse
|
14
|
Pezeshki PS, Ghorashi SM, Houshmand G, Ganjparvar M, Pouraliakbar H, Rezaei-Kalantari K, Fazeli A, Omidi N. Feature tracking cardiac magnetic resonance imaging to assess cardiac manifestations of systemic diseases. Heart Fail Rev 2023:10.1007/s10741-023-10321-6. [PMID: 37191926 PMCID: PMC10185959 DOI: 10.1007/s10741-023-10321-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/07/2023] [Indexed: 05/17/2023]
Abstract
Feature-tracking cardiac magnetic resonance (FT-CMR), with the ability to quantify myocardial deformation, has a unique role in the evaluation of subclinical myocardial abnormalities. This review aimed to evaluate the clinical use of cardiac FT-CMR-based myocardial strain in patients with various systemic diseases with cardiac involvement, such as hypertension, diabetes, cancer-therapy-related toxicities, amyloidosis, systemic scleroderma, myopathies, rheumatoid arthritis, thalassemia major, and coronavirus disease 2019 (COVID-19). We concluded that FT-CMR-derived strain can improve the accuracy of risk stratification and predict cardiac outcomes in patients with systemic diseases prior to symptomatic cardiac dysfunction. Furthermore, FT-CMR is particularly useful for patients with diseases or conditions which are associated with subtle myocardial dysfunction that may not be accurately detected with traditional methods. Compared to patients with cardiovascular diseases, patients with systemic diseases are less likely to undergo regular cardiovascular imaging to detect cardiac defects, whereas cardiac involvement in these patients can lead to major adverse outcomes; hence, the importance of cardiac imaging modalities might be underestimated in this group of patients. In this review, we gathered currently available data on the newly introduced role of FT-CMR in the diagnosis and prognosis of various systemic conditions. Further research is needed to define reference values and establish the role of this sensitive imaging modality, as a robust marker in predicting outcomes across a wide spectrum of patients.
Collapse
Affiliation(s)
| | - Seyyed Mojtaba Ghorashi
- Cardiovascular Disease Research Institute, Tehran Heart Center, Tehran University of Medical Science, Tehran, Iran
| | - Golnaz Houshmand
- Cardiovascular Imaging Ward, Rajaei Heart Center, Iran University of Medicals Sciences, Tehran, Iran
| | - Mojdeh Ganjparvar
- Tehran Heart Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Pouraliakbar
- Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kiara Rezaei-Kalantari
- Shaheed Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Fazeli
- Cardiovascular Disease Research Institute, Tehran Heart Center, Tehran University of Medical Science, Tehran, Iran
| | - Negar Omidi
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Kargar St. Jalal Al-Ahmad Cross, 1411713138, Tehran, Iran.
| |
Collapse
|
15
|
Ye J, Zong W, Wu X, Shao X, Wu Y. Quantitative evaluation of acute myocardial infarction by feature-tracking cardiac magnetic resonance imaging. Pak J Med Sci 2023; 39:804-808. [PMID: 37250547 PMCID: PMC10214789 DOI: 10.12669/pjms.39.3.7248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/14/2022] [Accepted: 02/25/2023] [Indexed: 11/02/2023] Open
Abstract
Objective To assess the value of feature-tracking cardiac magnetic resonance (FT-CMR) imaging in the quantitative evaluation of acute myocardial infarction (AMI). Methods We retrospectively analyzed medical records of patients with acute myocardial infarction (AMI) diagnosed in the Department of Cardiology of Hubei No.3 People's Hospital of Jianghan University from April 2020 to April 2022, who underwent feature-tracking cardiac magnetic resonance (FT-CMR) examination. Based on the electrocardiogram (ECG) findings, patients were divided into ST-elevation myocardial infarction (STEMI) (n=52) and non-STEMI (NSTEMI) (n=48) groups. We compared myocardial strain parameters between the two groups and applied the Pearson's test to reveal any correlations between the left ventricular myocardial strain parameters and the number of late gadolinium enhancement (LGE) positive segments; we assessed the clinical value of FT-CMR for predicting STEMI using a receiver operating characteristic (ROC) curve. Results The number of LGE-positive segments in the STEMI group was significantly higher than that in the NSTEMI group. The myocardial radial, circumferential and longitudinal strains in the STEMI group were significantly lower than those in the NSTEMI group (p<0.05). The number of LGE-positive segments in patients with AMI negatively correlated with the radial, circumferential and longitudinal strains. The results of the ROC curve analysis showed that radial, circumferential and longitudinal strain values have a diagnostic value for STEMI (p<0.05). Conclusion FT-CMR, a non-invasive and rapid method for analyzing myocardial strains, has a high diagnostic value for AMI and should be helpful for the prevention and intervention of ventricular remodeling after myocardial infarctions.
Collapse
Affiliation(s)
- Jun Ye
- Jun Ye, Department of Radiology, Wuhan No.7 Hospital, Wuhan 430071, Hubei Province, P.R. China
| | - Wenxia Zong
- Wenxia Zong, Department of Cardiology, Hubei No.3 People’s Hospital of Jianghan University, Wuhan 430000, Hubei Province, P.R. China
| | - Xing Wu
- Xing Wu Clinical Laboratory, Xianning Central Hospital, (The First Affiliated Hospital of Hubei University of Science & Technology), Xianning 437100, Hubei Province, P.R. China
| | - Xiaonan Shao
- Xiaonan Shao, Department of Radiology, Wuhan No.7 Hospital, Wuhan 430071, Hubei Province, P.R. China
| | - Yue Wu
- Yue Wu, Department of Cardiology, Hubei No.3 People’s Hospital of Jianghan University, Wuhan 430000, Hubei Province, P.R. China
| |
Collapse
|
16
|
Heydari B, Satriano A, Jerosch-Herold M, Kolm P, Kim DY, Cheng K, Choi YL, Antiochos P, White JA, Mahmod M, Chan K, Raman B, Desai MY, Ho CY, Dolman SF, Desvigne-Nickens P, Maron MS, Friedrich MG, Schulz-Menger J, Piechnik SK, Appelbaum E, Weintraub WS, Neubauer S, Kramer CM, Kwong RY. 3-Dimensional Strain Analysis of Hypertrophic Cardiomyopathy: Insights From the NHLBI International HCM Registry. JACC Cardiovasc Imaging 2023; 16:478-491. [PMID: 36648040 PMCID: PMC10802851 DOI: 10.1016/j.jcmg.2022.10.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/04/2022] [Accepted: 10/13/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Abnormal global longitudinal strain (GLS) has been independently associated with adverse cardiac outcomes in both obstructive and nonobstructive hypertrophic cardiomyopathy. OBJECTIVES The goal of this study was to understand predictors of abnormal GLS from baseline data from the National Heart, Lung, and Blood Institute (NHLBI) Hypertrophic Cardiomyopathy Registry (HCMR). METHODS The study evaluated comprehensive 3-dimensional left ventricular myocardial strain from cine cardiac magnetic resonance in 2,311 patients from HCMR using in-house validated feature-tracking software. These data were correlated with other imaging markers, serum biomarkers, and demographic variables. RESULTS Abnormal median GLS (> -11.0%) was associated with higher left ventricular (LV) mass index (93.8 ± 29.2 g/m2 vs 75.1 ± 19.7 g/m2; P < 0.0001) and maximal wall thickness (21.7 ± 5.2 mm vs 19.3 ± 4.1 mm; P < 0.0001), lower left (62% ± 9% vs 66% ± 7%; P < 0.0001) and right (68% ± 11% vs 69% ± 10%; P < 0.01) ventricular ejection fractions, lower left atrial emptying functions (P < 0.0001 for all), and higher presence and myocardial extent of late gadolinium enhancement (6 SD and visual quantification; P < 0.0001 for both). Elastic net regression showed that adjusted predictors of GLS included female sex, Black race, history of syncope, presence of systolic anterior motion of the mitral valve, reverse curvature and apical morphologies, LV ejection fraction, LV mass index, and both presence/extent of late gadolinium enhancement and baseline N-terminal pro-B-type natriuretic peptide and troponin levels. CONCLUSIONS Abnormal strain in hypertrophic cardiomyopathy is associated with other imaging and serum biomarkers of increased risk. Further follow-up of the HCMR cohort is needed to understand the independent relationship between LV strain and adverse cardiac outcomes in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Bobak Heydari
- Stephenson Cardiac Imaging Center, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Alessandro Satriano
- Stephenson Cardiac Imaging Center, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | | | - Paul Kolm
- MedStar Heart and Vascular Institute, Washington, DC, USA
| | - Dong-Yun Kim
- National Heart, Lung, and Blood Institute, Bethesda, Maryland, USA
| | - Kathleen Cheng
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Yuna L Choi
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - James A White
- Stephenson Cardiac Imaging Center, Department of Cardiac Sciences, University of Calgary, Calgary, Canada
| | - Masliza Mahmod
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Kenneth Chan
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Betty Raman
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Carolyn Y Ho
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | | | - Martin S Maron
- Lahey Hospital & Medical Center, Boston, Massachusetts, USA
| | | | - Jeanette Schulz-Menger
- Charité Experimental Clinical Research Center and Helios Clinics Berlin-Buch, Berlin, Germany
| | - Stefan K Piechnik
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | | | | | - Stefan Neubauer
- Division of Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
| | - Christopher M Kramer
- Cardiovascular Division, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Raymond Y Kwong
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
17
|
Detection of myocardial dysfunction using global longitudinal strain with speckle-tracking echocardiography in patients with vs without rheumatoid arthritis: a systematic review and meta-analysis. J Echocardiogr 2023; 21:23-32. [PMID: 35987937 DOI: 10.1007/s12574-022-00583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 07/04/2022] [Accepted: 07/19/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a systemic autoimmune disorder primarily involving the peripheral joints. Systemic involvement can occur, including myocardial dysfunction. Speckle tracking echocardiography (STE) is a novel diagnostic study which is recently being used to detect subclinical cardiac dysfunction. Global longitudinal strain (GLS) by STE is more sensitive than standard echocardiographic parameters to detect occult cardiac dysfunction. METHODS A systematic search of PUBMED, EMBASE, Cochrane, and Google Scholar databases was performed to identify studies comparing the STE parameters between RA and non-RA patients. RESULTS Left ventricular (LV) GLS was significantly lower in patients with RA compared to non-RA patients with a standard mean difference (SMD) of -1.09 (-1.48--0.70, P < 0.001). LV Global Circumferential Strain (GCS) was reported in five studies, and it was found to be lower in RA patients with an SMD of -1.25 (-2.59--0.10; P < 0.0010). Meta regression analysis studies failed to show any significant impact of disease duration, activity, age, sex and BMI on LV GLS and RV GLS. CONCLUSIONS RA patients have lower LV GLS and LV GCS compared to controls suggesting impaired myocardial dysfunction. Further studies need to be done to delineate the importance of lower GLS in asymptomatic rheumatoid patients to guide disease management and risk factor modification in this selected population.
Collapse
|
18
|
Goyal N, Keir G, Esterson YB, Saba SG, Cohen S, Rowin E, Romashko M, Chusid J. Hypertrophic cardiomyopathy - phenotypic variations beyond wall thickness. Clin Imaging 2023; 95:80-89. [PMID: 36680913 DOI: 10.1016/j.clinimag.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/23/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by left ventricular hypertrophy (LVH) in the absence of another causal disease. Several morphologic and histologic changes have been described. Given the morbidity and mortality associated with HCM, understanding these anatomic variations is key to interpreting imaging. This is especially important since many patients exhibit these associated findings in the absence of LVH and prompt early detection of these variations may lead to early diagnosis and treatment. This article describes the appearance of morphologic variations seen in HCM beyond myocardial thickening including: papillary muscle and mitral valve variants, myocardial crypts, left ventricular myocardial bands, and dystrophic calcification related to increased wall tension.
Collapse
Affiliation(s)
- Nikhil Goyal
- Department of Radiology, Northwell Health System, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA.
| | - Graham Keir
- Department of Radiology, Northwell Health System, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Yonah B Esterson
- Department of Radiology, Northwell Health System, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Shahryar G Saba
- Department of Cardiology, Northwell Health System, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Stuart Cohen
- Department of Radiology, Northwell Health System, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| | - Ethan Rowin
- Department of Cardiology, New England Medical Center, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| | - Mikhail Romashko
- Department of Cardiology, New England Medical Center, Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| | - Jesse Chusid
- Department of Radiology, Northwell Health System, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, 300 Community Drive, Manhasset, NY 11030, USA
| |
Collapse
|
19
|
Cardiac Magnetic Resonance Imaging in Appraising Myocardial Strain and Biomechanics: A Current Overview. Diagnostics (Basel) 2023; 13:diagnostics13030553. [PMID: 36766658 PMCID: PMC9914753 DOI: 10.3390/diagnostics13030553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Subclinical alterations in myocardial structure and function occur early during the natural disease course. In contrast, clinically overt signs and symptoms occur during late phases, being associated with worse outcomes. Identification of such subclinical changes is critical for timely diagnosis and accurate management. Hence, implementing cost-effective imaging techniques with accuracy and reproducibility may improve long-term prognosis. A growing body of evidence supports using cardiac magnetic resonance (CMR) to quantify deformation parameters. Tissue-tagging (TT-CMR) and feature-tracking CMR (FT-CMR) can measure longitudinal, circumferential, and radial strains and recent research emphasize their diagnostic and prognostic roles in ischemic heart disease and primary myocardial illnesses. Additionally, these methods can accurately determine LV wringing and functional dynamic geometry parameters, such as LV torsion, twist/untwist, LV sphericity index, and long-axis strain, and several studies have proved their utility in prognostic prediction in various cardiovascular patients. More recently, few yet important studies have suggested the superiority of fast strain-encoded imaging CMR-derived myocardial strain in terms of accuracy and significantly reduced acquisition time, however, more studies need to be carried out to establish its clinical impact. Herein, the current review aims to provide an overview of currently available data regarding the role of CMR in evaluating myocardial strain and biomechanics.
Collapse
|
20
|
Umer M, Kalra DK. Cardiac MRI in Fabry disease. Front Cardiovasc Med 2023; 9:1075639. [PMID: 36818911 PMCID: PMC9931723 DOI: 10.3389/fcvm.2022.1075639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/30/2022] [Indexed: 02/05/2023] Open
Abstract
Fabry disease is a rare, progressive X-linked inherited disorder of glycosphingolipid metabolism due to a deficiency of α-galactosidase A enzyme. It leads to the accumulation of globotriaosylceramide within lysosomes of multiple organs, predominantly the vascular, renal, cardiac, and nervous systems. Fabry cardiomyopathy is characterized by increased left ventricular wall thickness/mass, functional abnormalities, valvular heart disease, arrhythmias, and heart failure. Early diagnosis and treatment are critical to avoid cardiac or renal complications that can significantly reduce life expectancy in untreated FD. This review will focus on the role of cardiovascular magnetic resonance imaging in the diagnosis, clinical decision-making, and monitoring of treatment efficacy.
Collapse
|
21
|
Wang Z, Zheng Y, Ruan H, Li L, Zhang M, Duan L, He S. The impact of hypertension on the prognosis of patients with hypertrophic cardiomyopathy: a single-center retrospective study. PeerJ 2023; 11:e14614. [PMID: 36650838 PMCID: PMC9840863 DOI: 10.7717/peerj.14614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/01/2022] [Indexed: 01/15/2023] Open
Abstract
Background Hypertrophic cardiomyopathy (HCM) and hypertension coexist fairly frequently in clinical practice. However, the evidence about the impact of hypertension on the prognosis of HCM is limited. The present study aims to investigate the impact of hypertension on the prognosis of HCM patients. Methods A total of 468 HCM patients were enrolled, and patients were divided into hypertension group (31.8%) and non-hypertension group (68.2%). The primary study endpoint was HCM-related death, consisting of heart failure (HF)-related death, stroke-related death and sudden cardiac death (SCD). Associations between hypertension and HCM-related death were analyzed by Cox regression models with the use of propensity score matching (PSM) as primary analysis. Results There were 55 HCM-related death during a median follow-up time of 4.6 years, and the mortality rate was 2.53 per 100 person years. Kaplan-Meier analysis based on the crude cohort or PSM cohort revealed no significant difference regarding the HCM-related death between the two groups. In the crude cohort, both univariable and multivariable Cox regression analysis indicated that hypertension was not significantly associated with HCM-related death with hazard ratios (HR) at 0.74 (95% CI [0.40-1.36], p value: 0.329) and 0.77 (95% CI [0.35-1.71], p value: 0.521), respectively. Similarly, no strong evidence for an association was observed between hypertension and HCM-related death in the PSM cohort with unadjusted HR at 0.90 (95% CI [0.34-2.41]; p value: 0.838) and adjusted HR at 0.77 (95% CI [0.35-1.71]; p value: 0.521), respectively. Other propensity score methods, including overlap weighting and inverse probability treatment weighting demonstrated similar results. Sensitivity analysis also indicated that the concomitant hypertension did not significantly increase the risk of HF-related death, stroke-related death or SCD in HCM patients. Conclusion HCM-related death did not significantly differ between hypertension and non-hypertension groups, suggesting a negative impact of hypertension on the clinical prognosis of HCM patients.
Collapse
Affiliation(s)
- Ziqiong Wang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Zheng
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Haiyan Ruan
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Cardiology, Hospital of Traditional Chinese Medicine, Shuangliu District, Chengdu, Sichuan, China
| | - Liying Li
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Muxin Zhang
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
- Department of Cardiology, First People’s Hospital, Longquanyi District, Chengdu, Sichuan, China
| | - Linjia Duan
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| | - Sen He
- Department of Cardiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Cardiac Magnetic Resonance in Hypertensive Heart Disease: Time for a New Chapter. Diagnostics (Basel) 2022; 13:diagnostics13010137. [PMID: 36611429 PMCID: PMC9818319 DOI: 10.3390/diagnostics13010137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
Hypertension is one of the most important cardiovascular risk factors, associated with significant morbidity and mortality. Chronic high blood pressure leads to various structural and functional changes in the myocardium. Different sophisticated imaging methods are developed to properly estimate the severity of the disease and to prevent possible complications. Cardiac magnetic resonance can provide a comprehensive assessment of patients with hypertensive heart disease, including accurate and reproducible measurement of left and right ventricle volumes and function, tissue characterization, and scar quantification. It is important in the proper evaluation of different left ventricle hypertrophy patterns to estimate the presence and severity of myocardial fibrosis, as well as to give more information about the benefits of different therapeutic modalities. Hypertensive heart disease often manifests as a subclinical condition, giving exceptional value to cardiac magnetic resonance as an imaging modality capable to detect subtle changes. In this article, we are giving a comprehensive review of all the possibilities of cardiac magnetic resonance in patients with hypertensive heart disease.
Collapse
|
23
|
Apitz A, Socrates T, Burkard T, Mayr M, Vischer AS. Prevalence and Characterisation of Severe Left Ventricular Hypertrophy Diagnosed by Echocardiography in Hypertensive Patients. J Clin Med 2022; 12:jcm12010228. [PMID: 36615030 PMCID: PMC9821566 DOI: 10.3390/jcm12010228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Arterial hypertension (AHT) is the leading preventable cause of death worldwide. Left ventricular hypertrophy (LVH) is one of the most important prognostic markers in hypertension and a predictor for mortality. The goals of this study were to examine the prevalence of LVH detected by echocardiography in patients with AHT and to describe patients with severe LVH. METHODS This is a retrospective monocentric study including patients treated at a tertiary hypertension clinic. Echocardiographic data were taken from written reports from our hospital's echocardiography laboratories. We compared patients with severe LVH (septum thickness ≥ 15 mm) with patients with normal left ventricular (LV) geometry and with patients with concentric or eccentric hypertrophy regarding age, gender, comorbidities, medication, duration of hypertension, blood pressure (BP) and ECG changes at time of echocardiography. RESULTS Twenty-nine patients (7.3%) out of four hundred patients showed severe LVH and one hundred and eighty-nine (47.3%) a normal geometry. In comparison to patients with normal geometry, patients with severe LVH were more likely to be male, older, and with more uncontrolled BP, especially regarding asleep values, multi-drug antihypertensive treatment and comorbidities. In comparison to patients with concentric or eccentric hypertrophy, patients with severe LVH had a significantly higher diastolic BP in the 24 h mean, awake and asleep values. A positive Sokolow-Lyon index did not predict LVH. However, patients with severe LVH were more likely to have T-wave-inversions V4-V6 in at least one lead. CONCLUSIONS More than half of the patients with AHT have an abnormal geometry in our study (52.5%) and 7.3% a severe LVH. Patients with severe LVH have more often an uncontrolled AHT than patients with a normal LV geometry, despite more antihypertensive treatment. The Sokolow-Lyon index seems to be insufficient to detect LVH.
Collapse
Affiliation(s)
- Anett Apitz
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
| | - Thenral Socrates
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
| | - Thilo Burkard
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Michael Mayr
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Annina S. Vischer
- Medical Outpatient Department and Hypertension Clinic, ESH Hypertension Centre of Excellence, University Hospital Basel, 4031 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
- Correspondence:
| |
Collapse
|
24
|
Korosoglou G, Ochs M. Spotlight on Myocardial Deformation in Hypertrophic Cardiomyopathy: Putting the Puzzle Together? JACC. CARDIOVASCULAR IMAGING 2022; 16:492-494. [PMID: 36752433 DOI: 10.1016/j.jcmg.2022.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Affiliation(s)
- Grigorios Korosoglou
- GRN Hospital Weinheim, Department of Cardiology and Vascular Medicine, Weinheim, Germany; Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany.
| | - Marco Ochs
- Department of Cardiology, Theresienkrankenhaus, Mannheim, Germany
| |
Collapse
|
25
|
Special Issue: Hypertensive Heart Disease—From Pathophysiology to Therapeutical Challenges. J Clin Med 2022; 11:jcm11164640. [PMID: 36012879 PMCID: PMC9410174 DOI: 10.3390/jcm11164640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
|
26
|
Pu L, Diao Y, Wang J, Fang T, Xu Z, Sun J, Chen Y. The predictive value of fast semi-automated left atrial long-axis strain analysis for atrial fibrillation in hypertrophic cardiomyopathy. Eur Radiol 2022; 33:312-320. [PMID: 35907026 DOI: 10.1007/s00330-022-09020-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/28/2022] [Accepted: 07/04/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Hypertrophic cardiomyopathy (HCM) patients are closely related to LA functional impairment. Left atrial (LA) strain provides more insight into LA function. The study aimed to investigate the left atrial dysfunction of HCM patients by rapid semi-automatic method and determine the predictive value of left atrial long-axis strain (LAS) for atrial fibrillation (AF). METHODS We enrolled 372 HCM patients and 100 healthy participants to assess the LA functional parameters. LAS was obtained by semi-automated tracking of the distance between the mid-posterior point of LA wall which is defined as the intersection of the LA long axis and the posterior wall, and the origins of the mitral valve. The inferior and anterior mitral valve annular insertion points on the 2-chamber view and the lateral and septal insertion points on the 4-chamber view were chosen as the origins of the mitral valve. The clinical outcome was defined as detecting the onset of AF. RESULTS The LA strain values were analyzed as 20.8 ± 7.48% for εs, 9.81 ± 5.09% for εe, and 10.91 ± 4.24% for εa in HCM patients, which decreased significantly compared with normal controls. Significant correlations were detected between LV functional parameters and LA strain. During a median follow-up of 61 months, 44 (11.8%) patients developed AF. In the Cox regression analysis, LA strain was identified as a significant predictor of the onset of AF. CONCLUSIONS HCM patients had impairment of LA strain before LA enlargement and reduced EF. LA-LAS can be used as a predictive value for predicting the occurrence of AF in HCM patients. KEY POINTS • Fast semi-automated long-axis strain analysis by CMR is feasible and effective for evaluating the LA longitudinal function. • Hypertrophic cardiomyopathy patients show significant impairment of left atrial strain before LA enlargement. • The left atrial long-axis strain was an independent predictor of atrial fibrillation in hypertrophic cardiomyopathy.
Collapse
Affiliation(s)
- Lutong Pu
- Department of Cardiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Yike Diao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Jie Wang
- Department of Cardiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Tingting Fang
- Department of Cardiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Ziqian Xu
- Department of Cardiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan Province, 610041, People's Republic of China
| | - Jiayu Sun
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yucheng Chen
- Department of Cardiology, West China Hospital, Sichuan University, Guoxue Xiang No. 37, Chengdu, Sichuan Province, 610041, People's Republic of China. .,Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China. .,Center of Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
27
|
Morales MA, Cirillo J, Nakata K, Kucukseymen S, Ngo LH, Izquierdo-Garcia D, Catana C, Nezafat R. Comparison of DeepStrain and Feature Tracking for Cardiac MRI Strain Analysis. J Magn Reson Imaging 2022; 57:1507-1515. [PMID: 35900119 DOI: 10.1002/jmri.28374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Myocardial feature tracking (FT) provides a comprehensive analysis of myocardial deformation from cine balanced steady-state free-precession images (bSSFP). However, FT remains time-consuming, precluding its clinical adoption. PURPOSE To compare left-ventricular global radial strain (GRS) and global circumferential strain (GCS) values measured using automated DeepStrain analysis of short-axis cine images to those calculated using manual commercially available FT analysis. STUDY TYPE Retrospective, single-center. POPULATION A total of 30 healthy subjects and 120 patients with cardiac disease for DeepStrain development. For evaluation, 47 healthy subjects (36 male, 53 ± 5 years) and 533 patients who had undergone a clinical cardiac MRI (373 male, 59 ± 14 years). FIELD STRENGTH/SEQUENCE: bSSFP sequence at 1.5 T (Phillips) and 3 T (Siemens). ASSESSMENT Automated DeepStrain measurements of GRS and GCS were compared to commercially available FT (Circle, cvi42) measures obtained by readers with 1 year and 3 years of experience. Comparisons were performed overall and stratified by scanner manufacturer. STATISTICAL TESTS Paired t-test, linear regression slope, Pearson correlation coefficient (r). RESULTS Overall, FT and DeepStrain measurements of GCS were not significantly different (P = 0.207), but measures of GRS were significantly different. Measurements of GRS from Philips (slope = 1.06 [1.03 1.08], r = 0.85) and Siemens (slope = 1.04 [0.99 1.09], r = 0.83) data showed a very strong correlation and agreement between techniques. Measurements of GCS from Philips (slope = 0.98 [0.98 1.01], r = 0.91) and Siemens (slope = 1.0 [0.96 1.03], r = 0.88) data similarly showed a very strong correlation. The average analysis time per subject was 4.1 ± 1.2 minutes for FT and 34.7 ± 3.3 seconds for DeepStrain, representing a 7-fold reduction in analysis time. DATA CONCLUSION This study demonstrated high correlation of myocardial GCS and GRS measurements between freely available fully automated DeepStrain and commercially available manual FT software, with substantial time-saving in the analysis. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Manuel A Morales
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Julia Cirillo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Kei Nakata
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Selcuk Kucukseymen
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Long H Ngo
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - David Izquierdo-Garcia
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Ciprian Catana
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, USA
| | - Reza Nezafat
- Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Zhao Q, Cui C, Li Y, Liu Y, Huang D, Wang Y, Hu Y, Liu R, Zhu H, Liu L. Evaluation of myocardial work in patients with hypertrophic cardiomyopathy and hypertensive left ventricular hypertrophy based on non-invasive pressure-strain loops. Front Cardiovasc Med 2022; 9:767875. [PMID: 35958393 PMCID: PMC9360312 DOI: 10.3389/fcvm.2022.767875] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background The capacity to distinguish hypertrophic cardiomyopathy (HCM) from hypertensive left ventricular hypertrophy (H-LVH) based on morphological features obtained by conventional echocardiography is limited. We investigated the global myocardial work of the left ventricle in two types of hypertrophies using the non-invasive myocardial work index (NMWI). Methods Conventional echocardiography was performed on 107 subjects with preserved left ventricular ejection fraction (LVEF ≥ 50%), who comprised patients with HCM (n = 40), H-LVH (n = 35), and healthy people with normal blood pressure and left ventricular structure (n = 32). Except for the conventional echocardiographic parameters, the left ventricular myocardial work parameters based on pressure-strain loops, including global myocardial work index (GWI), global constructive work (GCW), global wasted work (GWW), and global work efficiency (GWE), were evaluated in three groups. Multivariate discriminant analysis and receiver operating characteristic (ROC) curve were used to evaluate the incremental value of NMWI for distinguishing HCM from H-LVH. Results Compared to the control group, GWI and GCW were significantly lower in HCM patients (P < 0.05), whereas GWI was significantly higher in H-LVH patients. GWW was higher and GWE was significantly decreased in both HCM and H-LVH patients than in the control group (P < 0.05). Multivariate discriminant analysis and ROC curve revealed that the inter-ventricular septum thickness (IVST)/left ventricular posterior wall thickness (LVPWT) and GCW were each able to distinguish HCM from H-LVH. The combination of IVST/LVPWT and GCW discriminated HCM and H-LVH with a higher predictive accuracy of 94.7%. Conclusion NMWI may provide additional information in evaluating the myocardial function in patients with HCM and H-LVH. Myocardial work combined with conventional echocardiography could improve the clinical diagnostic accuracy of distinguishing HCM and H-LVH.
Collapse
|
29
|
Mirmojarabian SA, Lammentausta E, Liukkonen E, Ahvenjärvi L, Junttila J, Nieminen MT, Liimatainen T. Myocardium Assessment by Relaxation along Fictitious Field, Extracellular Volume, Feature Tracking, and Myocardial Strain in Hypertensive Patients with Left Ventricular Hypertrophy. Int J Biomed Imaging 2022; 2022:9198691. [PMID: 35782296 PMCID: PMC9246602 DOI: 10.1155/2022/9198691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background Previous research has shown impaired global longitudinal strain (GLS) and slightly elevated extracellular volume fraction (ECV) in hypertensive patients with left ventricular hypertrophy (HTN LVH). Up to now, only little attention has been paid to interactions between macromolecules and free water in hypertrophied myocardium. Purpose To evaluate the feasibility of relaxation along a fictitious field with rank 2 (RAFF2) in HTN LVH patients. Study Type. Single institutional case control. Subjects 9 HTN LVH (age, 69 ± 10 years) and 11 control subjects (age, 54 ± 12 years). Field Strength/Sequence. Relaxation time mapping (T 1, T 1ρ , and T RAFF2 with 11.8 μT maximum radio frequency field amplitude) was performed at 1.5 T using a Siemens Aera (Erlangen, Germany) scanner equipped with an 18-channel body array coil. Assessment. ECV was calculated using pre- and postcontrast T 1, and global strains parameters were assessed by Segment CMR (Medviso AB Co, Sweden). The parametric maps of T 1ρ and T RAFF2 were computed using a monoexponential model, while the Bloch-McConnell equations were solved numerically to model effect of the chemical exchange during radio frequency pulses. Statistical Tests. Parametric maps were averaged over myocardium for each subject to be used in statistical analysis. Kolmogorov-Smirnov was used as the normality test followed by Student's t-test and Pearson's correlation to determine the difference between the HTN LVH patients and controls along with Hedges' g effect size and the association between variables, respectively. Results T RAFF2 decreased statistically (83 ± 2 ms vs 88 ± 6 ms, P < 0.031), and global longitudinal strain was impaired (GLS, -14 ± 3 vs - 18 ± 2, P < 0.002) in HTN LVH patients compared to the controls, respectively. Also, significant negative correlation was found between T RAFF2 and GLS (r = -0.53, P < 0.05). Data Conclusion. Our results suggest that T RAFF2 decrease in HTN LVH patients may be explained by gradual collagen accumulation which can be reflected in GLS changes. Most likely, it increases the water proton interactions and consequently decreases T RAFF2 before myocardial scarring.
Collapse
Affiliation(s)
| | | | - Esa Liukkonen
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Lauri Ahvenjärvi
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Juhani Junttila
- Research Unit of Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Miika T. Nieminen
- Research Unit of Medical Imaging, Physics, And Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Timo Liimatainen
- Research Unit of Medical Imaging, Physics, And Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
30
|
Dohy Z, Szabo L, Pozsonyi Z, Csecs I, Toth A, Suhai FI, Czimbalmos C, Szucs A, Kiss AR, Becker D, Merkely B, Vago H. Potential clinical relevance of cardiac magnetic resonance to diagnose cardiac light chain amyloidosis. PLoS One 2022; 17:e0269807. [PMID: 35696411 PMCID: PMC9191721 DOI: 10.1371/journal.pone.0269807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 05/28/2022] [Indexed: 11/19/2022] Open
Abstract
Background
While patients with cardiac transthyretin amyloidosis are easily diagnosed with bone scintigraphy, the detection of cardiac light chain (AL) amyloidosis is challenging. Cardiac magnetic resonance (CMR) analyses play an essential role in the differential diagnosis of cardiomyopathies; however, limited data are available from cardiac AL-Amyloidosis. Hence, the purpose of the present study was to analyze the potential role of CMR in the detection of cardiac AL-amyloidosis.
Methods
We included 35 patients with proved cardiac AL-amyloidosis and two control groups constituted by 330 patients with hypertrophic cardiomyopathy (HCM) and 70 patients with arterial hypertension (HT), who underwent CMR examination. The phenotype and degree of left ventricular (LV) hypertrophy and the amount and pattern of late gadolinium enhancement (LGE) were evaluated. In addition, global and regional LV strain parameters were also analyzed using feature-tracking techniques. Sensitivity and specificity of several CMR parameters were analyzed in diagnosing cardiac AL-amyloidosis.
Results
The sensitivity and specificity of diffuse septal subendocardial LGE in diagnosing cardiac AL-amyloidosis was 88% and 100%, respectively. Likewise, the sensitivity and specificity of septal myocardial nulling prior to blood pool was 71% and 100%, respectively. In addition, a LV end-diastolic septal wall thickness ≥ 15 mm had an optimal diagnostic performance to differentiate cardiac AL-amyloidosis from HT (sensitivity 91%, specificity 89%). On the other hand, a reduced global LV longitudinal strain (< 15%) plus apical sparing (apex-to-base longitudinal strain > 2) had a very low sensitivity (6%) in detecting AL-Amyloidosis, but with very high specificity (100%).
Conclusions
The findings from this study suggest that CMR could have an optimal diagnostic performance in the diagnosis of cardiac AL-amyloidosis. Hence, further larger studies are warranted to validate the findings from this study.
Collapse
Affiliation(s)
- Zsofia Dohy
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Liliana Szabo
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Zoltan Pozsonyi
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary
| | - Ibolya Csecs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Attila Toth
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | | | | | - Andrea Szucs
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Anna Reka Kiss
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - David Becker
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Hajnalka Vago
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
- * E-mail:
| |
Collapse
|
31
|
Nagueh SF, Phelan D, Abraham T, Armour A, Desai MY, Dragulescu A, Gilliland Y, Lester SJ, Maldonado Y, Mohiddin S, Nieman K, Sperry BW, Woo A. Recommendations for Multimodality Cardiovascular Imaging of Patients with Hypertrophic Cardiomyopathy: An Update from the American Society of Echocardiography, in Collaboration with the American Society of Nuclear Cardiology, the Society for Cardiovascular Magnetic Resonance, and the Society of Cardiovascular Computed Tomography. J Am Soc Echocardiogr 2022; 35:533-569. [PMID: 35659037 DOI: 10.1016/j.echo.2022.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is defined by the presence of left ventricular hypertrophy in the absence of other potentially causative cardiac, systemic, syndromic, or metabolic diseases. Symptoms can be related to a range of pathophysiologic mechanisms including left ventricular outflow tract obstruction with or without significant mitral regurgitation, diastolic dysfunction with heart failure with preserved and heart failure with reduced ejection fraction, autonomic dysfunction, ischemia, and arrhythmias. Appropriate understanding and utilization of multimodality imaging is fundamental to accurate diagnosis as well as longitudinal care of patients with HCM. Resting and stress imaging provide comprehensive and complementary information to help clarify mechanism(s) responsible for symptoms such that appropriate and timely treatment strategies may be implemented. Advanced imaging is relied upon to guide certain treatment options including septal reduction therapy and mitral valve repair. Using both clinical and imaging parameters, enhanced algorithms for sudden cardiac death risk stratification facilitate selection of HCM patients most likely to benefit from implantable cardioverter-defibrillators.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Saidi Mohiddin
- Inherited/Acquired Myocardial Diseases, Barts Health NHS Trust, St Bartholomew's Hospital, London, UK
| | - Koen Nieman
- Cardiovascular Medicine and Radiology (CV Imaging), Stanford University Medical Center, CA
| | - Brett W Sperry
- Saint Luke's Mid America Heart Institute, Kansas City, MO
| | - Anna Woo
- Toronto General Hospital, Toronto, Canada
| |
Collapse
|
32
|
Liu S, Li Y, Zhao Y, Wang X, Wu Z, Gu X, Xu B, Li Y, Tian J, Cui J, Wang G, Yu B. The Combination of Feature Tracking and Late Gadolinium Enhancement for Identification Between Hypertrophic Cardiomyopathy and Hypertensive Heart Disease. Front Cardiovasc Med 2022; 9:865615. [PMID: 35647085 PMCID: PMC9130652 DOI: 10.3389/fcvm.2022.865615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 04/14/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe differentiation between hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) is challenging due to similar myocardial hypertrophic phenotype. The purpose of this study is to evaluate the feasibility of cardiovascular magnetic resonance feature tracking (CMR-FT) and late gadolinium enhancement (LGE) to distinguish between HCM and HHD and the potential relationship between myocardial strain and cardiac functional parameters.MethodsOne hundred and seventy subjects (57 HCM, 45 HHD, and 68 controls) underwent 3.0 T CMR, including steady-state free precession cines and LGE images. Global and segmental (basal, mid, and apical) analyses of myocardial radial, circumferential, longitudinal strain, and left ventricular (LV) torsion, as well as global and 16 segments of LGE were assessed. The multivariate analysis was used to predict the diagnostic ability by combining comprehensive myocardial strain parameters and LGE.ResultsGlobal radial strain (GRS), global circumferential strain (GCS), and LV torsion were significantly higher in the HCM group than in the HHD group (GRS, 21.18 ± 7.52 vs. 14.56 ± 7.46%; GCS, −13.34 ± 3.52 vs. −10.11 ± 4.13%; torsion, 1.79 ± 0.69 vs. 1.23 ± 0.65 deg/cm, all P < 0.001). A similar trend was also seen in the corresponding strain rate. As for segmental strain analysis, basal radial strain (BRS), basal circumferential strain (BCS), basal longitudinal strain (BLS), mid-radial strain (MRS), and mid-circumferential strain (MCS) were higher in the HCM group than in the HHD group (all P < 0.001). The receiver operating characteristic (ROC) results showed that the area under the curve (AUC) of LGE in the mid-interventricular septum (mIVS) was the highest among global and segmental LGE analyses. On the multivariate regression analysis, a combined model of LGE (mIVS) with GRS obtained the highest AUC value, which was 0.835 with 88.89% sensitivity and 70.18% specificity, respectively. In addition, for patients with HCM, GRS, GCS, and global longitudinal strain had correlations with LV ejection fraction (LVEF), maximum interventricular septum thickness (IVST max), and left ventricular mass index (LVMi). Torsion was mildly associated with LVEF.ConclusionCMR-FT-derived myocardial strain and torsion provided valuable methods for evaluation of HCM and HHD. In addition, the combination of GRS and LGE (mIVS) achieved the highest diagnostic value.
Collapse
Affiliation(s)
- Shengliang Liu
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yunling Li
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yanming Zhao
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xueying Wang
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhiyuan Wu
- Department of Vascular Surgery, Beijing Hospital, National Center of Gerontology, Beijing, China
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xia Gu
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bing Xu
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ye Li
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Jinjin Cui
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| | - Guokun Wang
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Guokun Wang
| | - Bo Yu
- Department of Cardiology, Cardiovascular Imaging Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
- Bo Yu
| |
Collapse
|
33
|
Cha MJ, Kim C, Park CH, Hong YJ, Shin JM, Kim TH, Cha YJ, Park CH. Differential Diagnosis of Thick Myocardium according to Histologic Features Revealed by Multiparametric Cardiac Magnetic Resonance Imaging. Korean J Radiol 2022; 23:581-597. [PMID: 35555885 PMCID: PMC9174501 DOI: 10.3348/kjr.2021.0815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 11/16/2022] Open
Abstract
Left ventricular (LV) wall thickening, or LV hypertrophy (LVH), is common and occurs in diverse conditions including hypertrophic cardiomyopathy (HCM), hypertensive heart disease, aortic valve stenosis, lysosomal storage disorders, cardiac amyloidosis, mitochondrial cardiomyopathy, sarcoidosis and athlete’s heart. Cardiac magnetic resonance (CMR) imaging provides various tissue contrasts and characteristics that reflect histological changes in the myocardium, such as cellular hypertrophy, cardiomyocyte disarray, interstitial fibrosis, extracellular accumulation of insoluble proteins, intracellular accumulation of fat, and intracellular vacuolar changes. Therefore, CMR imaging may be beneficial in establishing a differential diagnosis of LVH. Although various diseases share LV wall thickening as a common feature, the histologic changes that underscore each disease are distinct. This review focuses on CMR multiparametric myocardial analysis, which may provide clues for the differentiation of thickened myocardium based on the histologic features of HCM and its phenocopies.
Collapse
Affiliation(s)
- Min Jae Cha
- Department of Radiology, Chung-Ang University Hospital, Seoul, Korea
| | - Cherry Kim
- Department of Radiology, Korea University Ansan Hospital, Ansan, Korea
| | - Chan Ho Park
- Department of Radiology, Soonchunhyang University Cheonan Hospital, Cheonan, Korea
| | - Yoo Jin Hong
- Department of Radiology and Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Min Shin
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Hoon Kim
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| | - Chul Hwan Park
- Department of Radiology and Research Institute of Radiological Science, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
34
|
Balmukhamedova Z, Derbissalina G, Zemlyanskaya N, Dzholdasbekova A, Blyalova D. Speckle-tracking Echocardiography in Early Diagnosis of Myocardial Dysfunctions of Women with Hypertension in the Perimenopausal Period. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Абстрактный
Цель исследования: оценить роль спекл-трекинговой эхокардиографии в выявлении ранней дисфункции миокарда у женщин с артериальной гипертензией в перименопаузальном периоде.
Материал и методы. В исследовании приняли участие 50 женщин перименопаузального периода в возрасте от 45 до 55 лет. Перименопауза диагностировалась на основании клинического осмотра, включающего осмотр у гинеколога и исследования гормонального статуса женщины. Выборка женщин была разделена на две группы в зависимости от наличия артериальной гипертензии. В основную группу вошли 24 пациентки с артериальной гипертензией, диагностированной в перименопаузальном периоде. Перечисленные выше методы обследования также включали электрокардиографию, эхокардиографию и спекл-трекинговую эхокардиографию.
Результаты. По данным спекл-трекинговой эхокардиографии выявлены статистически значимые показатели в базально-антеропостероидном и нижнебазальном сегментах (р = 0,016; 0,001). Разница индекса массы миокарда левого желудочка была статистически значимой в сравниваемых группах (р = 0,038). ROC-анализ использовался для оценки качества полученной модели логистической регрессии. Площадь под ROC-кривой составила 0,806 ± 0,065 (95% ДИ: 0,679–0,933, p <0,001). Это указывает на «очень хорошее» прогностическое качество модели.
Заключение: в группе больных с артериальной гипертензией более чувствительны показатели базального переднеперегородочного и базально-нижнего сегментов, что может быть использовано как значимый показатель дисфункции при неизменных показателях стандартной эхокардиографии.
Collapse
|
35
|
The Importance of Functional and Feature-Tracking Cardiac MRI Parameters in Prediction of Adverse Cardiac Events and Cardiac Mortality in Thalassemia Patients. Acad Radiol 2022; 29 Suppl 4:S91-S99. [PMID: 35131148 DOI: 10.1016/j.acra.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 12/13/2022]
Abstract
RATIONALE AND OBJECTIVES Despite some investigations about the role of cardiovascular magnetic resonance (CMR) imaging in thalassemia, there are a few studies regarding the feature-tracking (FT). We evaluated the role of T2*, functional, and FT values for the determining of adverse cardiac events (ACE). METHODS One-hundred-fifty-nine patients with thalassemia-major (49.7% female, mean-age = 32 ± 9.8 year) were followed for 8 - 64 (median = 36) months. CMR derived functional, FT, and T2* as well as ACE (heart failure hospitalization, cardiac mortality, pulmonary hypertension, and arrhythmias) were recorded. Also, variables were analyzed for cardiac death prediction separately. RESULTS Seventeen patients (10.7%) developed ACE. The right-ventricular ejection fraction (RVEF) was the strongest indicator of ACE (OR: 0.85, 95% - CI: 0.790 - 0.918; p < 0.001) and cardiac mortality (OR: 0.88, 95%-CI: 0.811 - 0.973; p = 0.01). RVEF ≤ 39% and ≤ 37% predicted ACE and mortality with sensitivity of 62.5% and 71.43% and specificity of 95.77% and 93.38%, respectively. Additionally, myocardial-T2* was a predictor of mortality (OR: 0.90, 95%-CI: 0.814 - 0.999; p = 0.04). T2* ≤ 10 months predicted death with 85.71% sensitivity and 85.91% specificity. RV global longitudinal strain (GLS) was the strongest strain parameter for the indication of ACE and death (OR: 0.81, 95%-CI: 0.740 - 0.902; p < 0.001 and OR: 0.81, 95%- CI: 0.719 - 0.933; p = 0.003, respectively). RV GLS ≤ 16.43% and ≤ 15.63% determined ACE and death with sensitivity of 52.94% and 71.43% and specificity of 90%, respectively. CONCLUSION Our results underscore the role of FT and non-contrast CMR parameters as valuable markers of ACE in thalassemia.
Collapse
|
36
|
Chen X, Pan J, Shu J, Zhang X, Ye L, Chen L, Hu Y, Yu R. Prognostic value of regional strain by cardiovascular magnetic resonance feature tracking in hypertrophic cardiomyopathy. Quant Imaging Med Surg 2022; 12:627-641. [PMID: 34993107 PMCID: PMC8666725 DOI: 10.21037/qims-21-42] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/21/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Few studies have demonstrated the performance of regional strain by cardiovascular magnetic resonance (CMR) feature tracking in hypertrophic cardiomyopathy (HCM) patients, and the prognostic value of segmental strain remains unknown. This study aimed to explore the prognostic implications of strain parameters generated by CMR feature tracking analysis in HCM patients. METHODS In total, 104 clinically diagnosed HCM patients and 30 healthy volunteers were enrolled in this study, and all patients underwent a standard CMR examination. Global and regional strain was computed by short axis, 2-, 3-, and 4-chamber view cine MR imaging using specialized software. Cardiac structure, function, and myocardial strain were compared between the control group and HCM patients, and the event and event-free groups. Univariate and multivariate Cox regression analyses were performed to evaluate the correlations between clinical and CMR parameters and poor prognosis. RESULTS During the follow-up time, 8 patients reached the primary end points and 14 patients reached secondary end points. Regional radial strain of hypertrophic segments (RRS) and regional circumferential strain of hypertrophic segments (RCS) were worse in HCM patients with primary and secondary end points. In univariate Cox regression analysis of RRS, RCS were associated with primary and secondary end points. Regional radial strain of hypertrophic segments [hazard ratio (HR) 1.64, 95% confidence interval (CI): 1.13-2.38] and RCS (HR 2.35, 95% CI: 1.20-4.59) were independent predictors of primary end points, and RRS (HR 1.71, 95% CI: 1.09-2.66) and RCS (HR 2.63, 95% CI: 1.20-5.75) remained independent predictors of secondary end points in multivariate analysis. Kaplan-Meier survival curves indicated patients with RRS <10.0% and RCS ≥-8.5% had a higher rate of primary end points, and patients with RRS <17.9% and RCS ≥-12.1% experienced a higher rate of secondary end points. CONCLUSIONS In HCM patients, RRS and RCS were associated with primary and secondary end points and remained independent predictors in multivariate analysis. Impaired regional strain may potentially predict poor prognosis in HCM patients. KEYWORDS Prognosis; hypertrophic cardiomyopathy (HCM); cardiovascular magnetic resonance (CMR); regional strain.
Collapse
Affiliation(s)
- Xiaorong Chen
- Department of Medical Imaging, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China;,Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiangfeng Pan
- Department of Medical Imaging, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiner Shu
- Department of Radiology, Jinhua People’s Hospital, Jinhua, China
| | - Xiaoru Zhang
- Department of Medical Imaging, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Limei Ye
- Department of Medical Imaging, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lin Chen
- Department of Medical Imaging, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yi Hu
- Department of Medical Imaging, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Risheng Yu
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Palumbo P, Masedu F, De Cataldo C, Cannizzaro E, Bruno F, Pradella S, Arrigoni F, Valenti M, Splendiani A, Barile A, Giovagnoni A, Masciocchi C, Di Cesare E. Real-world clinical validity of cardiac magnetic resonance tissue tracking in primitive hypertrophic cardiomyopathy. Radiol Med 2021; 126:1532-1543. [PMID: 34894317 DOI: 10.1007/s11547-021-01432-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Cardiac magnetic resonance (CMR) is an uncontested diagnostic tool for identifying and assessing hypertrophic cardiomyopathy (HCM) patients. Concerning the necessity to identify valid prognosticators for predicting the individual risk of clinical evolution, this study aimed to evaluate the clinical validity of CMR tissue tracking (TT) analysis in patients affected by primitive HCM in a real-world setting. METHODS This historical prospective study included 33 patients. Diagnostic validity and clinical validation were assessed for strain values. CMR-TT diagnostic validity was studied comparing HCM patients with healthy control groups and phenotypic presentation of HCM. The impact of strain values and all phenotypic disease characteristics were assessed in a long-term follow-up study. RESULTS The inter-reading agreement was good for all strain parameters. Significant differences were observed between the control group and HCM patients. Similarly, hypertrophic and LGE + segments showed lower deformability than healthy segments. The AUC of predictive model, including conventional risk factors for MACE occurrence and all strain values, reached 98% of diagnostic concordance (95% CI .94-1; standard error: .02; p value .0001), compared to conventional risk factors only (86%; 95% CI .73-99; standard error: .07; p value .002). CONCLUSION In patients with primitive HCM, CMR-TT strain proves high clinical validity providing independent and non-negligible prognostic advantages over clinical features and traditional CMR markers.
Collapse
Affiliation(s)
- Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Via Saragat, Località Campo di Pile, 67100, L'Aquila, Italy.
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy.
| | - Francesco Masedu
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Camilla De Cataldo
- Radiology Unit, San Salvatore Hospital of L'Aquila, Via Lorenzo Natali 1, 67100, L'Aquila, Italy
| | - Ester Cannizzaro
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Via Saragat, Località Campo di Pile, 67100, L'Aquila, Italy
| | - Federico Bruno
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Silvia Pradella
- SIRM Foundation, Italian Society of Medical and Interventional Radiology (SIRM), 20122, Milan, Italy
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134, Florence, Italy
| | - Francesco Arrigoni
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, Via Saragat, Località Campo di Pile, 67100, L'Aquila, Italy
| | - Marco Valenti
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Barile
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Andrea Giovagnoni
- Department of Radiology, Azienda Ospedaliero-Universitaria, Ospedale Riuniti Di Ancona, Via Conca 71, 60126, Torrette, Ancona, Italy
| | - Carlo Masciocchi
- Department of Applied Clinical Science and Biotechnology, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Ernesto Di Cesare
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Piazzale Salvatore Tommasi 1, 67100, L'Aquila, Italy
| |
Collapse
|
38
|
Overhoff D, Ansari U, Hohneck A, Tülümen E, Rudic B, Kuschyk J, Lossnitzer D, Baumann S, Froelich MF, Waldeck S, Akin I, Borggrefe M, Schoenberg SO, Papavassiliu T. Prediction of cardiac events with non-contrast magnetic resonance feature tracking in patients with ischaemic cardiomyopathy. ESC Heart Fail 2021; 9:574-584. [PMID: 34818694 PMCID: PMC8788051 DOI: 10.1002/ehf2.13712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 09/24/2021] [Accepted: 10/31/2021] [Indexed: 11/23/2022] Open
Abstract
Aims The aim of this study was to evaluate the prognostic value of feature tracking (FT) derived cardiac magnetic resonance (CMR) strain parameters of the left ventricle (LV)/right ventricle (RV) in ischaemic cardiomyopathy (ICM) patients treated with an implantable cardioverter‐defibrillator (ICD). Current guidelines suggest a LV‐ejection fraction ≤35% as major criterion for ICD implantation in ICM, but this is a poor predictor for arrhythmic events. Supplementary parameters are missing. Methods and results Ischaemic cardiomyopathy patients (n = 242), who underwent CMR imaging prior to primary and secondary implantation of ICD, were classified depending on EF ≤ 35% (n = 188) or >35% (n = 54). FT parameters were derived from steady‐state free precession cine views using dedicated software. The primary endpoint was a composite of cardiovascular mortality (CVM) and/or appropriate ICD therapy. There were no significant differences in FT‐function or LV‐/RV‐function parameters in patients with an EF ≤ 35% correlating to the primary endpoint. In patients with EF > 35%, standard CMR functional parameters, such as LV‐EF, did not reveal significant differences. However, significant differences in most FT parameters correlating to the primary endpoint were observed in this subgroup. LV‐GLS (left ventricular‐global longitudinal strain) and RV‐GRS (right ventricular‐global radial strain) revealed the best diagnostic performance in ROC curve analysis. The combination of LV‐GLS and RV‐GRS showed a sensitivity of 85% and a specificity of 76% for the prediction of future events. Conclusions The impact of FT derived measurements in the risk stratification of patients with ICM depends on LV function. The combination of LV‐GLS/RV‐GRS seems to be a predictor of cardiovascular mortality and/or appropriate ICD therapy in patients with EF > 35%.
Collapse
Affiliation(s)
- Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,Department of Radiology and Neuroradiology, German Federal Armed Forces Central Hospital, Koblenz, Germany
| | - Uzair Ansari
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Anna Hohneck
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Erol Tülümen
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany
| | - Boris Rudic
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany
| | - Jürgen Kuschyk
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany
| | - Dirk Lossnitzer
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Stefan Baumann
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Stephan Waldeck
- Department of Radiology and Neuroradiology, German Federal Armed Forces Central Hospital, Koblenz, Germany
| | - Ibrahim Akin
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Martin Borggrefe
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| | - Stefan O Schoenberg
- Department of Radiology and Nuclear Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Theano Papavassiliu
- 1st Department of Medicine, University Medical Centre Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, Heidelberg, D-68167, Germany.,DZHK (German Centre for Cardiovascular Research) partner site Mannheim, Mannheim, Germany
| |
Collapse
|
39
|
Blaszczyk E, Lim C, Kellman P, Schmacht L, Gröschel J, Spuler S, Schulz-Menger J. Progressive myocardial injury in myotonic dystrophy type II and facioscapulohumeral muscular dystrophy 1: a cardiovascular magnetic resonance follow-up study. J Cardiovasc Magn Reson 2021; 23:130. [PMID: 34743704 PMCID: PMC8573966 DOI: 10.1186/s12968-021-00812-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 09/10/2021] [Indexed: 11/10/2022] Open
Abstract
AIM Muscular dystrophy (MD) is a progressive disease with predominantly muscular symptoms. Myotonic dystrophy type II (MD2) and facioscapulohumeral muscular dystrophy type 1 (FSHD1) are gaining an increasing awareness, but data on cardiac involvement are conflicting. The aim of this study was to determine a progression of cardiac remodeling in both entities by applying cardiovascular magnetic resonance (CMR) and evaluate its potential relation to arrhythmias as well as to conduction abnormalities. METHODS AND RESULTS 83 MD2 and FSHD1 patients were followed. The participation was 87% in MD2 and 80% in FSHD1. 1.5 T CMR was performed to assess functional parameters as well as myocardial tissue characterization applying T1 and T2 mapping, fat/water-separated imaging and late gadolinium enhancement. Focal fibrosis was detected in 23% of MD2) and 33% of FSHD1 subjects and fat infiltration in 32% of MD2 and 28% of FSHD1 subjects, respectively. The incidence of all focal findings was higher at follow-up. T2 decreased, whereas native T1 remained stable. Global extracellular volume fraction (ECV) decreased similarly to the fibrosis volume while the total cell volume remained unchanged. All patients with focal fibrosis showed a significant increase in left ventricular (LV) and right ventricular (RV) volumes. An increase of arrhythmic events was observed. All patients with ventricular arrhythmias had focal myocardial changes and an increased volume of both ventricles (LV end-diastolic volume (EDV) p = 0.003, RVEDV p = 0.031). Patients with supraventricular tachycardias had a significantly higher left atrial volume (p = 0.047). CONCLUSION We observed a remarkably fast and progressive decline of cardiac morphology and function as well as a progression of rhythm disturbances, even in asymptomatic patients with a potential association between an increase in arrhythmias and progression of myocardial tissue damage, such as focal fibrosis and fat infiltration, exists. These results suggest that MD2 and FSHD1 patients should be carefully followed-up to identify early development of remodeling and potential risks for the development of further cardiac events even in the absence of symptoms. Trial registration ISRCTN, ID ISRCTN16491505. Registered 29 November 2017 - Retrospectively registered, http://www.isrctn.com/ISRCTN16491505.
Collapse
Affiliation(s)
- Edyta Blaszczyk
- Department of Cardiology and Nephrology, Working Group Onn Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a Joint Cooperation Between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Lindenberger Weg 80, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Carolin Lim
- Department of Cardiology and Nephrology, Working Group Onn Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a Joint Cooperation Between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Lindenberger Weg 80, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Peter Kellman
- National Heart, Lung and Blood Institute, National Institute of Health, Bethesda, USA
| | - Luisa Schmacht
- Department of Cardiology and Nephrology, Working Group Onn Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a Joint Cooperation Between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Lindenberger Weg 80, 13125 Berlin, Germany
| | - Jan Gröschel
- Department of Cardiology and Nephrology, Working Group Onn Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a Joint Cooperation Between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Lindenberger Weg 80, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Simone Spuler
- Muscle Research Unit, Experimental and Clinical Research Center a Jointoint Cooperationoperation Betweenetween the Charité Medical, Berlin, Germany
| | - Jeanette Schulz-Menger
- Department of Cardiology and Nephrology, Working Group Onn Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center a Joint Cooperation Between the Charité – Universitätsmedizin Berlin, Department of Internal Medicine and Cardiology and the Max-Delbrueck Center for Molecular Medicine, and HELIOS Klinikum Berlin Buch, Lindenberger Weg 80, 13125 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
40
|
Obstructive and Nonobstructive Hypertrophic Cardiomyopathy: Differences in Global and Segmental Myocardial Strain by Cardiac Magnetic Resonance Feature Tracking. J Thorac Imaging 2021; 37:49-57. [PMID: 34387228 DOI: 10.1097/rti.0000000000000612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To evaluate any significant differences in myocardial strain between hypertrophic obstructive cardiomyopathy (HOCM) and nonobstructive ones (HNCM), as assessed by cardiac magnetic resonance feature tracking (CMR-FT). MATERIALS AND METHODS A total of 17 patients (mean age: 54±14 y) with echocardiographic diagnosis of HOCM (left ventricular outflow tract obstruction peak gradient ≥30 mm Hg), 19 patients (mean age: 49±16 y) with HNCM (peak gradient <30 mm Hg), and 18 age-matched and gender-matched healthy controls (mean age: 42±14 y). All patients underwent cardiac MRI with SSFP-cine to assess left ventricular global and segmental strain analysis by CMR-FT. Late gadolinium enhancement (LGE) sequences were used for semiautomatic quantification of LGE volume, mass, and percentage. RESULTS The magnitude of global radial, circumferential, and longitudinal strain as well as strain rate were significantly lower in all patients in comparison to controls (P<0.001), except for radial and circumferential strain between HOCM and controls (P=0.270; P=0.154). The latter strain parameters were significantly higher in HOCM than HNCM (radial strain: 31.67±7.55 vs. 21.26±7.10, P<0.001; circumferential strain: -17.94±2.78 vs. -13.46±3.42, P<0.001). Radial and circumferential strain and circumferential diastolic strain rate were higher in mid-anterior (P<0.001), mid-anteroseptal (P<0.001), and all apical segments (P<0.005) between the 2 groups of patients. Moreover, longitudinal strain was higher only in apical segments in HOCM (P<0.02). CONCLUSIONS HOCM patients showed higher left ventricular apical, mid-anterior, and mid-anteroseptal strain parameters compared with HNCM. These differences were independent of corresponding segmental thickness and LGE amount.
Collapse
|
41
|
Sharifian M, Rezaeian N, Asadian S, Mohammadzadeh A, Nahardani A, Kasani K, Toloueitabar Y, Farahmand AM, Hosseini L. Efficacy of Novel Noncontrast Cardiac Magnetic Resonance Methods in Indicating Fibrosis in Hypertrophic Cardiomyopathy. Cardiol Res Pract 2021; 2021:9931136. [PMID: 34123419 PMCID: PMC8169266 DOI: 10.1155/2021/9931136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/19/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE In hypertrophic cardiomyopathy (HCM), myocardial fibrosis is routinely shown by late gadolinium enhancement (LGE) in cardiac magnetic resonance (CMR) imaging. We evaluated the efficacy of 2 novel contrast-free CMR methods, namely, diffusion-weighted imaging (DWI) and feature-tracking (FT) method, in detecting myocardial fibrosis. METHODS This cross-sectional study was conducted on 26 patients with HCM. Visual and quantitative comparisons were made between DWI and LGE images. Regional longitudinal, circumferential, and radial strains were compared between LGE-positive and LGE-negative segments. Moreover, global strains were compared between LGE-positive and LGE-negative patients as well as between patients with mild and marked LGE. RESULTS All 3 strains showed significant differences between LGE-positive and LGE-negative segments (P < 0.001). The regional longitudinal and circumferential strain parameters showed significant associations with LGE (P < 0.001), while regional circumferential strain was the only independent predictor of LGE in logistic regression models (OR: 1.140, 95% CI: 1.073 to 1.207, P < 0.001). A comparison of global strains between patients with LGE percentages of below 15% and above 15% demonstrated that global circumferential strain was the only parameter to show impairment in the group with marked myocardial fibrosis, with borderline significance (P=0.09). A review of 212 segments demonstrated a qualitative visual agreement between DWI and LGE in 193 segments (91%). The mean apparent diffusion coefficient was comparable between LGE-positive and LGE-negative segments (P=0.51). CONCLUSIONS FT-CMR, especially regional circumferential strain, can reliably show fibrosis-containing segments in HCM. Further, DWI can function as an efficient qualitative method for the estimation of the fibrosis extent in HCM.
Collapse
Affiliation(s)
- Maedeh Sharifian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Rezaeian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadzadeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Nahardani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Kianosh Kasani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Toloueitabar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Leila Hosseini
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Cardiac Imaging in Athlete's Heart: The Role of the Radiologist. ACTA ACUST UNITED AC 2021; 57:medicina57050455. [PMID: 34066957 PMCID: PMC8148528 DOI: 10.3390/medicina57050455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023]
Abstract
Athlete’s heart (AH) is the result of morphological and functional cardiac modifications due to long-lasting athletic training. Athletes can develop very marked structural myocardial changes, which may simulate or cover unknown cardiomyopathies. The differential diagnosis between AH and cardiomyopathy is necessary to prevent the risk of catastrophic events, such as sudden cardiac death, but it can be a challenging task. The improvement of the imaging modalities and the introduction of the new technologies in cardiac magnetic resonance (CMR) and cardiac computed tomography (CCT) can allow overcoming this challenge. Therefore, the radiologist, specialized in cardiac imaging, could have a pivotal role in the differential diagnosis between structural adaptative changes observed in the AH and pathological anomalies of cardiomyopathies. In this review, we summarize the main CMR and CCT techniques to evaluate the cardiac morphology, function, and tissue characterization, and we analyze the imaging features of the AH and the key differences with the main cardiomyopathies.
Collapse
|
43
|
Li X, Wang H, Zhao R, Wang T, Zhu Y, Qian Y, Liu B, Yu Y, Han Y. Elevated Extracellular Volume Fraction and Reduced Global Longitudinal Strains in Participants Recovered from COVID-19 without Clinical Cardiac Findings. Radiology 2021; 299:E230-E240. [PMID: 33434112 PMCID: PMC7808090 DOI: 10.1148/radiol.2021203998] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background It is unknown if there are cardiac abnormalities in persons who have recovered from coronavirus disease 2019 (COVID-19) without cardiac symptoms or in those who have normal biomarkers and normal electrocardiograms. Purpose To evaluate cardiac involvement in participants who had recovered from COVID-19 without clinical evidence of cardiac involvement by using cardiac MRI. Materials and Methods This prospective observational cohort study included 40 participants who had recovered from COVID-19 with moderate (n = 24) or severe (n = 16) pneumonia and who had no cardiovascular medical history, were without cardiac symptoms, had normal electrocardiograms, had normal serologic cardiac enzyme levels, and had been discharged for more than 90 days between May and September 2020. Demographic characteristics were recorded, serum cardiac enzyme levels were measured, and cardiac MRI was performed. Cardiac function, native T1, extracellular volume fraction (ECV), and two-dimensional (2D) strain were quantitatively evaluated and compared with values in control subjects (n = 25). Comparisons among the three groups were performed by using one-way analysis of variance with Bonferroni-corrected post hoc comparisons (for normal distribution) or Kruskal-Wallis tests with post hoc pairwise comparisons (for nonnormal distribution). Results Forty participants (mean age, 54 years ± 12 [standard deviation]; 24 men) were enrolled; participants had a mean time between admission and cardiac MRI of 158 days ± 18 and between discharge and cardiac MRI examination of 124 days ± 17. There were no left or right ventricular size or functional differences between participants who had recovered from COVID-19 and healthy control subjects. Only one (3%) participant had positive late gadolinium enhancement located at the mid inferior wall. Global ECV values were elevated in participants who had recovered from COVID-19 with moderate or severe pneumonia compared with those in healthy control subjects (median ECV, 29.7% vs 31.4% vs 25.0%, respectively; interquartile range, 28.0%-32.9% vs 29.3%-34.0% vs 23.7%-26.0%, respectively; P < .001 for both). The 2D global left ventricular longitudinal strain was reduced in both groups of participants (moderate COVID-19 group, -12.5% [interquartile range, -15.5% to -10.7%]; severe COVID-19 group, -12.5% [interquartile range, -15.4% to -8.7%]) compared with the healthy control group (-15.4% [interquartile range, -17.6% to -14.6%]) (P = .002 and P = .001, respectively). Conclusion Cardiac MRI myocardial tissue and strain imaging parameters suggest that a proportion of participants who had recovered from COVID-19 had subclinical myocardial abnormalities detectable months after recovery. © RSNA, 2021 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Xiaohu Li
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Haitao Wang
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Ren Zhao
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Tingting Wang
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Yinsu Zhu
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Yinfeng Qian
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Bin Liu
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Yongqiang Yu
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| | - Yuchi Han
- From the Department of Radiology (X.L.,T.W.,Y.Q.,B.L.,Y.Y.); and Department of Cardiology (R.Z.), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022,China; Department of Radiology, No. 2 People’s Hospital of Fuyang City, Fuyang, Anhui, China (H.W.); Anhui Province Clinical Image Quality Control Center, Hefei, Anhui Province, China (X.L.,Y.Q.,B.L.,Y.Y.,H.W.); Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China (Y.Z.); Cardiovascular Medicine, Departments of Medicine and Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA (Y.H.)
| |
Collapse
|
44
|
Quantification of Myocardial Deformation Applying CMR-Feature-Tracking-All About the Left Ventricle? Curr Heart Fail Rep 2021; 18:225-239. [PMID: 33931818 PMCID: PMC8342400 DOI: 10.1007/s11897-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 11/11/2022]
Abstract
Purpose of Review Cardiac magnetic resonance-feature-tracking (CMR-FT)-based deformation analyses are key tools of cardiovascular imaging and applications in heart failure (HF) diagnostics are expanding. In this review, we outline the current range of application with diagnostic and prognostic implications and provide perspectives on future trends of this technique. Recent Findings By applying CMR-FT in different cardiovascular diseases, increasing evidence proves CMR-FT-derived parameters as powerful diagnostic and prognostic imaging biomarkers within the HF continuum partly outperforming traditional clinical values like left ventricular ejection fraction. Importantly, HF diagnostics and deformation analyses by CMR-FT are feasible far beyond sole left ventricular performance evaluation underlining the holistic nature and accuracy of this imaging approach. Summary As an established and continuously evolving technique with strong prognostic implications, CMR-FT deformation analyses enable comprehensive cardiac performance quantification of all cardiac chambers.
Collapse
|
45
|
CMR feature tracking strain patterns and their association with circulating cardiac biomarkers in patients with hypertrophic cardiomyopathy. Clin Res Cardiol 2021; 110:1757-1769. [PMID: 33779809 PMCID: PMC8563550 DOI: 10.1007/s00392-021-01848-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/17/2021] [Indexed: 11/25/2022]
Abstract
Aims CMR feature tracking strain (CMR-FT) provides prognostic information. However, there is a paucity of data in hypertrophic cardiomyopathy (HCM). We sought to analyze global CMR-FT parameters in all four cardiac chambers and to assess associations with NT-proBNP and cardiac troponin T (hsTnT) in patients with HCM. Methods This retrospective study included 144 HCM patients and 16 healthy controls with CMR at 1.5 T. Analyses were performed on standard steady-state free precession cine (SSFP) CMR data using a commercially available software. Global left ventricular (LV) strain was assessed as longitudinal (LVLAX-GLS), circumferential (LVLAX-GCS) and radial strain (LVLAX-GRS) on long -axis (LAX) and as LVSAX-GCS and LVSAX-GRS on short- axis (SAX). Right ventricular (RV-GLS), left atrial (LA-GLS) and right atrial (RA-GLS) strain were assessed on LAX. Results We found LVLAX-GLS [− 18.9 (− 22.0, − 16.0), − 23.5 (− 25.5, − 22.0) %, p = 0.0001), LVSAX-GRS [86.8 (65.9–115.5), 119.6 (91.3–143.7) %, p = 0.001] and LALAX-GLS [LA2CH-GLS 29.2 (19.1–37.7), LA2CH-GLS 38.2 (34.3–47.1) %, p = 0.0036; LA4CH-GLS 22.4 (14.6–30.7) vs. LA4CH-GLS 33.4 (28.4–37.3) %, p = 0.0033] to be impaired in HCM compared to healthy controls despite normal LVEF. Furthermore, LV and LA strain parameters were impaired in HCM with elevated NT-proBNP and/or hsTnT, despite preserved LVEF compared to HCM with normal biomarker levels. There was a moderate correlation of LV and LA CMR-FT with levels of NT-proBNP and hsTnT. Conclusion CMR-FT reveals LV and LA dysfunction in HCM despite normal LVEF. The association between impaired LV strain and elevated NT-proBNP and hsTnT indicates a link between unapparent functional abnormalities and disease severity in HCM. Graphic abstract
Typical CMR-FT findings in patients with hypertrophic cardiomyopathy![]()
Collapse
|
46
|
Potential Role of Artificial Intelligence in Cardiac Magnetic Resonance Imaging: Can It Help Clinicians in Making a Diagnosis? J Thorac Imaging 2021; 36:142-148. [PMID: 33769416 DOI: 10.1097/rti.0000000000000584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the era of modern medicine, artificial intelligence (AI) is a growing field of interest which is experiencing a steady development. Several applications of AI have been applied to various aspects of cardiac magnetic resonance to assist clinicians and engineers in reducing the costs of exams and, at the same time, to improve image acquisition and reconstruction, thus simplifying their analysis, interpretation, and decision-making process as well. In fact, the role of AI and machine learning in cardiovascular imaging relies on evaluating images more quickly, improving their quality, nulling intraobserver and interobserver variability in their interpretation, upgrading the understanding of the stage of the disease, and providing with a personalized approach to cardiovascular care. In addition, AI algorithm could be directed toward workflow management. This article presents an overview of the existing AI literature in cardiac magnetic resonance, with its strengths and limitations, recent applications, and promising developments. We conclude that AI is very likely be used in all the various process of diagnosis routine mode for cardiac care of patients.
Collapse
|
47
|
Seetharam K, Brito D, Farjo PD, Sengupta PP. The Role of Artificial Intelligence in Cardiovascular Imaging: State of the Art Review. Front Cardiovasc Med 2020; 7:618849. [PMID: 33426010 PMCID: PMC7786371 DOI: 10.3389/fcvm.2020.618849] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Abstract
In this current digital landscape, artificial intelligence (AI) has established itself as a powerful tool in the commercial industry and is an evolving technology in healthcare. Cutting-edge imaging modalities outputting multi-dimensional data are becoming increasingly complex. In this era of data explosion, the field of cardiovascular imaging is undergoing a paradigm shift toward machine learning (ML) driven platforms. These diverse algorithms can seamlessly analyze information and automate a range of tasks. In this review article, we explore the role of ML in the field of cardiovascular imaging.
Collapse
Affiliation(s)
- Karthik Seetharam
- Department of Cardiology, West Virginia University Medicine Heart & Vascular Institute, Morgantown, WV, United States
| | - Daniel Brito
- Department of Cardiology, West Virginia University Medicine Heart & Vascular Institute, Morgantown, WV, United States
| | - Peter D Farjo
- Department of Cardiology, West Virginia University Medicine Heart & Vascular Institute, Morgantown, WV, United States
| | - Partho P Sengupta
- Department of Cardiology, West Virginia University Medicine Heart & Vascular Institute, Morgantown, WV, United States
| |
Collapse
|
48
|
Shi RY, Wu R, An DAL, Chen BH, Wu CW, Du L, Jiang M, Xu JR, Wu LM. Texture analysis applied in T1 maps and extracellular volume obtained using cardiac MRI in the diagnosis of hypertrophic cardiomyopathy and hypertensive heart disease compared with normal controls. Clin Radiol 2020; 76:236.e9-236.e19. [PMID: 33272531 DOI: 10.1016/j.crad.2020.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/04/2020] [Indexed: 10/22/2022]
Abstract
AIM To assess the potential of texture analysis (TA) applied in T1 maps and extracellular volume (ECV) obtained using cardiac magnetic resonance (CMR) in the diagnosis of hypertrophic cardiomyopathy (HCM) and hypertensive heart disease (HHD) compared with normal controls (NC). Strain parameters were analysed to compare with final TA models. MATERIALS AND METHODS This retrospective study included 66 HCM patients, 39 HHD patients, and 41 NC. Step-wise dimension reduction and feature selection were performed by reproducibility, machine learning, collinearity, and multivariable regression analysis to select the texture features that enable diagnosis of and differentiation between HCM and HHD. Strain parameters were calculated by short-axis and three long-axis cine sequences. RESULTS Independent features in T1 maps and ECV analysis allowed for the differentiation between patients (HCM and HHD) and NC. Of the best-calculated model, the areas under the receiver operating curve (AUCs) were as follows: 0.969 for T1 map and 0.964 for ECV. To distinguish HCM from HHD, two independent features were screened out for both T1 and ECV maps. The AUCs were as follows: 0.793 for T1 map and 0.894 for ECV. Radial, circumferential, and longitudinal strain parameters could differentiate patients from NC, but only longitudinal strain parameters was significantly different between HCM and HHD. CONCLUSIONS Texture analysis of T1 maps and ECV shows high accuracy in differentiating hypertrophic myocardium from NC, and HCM from HHD. Strain parameters are able to demonstrate the difference between patients and NC, but were less impressive in differentiating HCM and HHD.
Collapse
Affiliation(s)
- R-Y Shi
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - R Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - D-A L An
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - B-H Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - C-W Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - L Du
- Department of Robotics, Ritsumeikan University, Shiga, Japan
| | - M Jiang
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - J-R Xu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - L-M Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
49
|
Satriano A, Afzal Y, Sarim Afzal M, Fatehi Hassanabad A, Wu C, Dykstra S, Flewitt J, Feuchter P, Sandonato R, Heydari B, Merchant N, Howarth AG, Lydell CP, Khan A, Fine NM, Greiner R, White JA. Neural-Network-Based Diagnosis Using 3-Dimensional Myocardial Architecture and Deformation: Demonstration for the Differentiation of Hypertrophic Cardiomyopathy. Front Cardiovasc Med 2020; 7:584727. [PMID: 33304928 PMCID: PMC7693650 DOI: 10.3389/fcvm.2020.584727] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
The diagnosis of cardiomyopathy states may benefit from machine-learning (ML) based approaches, particularly to distinguish those states with similar phenotypic characteristics. Three-dimensional myocardial deformation analysis (3D-MDA) has been validated to provide standardized descriptors of myocardial architecture and deformation, and may therefore offer appropriate features for the training of ML-based diagnostic tools. We aimed to assess the feasibility of automated disease diagnosis using a neural network trained using 3D-MDA to discriminate hypertrophic cardiomyopathy (HCM) from its mimic states: cardiac amyloidosis (CA), Anderson–Fabry disease (AFD), and hypertensive cardiomyopathy (HTNcm). 3D-MDA data from 163 patients (mean age 53.1 ± 14.8 years; 68 females) with left ventricular hypertrophy (LVH) of known etiology was provided. Source imaging data was from cardiac magnetic resonance (CMR). Clinical diagnoses were as follows: 85 HCM, 30 HTNcm, 30 AFD, and 18 CA. A fully-connected-layer feed-forward neural was trained to distinguish HCM vs. other mimic states. Diagnostic performance was compared to threshold-based assessments of volumetric and strain-based CMR markers, in addition to baseline clinical patient characteristics. Threshold-based measures provided modest performance, the greatest area under the curve (AUC) being 0.70. Global strain parameters exhibited reduced performance, with AUC under 0.64. A neural network trained exclusively from 3D-MDA data achieved an AUC of 0.94 (sensitivity 0.92, specificity 0.90) when performing the same task. This study demonstrates that ML-based diagnosis of cardiomyopathy states performed exclusively from 3D-MDA is feasible and can distinguish HCM from mimic disease states. These findings suggest strong potential for computer-assisted diagnosis in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Ali Fatehi Hassanabad
- Division of Cardiology, School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Cody Wu
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada
| | - Steven Dykstra
- Division of Cardiology, School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jacqueline Flewitt
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada.,Division of Cardiology, School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | | | | | - Bobak Heydari
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada
| | - Naeem Merchant
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada.,Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada
| | - Andrew G Howarth
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada.,Division of Cardiology, School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Carmen P Lydell
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada.,Department of Diagnostic Imaging, University of Calgary, Calgary, AB, Canada
| | - Aneal Khan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Nowell M Fine
- Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| | - Russell Greiner
- Department of Computing Science, University of Alberta, Edmonton, AB, Canada.,Alberta Machine Learning Institute, Edmonton, AB, Canada
| | - James A White
- Stephenson Cardiac Imaging Center, Calgary, AB, Canada.,Division of Cardiology, School of Medicine, University of Calgary, Calgary, AB, Canada.,Libin Cardiovascular Institute of Alberta, Calgary, AB, Canada
| |
Collapse
|
50
|
Csecs I, Pashakhanloo F, Paskavitz A, Jang J, Al-Otaibi T, Neisius U, Manning WJ, Nezafat R. Association Between Left Ventricular Mechanical Deformation and Myocardial Fibrosis in Nonischemic Cardiomyopathy. J Am Heart Assoc 2020; 9:e016797. [PMID: 33006296 PMCID: PMC7792406 DOI: 10.1161/jaha.120.016797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background In patients with nonischemic cardiomyopathy, nonischemic fibrosis detected by late gadolinium enhancement (LGE) cardiovascular magnetic resonance is related to adverse cardiovascular outcomes. However, its relationship with left ventricular (LV) mechanical deformation parameters remains unclear. We sought to investigate the association between LV mechanics and the presence, location, and extent of fibrosis in patients with nonischemic cardiomyopathy. Methods and Results We retrospectively identified 239 patients with nonischemic cardiomyopathy (67% male; 55±14 years) referred for a clinical cardiovascular magnetic resonance. LGE was present in 109 patients (46%), most commonly (n=52; 22%) in the septum. LV deformation parameters did not differentiate between LGE‐positive and LGE‐negative groups. Global longitudinal, radial, and circumferential strains, twist and torsion showed no association with extent of fibrosis. Patients with septal fibrosis had a more depressed LV ejection fraction (30±12% versus 35±14%; P=0.032) and more impaired global circumferential strain (−7.9±3.5% versus −9.7±4.4%; P=0.045) and global radial strain (10.7±5.2% versus 13.3±7.7%; P=0.023) than patients without septal LGE. Global longitudinal strain was similar in both groups. While patients with septal‐only LGE (n=28) and free wall–only LGE (n=32) had similar fibrosis burden, the septal‐only LGE group had more impaired LV ejection fraction and global circumferential, longitudinal, and radial strains (all P<0.05). Conclusions There is no association between LV mechanical deformation parameters and presence or extent of fibrosis in patients with nonischemic cardiomyopathy. Septal LGE was associated with poor global LV function, more impaired global circumferential and radial strains, and more impaired global strain rates.
Collapse
Affiliation(s)
- Ibolya Csecs
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Farhad Pashakhanloo
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Amanda Paskavitz
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Jihye Jang
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Talal Al-Otaibi
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Ulf Neisius
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Warren J Manning
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| | - Reza Nezafat
- Department of Medicine Beth Israel Deaconess Medical CenterHarvard Medical School Boston MA
| |
Collapse
|