1
|
Xu L, Ren C, Jing C, Wang G, Wei H, Kong M, Ba M. Predicting amyloid-PET and clinical conversion in apolipoprotein E ε3/ε3 non-demented individuals with multidimensional factors. Eur J Neurosci 2024; 60:3742-3758. [PMID: 38698692 DOI: 10.1111/ejn.16376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024]
Abstract
The apolipoprotein E (APOE) ε4 is a well-established risk factor of amyloid-β (Aβ) in Alzheimer's disease (AD). However, because of the high prevalence of APOE ε3, there may be a large number of people with APOE ε3/ε3 who are non-demented and have Aβ pathology. There are limited studies on assessing Aβ status and clinical conversion in the APOE ε3/ε3 non-demented population. Two hundred and ninety-three non-demented individuals with APOE ε3/ε3 from ADNI database were divided into Aβ-positron emission tomography (Aβ-PET) positivity (+) and Aβ-PET negativity (-) groups using cut-off value of >1.11. Stepwise regression searched for a single or multidimensional clinical variables for predicting Aβ-PET (+), and the receiver operating characteristic curve (ROC) assessed the accuracy of the predictive models. The Cox regression model explored the risk factors associated with clinical conversion to mild cognitive impairment (MCI) or AD. The results showed that the combination of sex, education, ventricle and white matter hyperintensity (WMH) volume can accurately predict Aβ-PET status in cognitively normal (CN), and the combination of everyday cognition study partner total (EcogSPTotal) score, age, plasma p-tau 181 and WMH can accurately predict Aβ-PET status in MCI individuals. EcogSPTotal score were independent predictors of clinical conversion to MCI or AD. The findings may provide a non-invasive and effective tool to improve the efficiency of screening Aβ-PET (+), accelerate and reduce costs of AD trial recruitment in future secondary prevention trials or help to select patients at high risk of disease progression in clinical trials.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Chao Ren
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Chenxi Jing
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Gang Wang
- School of Ulsan Ship and Ocean College, Ludong University, Yantai, China
| | - Hongchun Wei
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
| | - Min Kong
- Department of Neurology, Yantaishan Hospital, Yantai City, Shandong, China
| | - Maowen Ba
- Department of Neurology, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Shandong, China
- Yantai Regional Sub Center of National Center for Clinical Medical Research of Neurological Diseases, Shandong, China
| |
Collapse
|
2
|
Mackay GA, Gall C, Jampana R, Sleith C, Lip GYH. Scottish Intercollegiate Guidelines Network Guidance on Dementia: The Investigation of Suspected Dementia (SIGN 168) with Focus on Biomarkers-Executive Summary. Thromb Haemost 2024. [PMID: 38788775 DOI: 10.1055/a-2332-6426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
This is an executive summary of the recent guidance produced by the Scottish Intercollegiate Guidelines Network (SIGN) dementia guideline group with regards to the investigation of suspected dementia. This is a sub-section of the broader SIGN 168 guideline released in November 2023. The guideline group included clinicians with expertise in Old Age Psychiatry, Neurology, Radiology, and Nuclear Medicine supported by colleagues from the SIGN and Healthcare Improvement Scotland teams. There was representation from carers and support organizations with experience of dementia, to ensure the recommendations were appropriate from the perspective of the people being assessed for possible dementia and their carers. As the 2018 National Institute for Health and Clinical Excellence (NICE) dementia review included a review of the evidenced investigation of dementia, the SIGN guideline development group decided to focus on a review on the up-to-date evidence regarding the role of imaging and fluid biomarkers in the diagnosis of dementia. To give context to the consideration of more advanced diagnostic biomarker investigations, the guideline and this summary include the NICE guidance on the use of standard investigations as well as more specialist investigations. The evidence review supports consideration of the use of structural imaging, nuclear medicine imaging, and established Alzheimer's cerebrospinal fluid biomarkers (amyloid and tau) in the diagnosis of dementia. Although routine use of amyloid positron emission tomography imaging was not recommended, its potential use, under specialist direction, in patients with atypical or young-onset presentations of suspected Alzheimer's dementia was included as a clinical good practice point.
Collapse
Affiliation(s)
- Graham Andrew Mackay
- Department of Neurology, Aberdeen Royal Infirmary, Foresterhill, Aberdeen, United Kingdom
| | - Claire Gall
- Department of Neurology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Ravi Jampana
- Department of Neuroradiology, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Carolyn Sleith
- Healthcare Improvement Scotland, Edinburgh, United Kingdom
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Danish Center for Health Services Research, Aalborg University, Aalborg, Denmark
| |
Collapse
|
3
|
Høilund-Carlsen PF, Alavi A, Castellani RJ, Neve RL, Perry G, Revheim ME, Barrio JR. Alzheimer's Amyloid Hypothesis and Antibody Therapy: Melting Glaciers? Int J Mol Sci 2024; 25:3892. [PMID: 38612701 PMCID: PMC11012162 DOI: 10.3390/ijms25073892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
The amyloid cascade hypothesis for Alzheimer's disease is still alive, although heavily challenged. Effective anti-amyloid immunotherapy would confirm the hypothesis' claim that the protein amyloid-beta is the cause of the disease. Two antibodies, aducanumab and lecanemab, have been approved by the U.S. Food and Drug Administration, while a third, donanemab, is under review. The main argument for the FDA approvals is a presumed therapy-induced removal of cerebral amyloid deposits. Lecanemab and donanemab are also thought to cause some statistical delay in the determination of cognitive decline. However, clinical efficacy that is less than with conventional treatment, selection of amyloid-positive trial patients with non-specific amyloid-PET imaging, and uncertain therapy-induced removal of cerebral amyloids in clinical trials cast doubt on this anti-Alzheimer's antibody therapy and hence on the amyloid hypothesis, calling for a more thorough investigation of the negative impact of this type of therapy on the brain.
Collapse
Affiliation(s)
- Poul F. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Rudolph J. Castellani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA;
| | - Rachael L. Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Boston, MA 02114, USA;
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology and Genetics of Neurodegeneration, University of Texas at San Antonio, San Antonio, TX 78249, USA;
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, 0372 Oslo, Norway;
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Jorge R. Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, LA 90095, USA
| |
Collapse
|
4
|
Høilund-Carlsen PF, Alavi A, Barrio JR. PET/CT/MRI in Clinical Trials of Alzheimer's Disease. J Alzheimers Dis 2024; 101:S579-S601. [PMID: 39422954 DOI: 10.3233/jad-240206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
With the advent of PET imaging in 1976, 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-PET became the preferred method for in vivo investigation of cerebral processes, including regional hypometabolism in Alzheimer's disease. With the emergence of amyloid-PET tracers, [11C]Pittsburgh Compound-B in 2004 and later [18F]florbetapir, [18F]florbetaben, and [18F]flumetamol, amyloid-PET has replaced FDG-PET in Alzheimer's disease anti-amyloid clinical trial treatments to ensure "amyloid positivity" as an entry criterion, and to measure treatment-related decline in cerebral amyloid deposits. MRI has been used to rule out other brain diseases and screen for 'amyloid-related imaging abnormalities' (ARIAs) of two kinds, ARIA-E and ARIA-H, characterized by edema and micro-hemorrhage, respectively, and, to a lesser extent, to measure changes in cerebral volumes. While early immunotherapy trials of Alzheimer's disease showed no clinical effects, newer monoclonal antibody trials reported decreases of 27% to 85% in the cerebral amyloid-PET signal, interpreted by the Food and Drug Administration as amyloid removal expected to result in a reduction in clinical decline. However, due to the lack of diagnostic specificity of amyloid-PET tracers, amyloid positivity cannot prevent the inclusion of non-Alzheimer's patients and even healthy subjects in these clinical trials. Moreover, the "decreasing amyloid accumulation" assessed by amyloid-PET imaging has questionable quantitative value in the presence of treatment-related brain damage (ARIAs). Therefore, future Alzheimer's clinical trials should disregard amyloid-PET imaging and focus instead on assessment of regional brain function by FDG-PET and MRI monitoring of ARIAs and brain volume loss in all trial patients.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
5
|
Ryu IS, Kim DH, Ro JY, Park BG, Kim SH, Im JY, Lee JY, Yoon SJ, Kang H, Iwatsubo T, Teunissen CE, Cho HJ, Ryu JH. The microRNA-485-3p concentration in salivary exosome-enriched extracellular vesicles is related to amyloid β deposition in the brain of patients with Alzheimer's disease. Clin Biochem 2023:110603. [PMID: 37355215 DOI: 10.1016/j.clinbiochem.2023.110603] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/15/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by progressive long-term memory loss and cognitive dysfunction. Neuroimaging tests for abnormal amyloid-β (Aβ) deposition are considered the most reliable methods for the diagnosis of AD; however, the cost for such testing is very high and generally not covered by national insurance systems. Accordingly, it is only recommended for individuals exhibiting clinical symptoms of AD supported by clinical cognitive assessments. Recently, it was suggested that dysregulated microRNA-485-3p (miRNA-485-3p) in the brain and cerebrospinal fluid is closely related to pathogenesis of AD. However, a relationship between circulating miRNA-485-3p in salivary exosome-enriched extracellular vesicles (EE-EV) and Aβ deposition in the brain has not been observed. DESIGN & METHODS Using quantitative real-time polymerase chain reaction, we analyzed miRNA-485-3p concentration in salivary EE-EV. We used receiver operating characteristic (ROC) curve analysis to evaluate its predictive value for Aβ positron emission tomography (Aβ-PET) positivity in patients with AD. RESULTS Our results showed that the miRNA-485-3p concentration in salivary EE-EV isolated from patients with AD was significantly increased compared with that in the healthy controls (p<0.0001). In the analysis of all participants, the miRNA-485-3p concentration was significantly increased in Aβ-PET-positive participants compared to Aβ-PET-negative participants (p<0.0001). Further analysis using only AD patients also showed that the miRNA-485-3p concentration was significantly increased in Aβ-PET-positive AD patients vs. Aβ-PET-negative AD patients (p=0.0063). The ROC curve analysis for differentiating Aβ-PET-positive and negative participants showed that the area under the curve for miRNA-485-3p was 0.9217. CONCLUSION These findings suggested that the miRNA-485-3p concentration in salivary EE-EV was closely related to Aβ deposition in the brain and had high diagnostic accuracy for predicting Aβ-PET positivity.
Collapse
Affiliation(s)
- In Soo Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Dae Hoon Kim
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Ju-Ye Ro
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Byeong-Gyu Park
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Seo Hyun Kim
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Jong-Yeop Im
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea
| | - Jun-Young Lee
- Borame Medical Center 20, Boramae-ro 5-gil, Dongjak-gu, Seoul 07061, South Korea
| | - Soo Jin Yoon
- Daejeon Eulji Medical Center, 95, Dunsanseo-ro, Seo-gu, Daejeon 35233, South Korea
| | - Heeyoung Kang
- Gyeongsang National University Hospital, 501, Jinju-daero, Jinju 52828, South Korea
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam 1081, Netherlands
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, South Korea.
| | - Jin-Hyeob Ryu
- BIORCHESTRA Co. Ltd., 17, Techno 4-ro, Yuseong-gu, Daejeon 34013, South Korea; BIORCHESTRA US., Inc., 1 Kendall square, Building 200, Suite 2-103, Cambridge, MA, 02139, United States.
| |
Collapse
|
6
|
Cahan JG, Vassar R, Bonakdarpour B. Lower Cerebrospinal Fluid Amyloid-β 42 Predicts Sooner Time to Antipsychotic Use in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:641-647. [PMID: 37483323 PMCID: PMC10357113 DOI: 10.3233/adr-220064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/19/2023] [Indexed: 07/25/2023] Open
Abstract
Background Cerebrospinal fluid (CSF) biomarkers of amyloid-β42 (Aβ42) and phosphorylated-tau help clinicians accurately diagnose Alzheimer's disease (AD). Whether biomarkers help prognosticate behavioral and psychological symptoms of dementia (BPSD) is unclear. Objective Determine whether CSF biomarker levels aid prognostication of BPSD in AD. Methods This retrospective cohort study included patients over 65 with a diagnosis of AD based on CSF biomarkers. We measured time from CSF testing to the first antipsychotic use in the following months. We then analyzed time to antipsychotic (AP) use with respect to Aβ42, total tau, phosphorylated tau, and amyloid-to-tau index using a survival analysis approach. Results Of 86 AD patients (average 72±5 years, 46.5% male), 11 patients (12.7%) received APs following CSF testing. Patients with Aβ42 below the median had sooner time-to-AP use. This was significant on a log-rank test (p = 0.04). There was no difference in time-to-AP use if the group was stratified by levels of total tau, phosphorylated tau, or amyloid-to-tau index. Conclusion These results suggest a relationship between lower CSF Aβ42 levels and sooner AP use. This supports prior reports suggesting a correlation between BPSD and Aβ deposition on PET. These results highlight the need for further prospective studies on Aβ levels and BPSD.
Collapse
Affiliation(s)
- Joshua G. Cahan
- Mesulam Center for Cognitive Neurology and Alzheimer Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Robert Vassar
- Mesulam Center for Cognitive Neurology and Alzheimer Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Borna Bonakdarpour
- Mesulam Center for Cognitive Neurology and Alzheimer Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Høilund-Carlsen PF, Alavi A, Revheim ME. Re: Aducanumab-Related ARIA: Paean or Lament? Clin Nucl Med 2023; 48:505-506. [PMID: 36724162 PMCID: PMC10184812 DOI: 10.1097/rlu.0000000000004509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
| | - Abass Alavi
- Department of Radiology Hospital of the University of Pennsylvania Philadelphia, PA
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine Oslo University Hospital; Institute of Clinical Medicine, University of Oslo Oslo, Norway ;
| |
Collapse
|
8
|
Chen J, Bai X, Wu Q, Chen L, Wang H, Zhang J. Exercise Protects Against Cognitive Injury and Inflammation in Alzheimer's Disease Through Elevating miR-148a-3p. Neuroscience 2023; 513:126-133. [PMID: 36681141 DOI: 10.1016/j.neuroscience.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Alzheimer's disease (AD) is a chronic neurological disorder with high morbidity. Exercise is one of the effective ways to ameliorate AD. In this study, we assessed the effects of exercise on cognition and inflammation and studied the role of miR-148a-3p in AD. In 88 patients with AD, the expression of miR-148a-3p was studied using qRT-PCR. ROC curve and Pearson analysis were utilized to evaluate the roles of miR-148a-3p in AD. MWM test was conducted to investigate the effects of miR-148a-3p and exercise on cognition and memory. Moreover, inflammatory indicators were identified using an enzyme-linked immunosorbent assay. Relative luciferase levels reflected whether miR-148a-3p targeted SYNJ1. miR-148a-3p levels declined in patients with AD, indicating its potential as a biomarker. Interestingly, miR-148a-3p levels were elevated in patients with AD after exercise. MiR-148a-3p levels correlated with cognitive scores and proinflammatory levels. The cognitive situation and pro-inflammatory state were partly recovered in the mice after exercise. MiR-148a-3p silencing reversed these abovementioned tendencies. Patients with AD exhibited a low level of miR-148a-3p, which was increased after exercise. Therefore, exercise might improve the cognitive function and memory of mice with AD by upregulating miR-148a-3p.
Collapse
Affiliation(s)
- Jinli Chen
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Xiaojing Bai
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China
| | - Quan Wu
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Lilong Chen
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Hui Wang
- Department of Neurology, Tinglin Hospital of Jinshan District, Shanghai 201505, China
| | - Jianfeng Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, Shanghai 201508, China.
| |
Collapse
|
9
|
Zou Y, Yu S, Ma X, Ma C, Mao C, Mu D, Li L, Gao J, Qiu L. How far is the goal of applying β-amyloid in cerebrospinal fluid for clinical diagnosis of Alzheimer's disease with standardization of measurements? Clin Biochem 2023; 112:33-42. [PMID: 36473516 DOI: 10.1016/j.clinbiochem.2022.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Cerebrospinal fluid (CSF) β-amyloid (Aβ) is important for early diagnosis of Alzheimer's disease (AD). However, the cohort distributions and cut-off values have large variation across different analytical assays, kits, and laboratories. In this review, we summarize the cut-off values and diagnostic performance for CSF Aβ1-42 and Aβ1-42/Aβ1-40, and explore the important effect factors. Based on the Alzheimer's Association external quality control program (AAQC program), the peer group coefficient of variation of manual ELISA assays for CSF Aβ1-42 was unsatisfied (>20%). Fully automated platforms with better performance have recently been developed, but still not widely applied. In 2020, the certified reference material (CRM) for CSF Aβ1-42 was launched; however, the AAQC 2021-round results did not show effective improvements. Thus, further development and popularization of CRM for CSF Aβ1-42 and Aβ1-40 are urgently required. Standardizing the diagnostic procedures of AD and related status and the pre-analytical protocols of CSF samples, improving detection performance of analytical assays, and popularizing the application of fully automated platforms are also important for the establishment of uniform cut-off values. Moreover, each laboratory should verify the applicability of uniform cut-off values, and evaluate whether it is necessary to establish its own population- and assay-specific cut-off values.
Collapse
Affiliation(s)
- Yutong Zou
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Songlin Yu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Xiaoli Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Chaochao Ma
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Chenhui Mao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Danni Mu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Lei Li
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China
| | - Jing Gao
- Department of Neurology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ling Qiu
- Department of Laboratory Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Science, Beijing 100730, China; State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
10
|
Abstract
ABSTRACT Høilund-Carlsen and colleagues raise concern regarding the reliability of amyloid PET to exclude Alzheimer disease. We present additional studies of amyloid PET and discuss the diagnostic challenges in Alzheimer disease. We discuss the limitations of amyloid in diagnosis and evaluation of therapy response in AD.
Collapse
|
11
|
Goldhardt O, Freiberger R, Dreyer T, Wilner L, Yakushev I, Ortner M, Förstl H, Diehl‐Schmid J, Milz E, Priller J, Ramirez A, Magdolen V, Thaler M, Grimmer T. Herpes simplex virus alters Alzheimer's disease biomarkers ‐ A hypothesis paper. Alzheimers Dement 2022; 19:2117-2134. [PMID: 36396609 DOI: 10.1002/alz.12834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Human herpes simplex virus 1 (HSV1) is discussed to induce amyloid-β (Aβ) accumulation and neurofibrillary tangles of hyperphosphorylated tau (pTau) in Alzheimer's disease (AD) in cell culture and animal models. Aβ appears to be virostatic. We investigated the association between intrathecal antibodies against HSV or cytomegalovirus (CMV) and cerebrospinal fluid (CSF) AD biomarkers. METHODS Aβ42 /Aβ40 ratio, pTau, and tTau were measured in CSF of 117 patients with early AD positive for amyloid pathology (A+) and 30 healthy controls (A-). CSF-to-serum anti-HSV1/2-IgG antibody indices (AI-IgGHSV1/2 ) and CMV (AI-IgGCMV ) were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Exclusively in HSV1-seropositive AD, pTau was positively and significantly predicted by AI-IgGHSV1/2 and negatively by the Aβ42 /Aβ40 ratio in both univariate and multivariate regression analyses. Furthermore, a significant and negative interaction between the AI-IgGHSV1/2 and Aβ42 /Aβ40 ratio on pTau was found. DISCUSSION The results support the hypothesis that HSV infection contributes to AD. HIGHLIGHTS HSV antibody index is positively associated with tau pathology in patients with AD. HSV antibody index is negatively associated with cerebral FDG metabolism. Amyloid modulates the association of HSV antibody index with CSF-pTau. HSV in AD offers a pathophysiological model connecting tau and amyloid.
Collapse
Affiliation(s)
- Oliver Goldhardt
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Robert Freiberger
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Tobias Dreyer
- Department of Obstetrics and Gynecology School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Luisa Wilner
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
- Department of Nuclear Medicine, School of Medicine Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Igor Yakushev
- Department of Nuclear Medicine, School of Medicine Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Hans Förstl
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Janine Diehl‐Schmid
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Esther Milz
- Division of Neurogenetics and Molecular Psychiatry Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
| | - Josef Priller
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne Cologne Germany
- Department of Neurodegenerative Diseases and Geriatric Psychiatry Medical Faculty University Hospital Bonn Bonn Germany
- German Center for Neurodegenerative Diseases (DZNE) Bonn Germany
- Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases San Antonio Texas USA
- Cluster of Excellence Cellular Stress Responses in Aging‐associated Diseases (CECAD) University of Cologne Cologne Germany
| | - Viktor Magdolen
- Department of Obstetrics and Gynecology School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Markus Thaler
- Institute for Clinical Chemistry and Pathobiochemistry School of Medicine, Klinikum rechts der Isar, Technical University of Munich Munich Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy School of Medicine Klinikum rechts der Isar Technical University of Munich Munich Germany
| |
Collapse
|
12
|
Sharma L, Sharma A, Kumar D, Asthana MK, Lalhlenmawia H, Kumar A, Bhattacharyya S, Kumar D. Promising protein biomarkers in the early diagnosis of Alzheimer's disease. Metab Brain Dis 2022; 37:1727-1744. [PMID: 35015199 DOI: 10.1007/s11011-021-00847-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/23/2021] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) is an insidious, multifactorial disease that involves the devastation of neurons leading to cognitive impairments. Alzheimer's have compounded pathologies of diverse nature, including proteins as one important factor along with mutated genes and enzymes. Although various review articles have proposed biomarkers, still, the statistical importance of proteins is missing. Proteins associated with AD include amyloid precursor protein, glial fibrillary acidic protein, calmodulin-like skin protein, hepatocyte growth factor, matrix Metalloproteinase-2. These proteins play a crucial role in the AD hypothesis which includes the tau hypothesis, amyloid-beta (Aβ) hypothesis, cholinergic neuron damage, etc. The present review highlights the role of major proteins and their physiological functions in the early diagnosis of AD. Altered protein expression results in cognitive impairment, synaptic dysfunction, neuronal degradation, and memory loss. On the medicinal ground, efforts of making anti-amyloid, anti-tau, anti-inflammatory treatments are on the peak, having these proteins as putative targets. Few proteins, e.g., Amyloid precursor protein results in the formation of non-soluble sticky Aβ40 and Aβ42 monomers that, over time, aggregate into plaques in the cortical and limbic brain areas and neurogranin is believed to regulate calcium-mediated signaling pathways and thus modulating synaptic plasticity are few putative and potential forthcoming targets for developing effective anti-AD therapies. These proteins may help to diagnose the disease early, bode well for the successful discovery and development of therapeutic and preventative regimens for this devasting public health problem.
Collapse
Affiliation(s)
- Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Deepak Kumar
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, India
| | - Manish Kumar Asthana
- Department of Humanities & Social Sciences, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - H Lalhlenmawia
- Department of Pharmacy, Regional Institute of Paramedical and Nursing Sciences, Zemabawk, Aizawl, 796017, India
| | - Ashwani Kumar
- Council of Scientific and Industrial Research, Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, 176061, India
| | - Sanjib Bhattacharyya
- Department of Pharmaceutical Sciences and Chinese Traditional Medicine, Southwest University, Chongqing, 400715, People's Republic of China.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, 173 229, India.
| |
Collapse
|
13
|
Faldu KG, Shah JS. Alzheimer's disease: a scoping review of biomarker research and development for effective disease diagnosis. Expert Rev Mol Diagn 2022; 22:681-703. [PMID: 35855631 DOI: 10.1080/14737159.2022.2104639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) is regarded as the foremost reason for neurodegeneration that prominently affects the geriatric population. Characterized by extracellular accumulation of amyloid-beta (Aβ), intracellular aggregation of hyperphosphorylated tau (p-tau), and neuronal degeneration that causes impairment of memory and cognition. Amyloid/tau/neurodegeneration (ATN) classification is utilized for research purposes and involves amyloid, tau, and neuronal injury staging through MRI, PET scanning, and CSF protein concentration estimations. CSF sampling is invasive, and MRI and PET scanning requires sophisticated radiological facilities which limit its widespread diagnostic use. ATN classification lacks effectiveness in preclinical AD. AREAS COVERED This publication intends to collate and review the existing biomarker profile and the current research and development of a new arsenal of biomarkers for AD pathology from different biological samples, microRNA (miRNA), proteomics, metabolomics, artificial intelligence, and machine learning for AD screening, diagnosis, prognosis, and monitoring of AD treatments. EXPERT OPINION It is an accepted observation that AD-related pathological changes occur over a long period of time before the first symptoms are observed providing ample opportunity for detection of biological alterations in various biological samples that can aid in early diagnosis and modify treatment outcomes.
Collapse
Affiliation(s)
- Khushboo Govind Faldu
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| | - Jigna Samir Shah
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, India
| |
Collapse
|
14
|
Müller EG, Stokke C, Stokmo HL, Edwin TH, Knapskog AB, Revheim ME. Evaluation of semi-quantitative measures of 18F-flutemetamol PET for the clinical diagnosis of Alzheimer's disease. Quant Imaging Med Surg 2022; 12:493-509. [PMID: 34993096 DOI: 10.21037/qims-21-188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/06/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND 18F-flutemetamol positron emission tomography (PET) is used to assess cortical amyloid-β burden in patients with cognitive impairment to support a clinical diagnosis. Visual classification is the most widely used method in clinical practice although semi-quantification is beneficial to obtain an objective and continuous measure of the Aβ burden. The aims were: first to evaluate the correspondence between standardized uptake value ratios (SUVRs) from three different software, Centiloids and visual classification, second to estimate thresholds for supporting visual classification and last to assess differences in semi-quantitative measures between clinical diagnoses. METHODS This observational study included 195 patients with cognitive impairment who underwent 18F-flutemetamol PET. PET images were semi-quantified with SyngoVia, CortexID suite, and PMOD. Receiver operating characteristics curves were used to compare visual classification with composite SUVR normalized to pons (SUVRpons) and cerebellar cortex (SUVRcer), and Centiloids. We explored correlations and differences between semi-quantitative measures as well as differences in SUVR between two clinical diagnosis groups: Alzheimer's disease-group and non-Alzheimer's disease-group. RESULTS PET images from 191 patients were semi-quantified with SyngoVia and CortexID and 86 PET-magnetic resonance imaging pairs with PMOD. All receiver operating characteristics curves showed a high area under the curve (>0.98). Thresholds for a visually positive PET was for SUVRcer: 1.87 (SyngoVia) and 1.64 (CortexID) and for SUVRpons: 0.54 (SyngoVia) and 0.55 (CortexID). The threshold on the Centiloid scale was 39.6 Centiloids. All semi-quantitative measures showed a very high correlation between different software and normalization methods. Composite SUVRcer was significantly different between SyngoVia and PMOD, SyngoVia and CortexID but not between PMOD and CortexID. Composite SUVRpons were significantly different between all three software. There were significant differences in the mean rank of SUVRpons, SUVRcer, and Centiloid between Alzheimer's disease-group and non-Alzheimer's disease-group. CONCLUSIONS SUVR from different software performed equally well in discriminating visually positive and negative 18F-Flutemetamol PET images. Thresholds should be considered software-specific and cautiously be applied across software without preceding validation to categorize scans as positive or negative. SUVR and Centiloid may be used alongside a thorough clinical evaluation to support a clinical diagnosis.
Collapse
Affiliation(s)
- Ebba Gløersen Müller
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Henning Langen Stokmo
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trine Holt Edwin
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, The memory clinic, Oslo University Hospital, Oslo, Norway
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The memory clinic, Oslo University Hospital, Oslo, Norway
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
15
|
Sacchi L, Carandini T, Fumagalli GG, Pietroboni AM, Contarino VE, Siggillino S, Arcaro M, Fenoglio C, Zito F, Marotta G, Castellani M, Triulzi F, Galimberti D, Scarpini E, Arighi A. Unravelling the Association Between Amyloid-PET and Cerebrospinal Fluid Biomarkers in the Alzheimer's Disease Spectrum: Who Really Deserves an A+? J Alzheimers Dis 2021; 85:1009-1020. [PMID: 34897084 DOI: 10.3233/jad-210593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Association between cerebrospinal fluid (CSF)-amyloid-β (Aβ)42 and amyloid-PET measures is inconstant across the Alzheimer's disease (AD) spectrum. However, they are considered interchangeable, along with Aβ 42/40 ratio, for defining 'Alzheimer's Disease pathologic change' (A+). OBJECTIVE Herein, we further characterized the association between amyloid-PET and CSF biomarkers and tested their agreement in a cohort of AD spectrum patients. METHODS We include ed 23 patients who underwent amyloid-PET, MRI, and CSF analysis showing reduced levels of Aβ 42 within a 365-days interval. Thresholds used for dichotomization were: Aβ 42 < 640 pg/mL (Aβ 42+); pTau > 61 pg/mL (pTau+); and Aβ 42/40 < 0.069 (ADratio+). Amyloid-PET scans were visually assessed and processed by four pipelines (SPMCL, SPMAAL, FSGM, FSWC). RESULTS Different pipelines gave highly inter-correlated standardized uptake value ratios (SUVRs) (rho = 0.93-0.99). The most significant findings were: pTau positive correlation with SPMCL SUVR (rho = 0.56, p = 0.0063) and Aβ 42/40 negative correlation with SPMCL and SPMAAL SUVRs (rho = -0.56, p = 0.0058; rho = -0.52, p = 0.0117 respectively). No correlations between CSF-Aβ 42 and global SUVRs were observed. In subregion analysis, both pTau and Aβ 42/40 values significantly correlated with cingulate SUVRs from any pipeline (R2 = 0.55-0.59, p < 0.0083), with the strongest associations observed for the posterior/isthmus cingulate areas. However, only associations observed for Aβ 42/40 ratio were still significant in linear regression models. Moreover, combining pTau with Aβ 42 or using Aβ 42/40, instead of Aβ 42 alone, increased concordance with amyloid-PET status from 74% to 91% based on visual reads and from 78% to 96% based on Centiloids. CONCLUSION We confirmed that, in the AD spectrum, amyloid-PET measures show a stronger association and a better agreement with CSF-Aβ 42/40 and secondarily pTau rather than Aβ 42 levels.
Collapse
Affiliation(s)
- Luca Sacchi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Anna Margherita Pietroboni
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Silvia Siggillino
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marina Arcaro
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Fenoglio
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Felicia Zito
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giorgio Marotta
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Castellani
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniela Galimberti
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elio Scarpini
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Arighi
- University of Milan, Milan, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
16
|
Müller EG, Edwin TH, Strand BH, Stokke C, Revheim ME, Knapskog AB. Is Amyloid Burden Measured by 18F-Flutemetamol PET Associated with Progression in Clinical Alzheimer's Disease? J Alzheimers Dis 2021; 85:197-205. [PMID: 34776444 PMCID: PMC8842772 DOI: 10.3233/jad-215046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Patients with Alzheimer’s disease (AD) show heterogeneity in clinical progression rate, and we have limited tools to predict prognosis. Amyloid burden from 18F-Flutemetamol positron emission tomography (PET), as measured by standardized uptake value ratios (SUVR), might provide prognostic information. Objective: We investigate whether 18F-Flutemetamol PET composite or regional SUVRs are associated with trajectories of clinical progression. Methods: This observational longitudinal study included 94 patients with clinical AD. PET images were semi-quantified with normalization to pons. Group-based trajectory modeling was applied to identify trajectory groups according to change in the Clinical Dementia Rating Scale Sum of Boxes (CDR-SB) over time. Multinomial logistic regression models assessed the association of SUVRs with trajectory group membership. Results: Three trajectory groups were identified. In the regression models, neither composite nor regional SUVRs were associated with trajectory group membership. Conclusion: There were no associations between CDR progression and 18F-Flutemetamol PET-derived composite SUVRs or regional SUVRs in clinical AD.
Collapse
Affiliation(s)
- Ebba Gløersen Müller
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Trine Holt Edwin
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway
| | - Bjørn Heine Strand
- Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway.,Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | - Caroline Stokke
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Mona Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | | |
Collapse
|
17
|
Smailovic U, Johansson C, Koenig T, Kåreholt I, Graff C, Jelic V. Decreased Global EEG Synchronization in Amyloid Positive Mild Cognitive Impairment and Alzheimer's Disease Patients-Relationship to APOE ε4. Brain Sci 2021; 11:brainsci11101359. [PMID: 34679423 PMCID: PMC8533770 DOI: 10.3390/brainsci11101359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 11/16/2022] Open
Abstract
The apolipoprotein E (APOE) ε4 allele is a risk factor for Alzheimer's disease (AD) that has been linked to changes in brain structure and function as well as to different biological subtypes of the disease. The present study aimed to investigate the association of APOE ε4 genotypes with brain functional impairment, as assessed by quantitative EEG (qEEG) in patients on the AD continuum. The study population included 101 amyloid positive patients diagnosed with mild cognitive impairment (MCI) (n = 50) and AD (n = 51) that underwent resting-state EEG recording and CSF Aβ42 analysis. In total, 31 patients were APOE ε4 non-carriers, 42 were carriers of one, and 28 were carriers of two APOE ε4 alleles. Quantitative EEG analysis included computation of the global field power (GFP) and global field synchronization (GFS) in conventional frequency bands. Amyloid positive patients who were carriers of APOE ε4 allele(s) had significantly higher GFP beta and significantly lower GFS in theta and beta bands compared to APOE ε4 non-carriers. Increased global EEG power in beta band in APOE ε4 carriers may represent a brain functional compensatory mechanism that offsets global EEG slowing in AD patients. Our findings suggest that decreased EEG measures of global synchronization in theta and beta bands reflect brain functional deficits related to the APOE ε4 genotype in patients that are on a biomarker-verified AD continuum.
Collapse
Affiliation(s)
- Una Smailovic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 14152 Huddinge, Sweden;
- Department of Clinical Neurophysiology, Karolinska University Hospital, 14186 Huddinge, Sweden
- Correspondence:
| | - Charlotte Johansson
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 14152 Huddinge, Sweden; (C.J.); (C.G.)
- Clinic for Cognitive Disorders, Karolinska University Hospital, 14186 Huddinge, Sweden
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry, University of Bern, 3012 Bern, Switzerland;
| | - Ingemar Kåreholt
- Aging Research Centre, Karolinska Institutet and Stockholm University, 17165 Solna, Sweden;
- School of Health and Welfare, Aging Research Network—Jönköping (ARN-J), Institute for Gerontology, Jönköping University, 55111 Jönköping, Sweden
| | - Caroline Graff
- Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 14152 Huddinge, Sweden; (C.J.); (C.G.)
- Unit for Hereditary Dementia, Karolinska University Hospital-Solna, 17176 Solna, Sweden
| | - Vesna Jelic
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 14152 Huddinge, Sweden;
- Clinic for Cognitive Disorders, Karolinska University Hospital, 14186 Huddinge, Sweden
| |
Collapse
|
18
|
Aksnes M, Müller EG, Tiiman A, Edwin TH, Terenius L, Revheim ME, Vukojević V, Bogdanović N, Knapskog AB. Amyloidogenic Nanoplaques in Cerebrospinal Fluid: Relationship to Amyloid Brain Uptake and Clinical Alzheimer's Disease in a Memory Clinic Cohort. J Alzheimers Dis 2021; 77:831-842. [PMID: 32741818 PMCID: PMC7592690 DOI: 10.3233/jad-200237] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aggregation of amyloid-β (Aβ) is an early pathological event in Alzheimer's disease (AD). Consequently, measures of pathogenic aggregated Aβ are attractive biomarkers for AD. Here, we use a recently developed Thioflavin-T-Fluorescence Correlation Spectroscopy (ThT-FCS) assay to quantify structured ThT-responsive protein aggregates, so-called nanoplaques, in the cerebrospinal fluid (CSF). OBJECTIVE The overall aim of this work was to assess whether ThT-FCS determined CSF nanoplaque levels could predict amyloid brain uptake as determined by 18F-Flutemetamol PET analysis. Further, we assess whether nanoplaque levels could predict clinical AD. METHODS Nanoplaque levels in the CSF from 54 memory clinic patients were compared between sub-groups classified by 18F-Flutemetamol PET as amyloid-positive or amyloid-negative, and by clinical assessment as AD or non-AD. RESULTS Nanoplaque levels did not differ between amyloid groups and could not predict brain amyloid uptake. However, nanoplaque levels were significantly increased in patients with clinical AD, and were significant predictors for AD when adjusting for age, sex, cognitive function, and apolipoprotein E (APOE) genotype. CONCLUSION The concentration of nanoplaques in the CSF differentiates patients with clinical AD from non-AD patients.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ebba Glersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ann Tiiman
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8: 01, Karolinska Institutet, Stockholm, Sweden
| | - Trine Holt Edwin
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Vestfold, Norway
| | - Lars Terenius
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8: 01, Karolinska Institutet, Stockholm, Sweden
| | - Mona-Elisabeth Revheim
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Vladana Vukojević
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8: 01, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanović
- Department of Geriatric Medicine, University of Oslo, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurobiology, Care Science and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
19
|
Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat Rev Neurol 2021; 17:580-589. [PMID: 34239130 DOI: 10.1038/s41582-021-00520-w] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 02/06/2023]
Abstract
Breakthroughs in the development of highly accurate fluid and neuroimaging biomarkers have catalysed the conceptual transformation of Alzheimer disease (AD) from the traditional clinical symptom-based definition to a clinical-biological construct along a temporal continuum. The AT(N) system is a symptom-agnostic classification scheme that categorizes individuals using biomarkers that chart core AD pathophysiological features, namely the amyloid-β (Aβ) pathway (A), tau-mediated pathophysiology (T) and neurodegeneration (N). This biomarker matrix is now expanding towards an ATX(N) system, where X represents novel candidate biomarkers for additional pathophysiological mechanisms such as neuroimmune dysregulation, synaptic dysfunction and blood-brain barrier alterations. In this Perspective, we describe the conceptual framework and clinical importance of the existing AT(N) system and the evolving ATX(N) system. We provide a state-of-the-art summary of the potential contexts of use of these systems in AD clinical trials and future clinical practice. We also discuss current challenges related to the validation, standardization and qualification process and provide an outlook on the real-world application of the AT(N) system.
Collapse
|
20
|
Moore EE, Liu D, Li J, Schimmel SJ, Cambronero FE, Terry JG, Nair S, Pechman KR, Moore ME, Bell SP, Beckman JA, Gifford KA, Hohman TJ, Blennow K, Zetterberg H, Carr JJ, Jefferson AL. Association of Aortic Stiffness With Biomarkers of Neuroinflammation, Synaptic Dysfunction, and Neurodegeneration. Neurology 2021; 97:e329-e340. [PMID: 34031194 PMCID: PMC8362359 DOI: 10.1212/wnl.0000000000012257] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/21/2021] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVES To test the hypothesis that increased aortic stiffening is associated with greater CSF evidence of core Alzheimer disease pathology (β-amyloid [Aβ], phosphorylated tau [p-tau]), neurodegeneration (total tau [t-tau]), synaptic dysfunction (neurogranin), neuroaxonal injury (neurofilament light [NFL]), and neuroinflammation (YKL-40, soluble triggering receptor expressed on myeloid cells 2 [sTREM2]), we analyzed pulse wave velocity (PWV) data and CSF data among older adults. METHODS Participants free of stroke and dementia from the Vanderbilt Memory and Aging Project, an observational community-based study, underwent cardiac magnetic resonance to assess aortic PWV (meters per second) and lumbar puncture to obtain CSF. Linear regressions related aortic PWV to CSF Aβ, p-tau, t-tau, neurogranin, NFL, YKL-40, and sTREM2 concentrations after adjustment for age, race/ethnicity, education, apolipoprotein (APOE) ε4 status, Framingham Stroke Risk Profile, and cognitive diagnosis. Models were repeated testing PWV interactions with age, diagnosis, APOE ε4, and hypertension on each biomarker. RESULTS One hundred forty-six participants were examined (age 72 ± 6 years). Aortic PWV interacted with age on p-tau (β = 0.31, p = 0.04), t-tau, (β = 2.67, p = 0.05), neurogranin (β = 0.94, p = 0.04), and sTREM2 (β = 20.4, p = 0.05). Among participants >73 years of age, higher aortic PWV related to higher p-tau (β = 2.4, p = 0.03), t-tau (β = 19.3, p = 0.05), neurogranin (β = 8.4, p = 0.01), and YKL-40 concentrations (β = 7,880, p = 0.005). Aortic PWV had modest interactions with diagnosis on neurogranin (β = -10.76, p = 0.03) and hypertension status on YKL-40 (β = 18,020, p < 0.001). CONCLUSIONS Among our oldest participants, ≥74 years of age, greater aortic stiffening is associated with in vivo biomarker evidence of neuroinflammation, tau phosphorylation, synaptic dysfunction, and neurodegeneration, but not amyloidosis. Central arterial stiffening may lead to cumulative cerebral microcirculatory damage and reduced blood flow delivery to tissue, resulting in neuroinflammation and neurodegeneration in more advanced age.
Collapse
Affiliation(s)
- Elizabeth E Moore
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Dandan Liu
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Judy Li
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Samantha J Schimmel
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Francis E Cambronero
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - James G Terry
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Sangeeta Nair
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Kimberly R Pechman
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Marissa E Moore
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Susan P Bell
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Joshua A Beckman
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Katherine A Gifford
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Timothy J Hohman
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Kaj Blennow
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Henrik Zetterberg
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - John Jeffrey Carr
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK
| | - Angela L Jefferson
- From the Vanderbilt Memory & Alzheimer's Center (E.E.M., D.L., J.L., S.J.S., F.E.C., K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Department of Biostatistics (D.L.), Radiology & Radiological Sciences (J.G.T., S.N., J.J.C.), Department of Neurology (K.R.P., M.E.M., K.A.G., T.J.H., A.L.J.), Division of Cardiovascular Medicine (S.P.B., J.A.B., A.L.J.), Department of Medicine, and Vanderbilt Genetics Institute (T.J.H.), Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Neurochemistry (K.B., H.Z.), Institute of Neuroscience and Physiology, The Sahlgrenska Academy at University of Gothenburg; Clinical Neurochemistry Laboratory (K.B., H.Z.), Sahlgrenska University Hospital, Molndal, Sweden; Department of Neurodegenerative Disease (H.Z.), University College London Institute of Neurology, Queen Square; and United Kingdom Dementia Research Institute at University College London (H.Z.), UK.
| |
Collapse
|
21
|
Hughes TM, Hajjar I. Is Late-Onset Alzheimer Disease Spelled "ATV(N)"? Neurology 2021; 97:155-156. [PMID: 34031193 DOI: 10.1212/wnl.0000000000012259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Timothy M Hughes
- From the Department of Internal Medicine (T.M.H.), Section on Gerontology and Geriatric Medicine, and Department of Epidemiology and Prevention (T.M.H.), Wake Forest School of Medicine, Winston-Salem, NC; and Department of Neurology (I.H.) and Division of General Medicine and Geriatrics (I.H.), Department of Medicine, Emory University School of Medicine, Atlanta, GA.
| | - Ihab Hajjar
- From the Department of Internal Medicine (T.M.H.), Section on Gerontology and Geriatric Medicine, and Department of Epidemiology and Prevention (T.M.H.), Wake Forest School of Medicine, Winston-Salem, NC; and Department of Neurology (I.H.) and Division of General Medicine and Geriatrics (I.H.), Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
22
|
Kobro-Flatmoen A, Lagartos-Donate MJ, Aman Y, Edison P, Witter MP, Fang EF. Re-emphasizing early Alzheimer's disease pathology starting in select entorhinal neurons, with a special focus on mitophagy. Ageing Res Rev 2021; 67:101307. [PMID: 33621703 DOI: 10.1016/j.arr.2021.101307] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/04/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022]
Abstract
The entorhinal-hippocampal system contains distinct networks subserving declarative memory. This system is selectively vulnerable to changes of ageing and pathological processes. The entorhinal cortex (EC) is a pivotal component of this memory system since it serves as the interface between the neocortex and the hippocampus. EC is heavily affected by the proteinopathies of Alzheimer's disease (AD). These appear in a stereotypical spatiotemporal manner and include increased levels of intracellular amyloid-beta Aβ (iAβ), parenchymal deposition of Aβ plaques, and neurofibrillary tangles (NFTs) containing abnormally processed Tau. Increased levels of iAβ and the formation of NFTs are seen very early on in a population of neurons belonging to EC layer II (EC LII), and recent evidence leads us to believe that this population is made up of highly energy-demanding reelin-positive (RE+) projection neurons. Mitochondria are fundamental to the energy supply, metabolism, and plasticity of neurons. Evidence from AD postmortem brain tissues supports the notion that mitochondrial dysfunction is one of the initial pathological events in AD, and this is likely to take place in the vulnerable RE + EC LII neurons. Here we review and discuss these notions, anchored to the anatomy of AD, and formulate a hypothesis attempting to explain the vulnerability of RE + EC LII neurons to the formation of NFTs. We attempt to link impaired mitochondrial clearance to iAβ and signaling involving both apolipoprotein 4 and reelin, and argue for their relevance to the formation of NFTs specifically in RE + EC LII neurons during the prodromal stages of AD. We believe future studies on these interactions holds promise to advance our understanding of AD etiology and provide new ideas for drug development.
Collapse
|
23
|
Garbarino S, Lorenzi M. Investigating hypotheses of neurodegeneration by learning dynamical systems of protein propagation in the brain. Neuroimage 2021; 235:117980. [PMID: 33823273 DOI: 10.1016/j.neuroimage.2021.117980] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/20/2021] [Accepted: 03/12/2021] [Indexed: 11/28/2022] Open
Abstract
We introduce a theoretical framework for estimating, comparing and interpreting mechanistic hypotheses on long term protein propagation across brain networks in neurodegenerative disorders (ND). The model is expressed within a Bayesian non-parametric regression setting, where mechanisms of protein dynamics are inferred by means of gradient matching on dynamical systems (DS). The Bayesian formalism, combined with stochastic variational inference, naturally allows for model comparison via assessment of model evidence, while providing uncertainty quantification of causal relationship underlying protein progressions. When applied to in-vivo AV45-PET brain imaging data measuring topographic amyloid deposition in Alzheimer's disease (AD), our model identified the mechanisms of accumulation, clearance and propagation as the best suited DS for bio-mechanical description of amyloid dynamics in AD, enabling realistic and accurate personalized simulation of amyloidosis.
Collapse
Affiliation(s)
- Sara Garbarino
- Universitè Côte d'Azur, Inria, Epione Research Project, France.
| | - Marco Lorenzi
- Universitè Côte d'Azur, Inria, Epione Research Project, France.
| | -
- Universitè Côte d'Azur, Inria, Epione Research Project, France
| |
Collapse
|
24
|
2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2121-2139. [PMID: 33674895 PMCID: PMC8175301 DOI: 10.1007/s00259-021-05258-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Purpose In the last decade, the research community has focused on defining reliable biomarkers for the early detection of Alzheimer’s disease (AD) pathology. In 2017, the Geneva AD Biomarker Roadmap Initiative adapted a framework for the systematic validation of oncological biomarkers to cerebrospinal fluid (CSF) AD biomarkers—encompassing the 42 amino-acid isoform of amyloid-β (Aβ42), phosphorylated-tau (P-tau), and Total-tau (T-tau)—with the aim to accelerate their development and clinical implementation. The aim of this work is to update the current validation status of CSF AD biomarkers based on the Biomarker Roadmap methodology. Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of CSF AD biomarkers was assessed based on the Biomarker Roadmap methodology before the meeting and presented and discussed during the workshop. Results By comparison to the previous 2017 Geneva Roadmap meeting, the primary advances in CSF AD biomarkers have been in the area of a unified protocol for CSF sampling, handling and storage, the introduction of certified reference methods and materials for Aβ42, and the introduction of fully automated assays. Additional advances have occurred in the form of defining thresholds for biomarker positivity and assessing the impact of covariates on their discriminatory ability. Conclusions Though much has been achieved for phases one through three, much work remains in phases four (real world performance) and five (assessment of impact/cost). To a large degree, this will depend on the availability of disease-modifying treatments for AD, given these will make accurate and generally available diagnostic tools key to initiate therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05258-7.
Collapse
|
25
|
Menne F, Schipke CG. Diagnose it yourself: will there be a home test kit for Alzheimer's disease? Neurodegener Dis Manag 2021; 11:167-176. [PMID: 33596691 DOI: 10.2217/nmt-2020-0065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease is the most common neurodegenerative process leading to dementia. To date, there is no curative approach; thus, establishing a diagnosis as early as possible is necessary to implement preventive measures. However, today's gold standard for diagnosing Alzheimer's disease is high in both cost and effort and is not readily available. This defines the need for low-effort and economic alternatives that give patients low-threshold access to testing systems at their general practitioners or even at home for an independent retrieval of a biologic specimen. This perspective gives an overview of established and novel approaches in the field and speculates on the future of test strategies eventually technically implementable at home.
Collapse
Affiliation(s)
- Felix Menne
- Predemtec AG, Rudower Chaussee 29, Berlin 12489, Germany
| | | |
Collapse
|
26
|
Panek WK, Murdoch DM, Gruen ME, Mowat FM, Marek RD, Olby NJ. Plasma Amyloid Beta Concentrations in Aged and Cognitively Impaired Pet Dogs. Mol Neurobiol 2021; 58:483-489. [PMID: 32970242 PMCID: PMC7855498 DOI: 10.1007/s12035-020-02140-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 11/28/2022]
Abstract
Longevity-associated neurological disorders have been observed across human and canine aging populations. Alzheimer's disease (AD) and canine cognitive dysfunction syndrome (CDS) represent comparable diseases affecting both species as they age. Translational diagnostic and therapeutic research is needed for these incurable diseases. The amyloid β (Aβ) peptide family are AD-associated peptides with identical amino acid sequences between dogs and humans. Plasma Aβ42 concentration increases with age and decreases with AD in humans, and cerebrospinal fluid (CSF) concentration decreases in AD and correlates inversely with the amyloid load within the brain. Similarly, CSF Aβ42 concentrations decrease in dogs with CDS but there is limited and conflicting information on plasma Aβ42 concentrations in aging dogs and dogs with CDS. We measured plasma concentrations of Aβ42 and Aβ40 with an ultrasensitive single-molecule array assay (SIMOA) in a population of healthy aging dogs of different life stages (n = 36) and dogs affected with CDS (n = 11). In addition, the ratio of Aβ42/β40 was calculated. The mean plasma concentrations of Aβ42 and Aβ40 increased significantly with age (r2 = 0.27, p = 0.001; and r2 = 0.42, p < 0.001, respectively) and with life stage: puppy/junior group (0.43-2 years): 1.23 ± 0.95 and 38.26 ± 49.43 pg/mL; adult/mature group (2.1-9 years): 10.99 ± 5.45 and 131.05 ± 80.17 pg/mL; geriatric/senior group (9.3-14.5 years): 18.65 ± 16.65 and 192.88 ± 146.38 pg/mL, respectively. Concentrations of Aβ42 and Aβ40 in dogs with CDS (11.0-15.6 years) were significantly lower than age-matched healthy dogs at 11.61 ± 6.39 and 150.23 ± 98.2 pg/mL (p = 0.0048 and p = 0.001), respectively. Our findings suggest the dynamics of canine plasma amyloid concentrations are analogous to that found in aging humans with and without AD.
Collapse
Affiliation(s)
- Wojciech K Panek
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - David M Murdoch
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Margaret E Gruen
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
| | - Freya M Mowat
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert D Marek
- Department of Medicine, Duke University Medical Center, Durham, NC, 27710, USA
| | - Natasha J Olby
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 1060 William Moore Dr, Raleigh, NC, 27607, USA.
| |
Collapse
|
27
|
Nangare S, Patil P. Nanoarchitectured Bioconjugates and Bioreceptors Mediated Surface Plasmon Resonance Biosensor for In Vitro Diagnosis of Alzheimer’s Disease: Development and Future Prospects. Crit Rev Anal Chem 2021; 52:1139-1169. [DOI: 10.1080/10408347.2020.1864716] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Sopan Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Pravin Patil
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| |
Collapse
|
28
|
Aksnes M, Tiiman A, Edwin TH, Terenius L, Bogdanović N, Vukojević V, Knapskog AB. Comparison of Cerebrospinal Fluid Amyloidogenic Nanoplaques With Core Biomarkers of Alzheimer's Disease. Front Aging Neurosci 2021; 12:608628. [PMID: 33488383 PMCID: PMC7820807 DOI: 10.3389/fnagi.2020.608628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/09/2020] [Indexed: 12/15/2022] Open
Abstract
Accurate biomarkers of Alzheimer’s disease (AD) are essential for early diagnosis and intervention. Available biomarkers are not sufficient to permit the monitoring of AD progression over time, and additional biomarkers are required. Measures of aggregated amyloid-β (Aβ) could be useful biomarkers for AD. Here, we investigate whether levels of Thioflavin-T (ThT) positive amyloid aggregates, i.e., nanoplaques, in cerebrospinal fluid (CSF) could serve as useful biomarkers for AD. One-hundred and eighteen memory clinic patients were AT(N) classified, and CSF nanoplaque concentrations were compared between patients on the “Alzheimer’s continuum” (A+ patients) and patients with “Normal AD biomarkers” or “Non-AD pathologic change” (A− patients). CSF nanoplaque concentrations and sizes were quantified using the novel ThT-Fluorescence Correlation Spectroscopy (ThT-FCS) assay, and core biomarkers (Aβ42, total tau and phosphorylated tau) were determined by enzyme-linked immunosorbent assays. We investigated the association between nanoplaque concentrations and core biomarkers, and the diagnostic value of nanoplaque levels. Nanoplaque levels were increased in A+ patients compared to A− patients. Nanoplaque concentrations were negatively associated with Aβ42, but not related to total tau or phosphorylated tau measures. Quantification of nanoplaques did not improve the classification of patients on the Alzheimer’s continuum compared to the core biomarkers alone. Dynamic changes in nanoplaques concentration and size throughout AD stages should be explored in longitudinal studies.
Collapse
Affiliation(s)
- Mari Aksnes
- Department of Geriatric Medicine, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ann Tiiman
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Trine Holt Edwin
- Institute of Health and Society, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway.,Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Oslo, Norway
| | - Lars Terenius
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Nenad Bogdanović
- Department of Neurobiology, Care Science and Society (NVS), Division of Clinical Geriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Vladana Vukojević
- Department of Clinical Neurosciences (CNS), Center for Molecular Medicine CMM L8:01, Karolinska Institutet, Stockholm, Sweden
| | - Anne-Brita Knapskog
- Department of Geriatric Medicine, The Memory Clinic, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
29
|
Sala A, Nordberg A, Rodriguez-Vieitez E. Longitudinal pathways of cerebrospinal fluid and positron emission tomography biomarkers of amyloid-β positivity. Mol Psychiatry 2021; 26:5864-5874. [PMID: 33303945 PMCID: PMC8758501 DOI: 10.1038/s41380-020-00950-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 01/20/2023]
Abstract
Mismatch between CSF and PET amyloid-β biomarkers occurs in up to ≈20% of preclinical/prodromal Alzheimer's disease individuals. Factors underlying mismatching results remain unclear. In this study we hypothesized that CSF/PET discordance provides unique biological/clinical information. To test this hypothesis, we investigated non-demented and demented participants with CSF amyloid-β42 and [18F]Florbetapir PET assessments at baseline (n = 867) and at 2-year follow-up (n = 289). Longitudinal trajectories of amyloid-β positivity were tracked simultaneously for CSF and PET biomarkers. In the longitudinal cohort (n = 289), we found that participants with normal CSF/PET amyloid-β biomarkers progressed more frequently toward CSF/PET discordance than to full CSF/PET positivity (χ2(1) = 5.40; p < 0.05). Progression to CSF+/PET+ status was ten times more frequent in cases with discordant biomarkers, as compared to csf-/pet- cases (χ2(1) = 18.86; p < 0.001). Compared to the CSF+/pet- group, the csf-/PET+ group had lower APOE-ε4ε4 prevalence (χ2(6) = 197; p < 0.001; n = 867) and slower rate of brain amyloid-β accumulation (F(3,600) = 12.76; p < 0.001; n = 608). These results demonstrate that biomarker discordance is a typical stage in the natural history of amyloid-β accumulation, with CSF or PET becoming abnormal first and not concurrently. Therefore, biomarker discordance allows for identification of individuals with elevated risk of progression toward fully abnormal amyloid-β biomarkers, with subsequent risk of neurodegeneration and cognitive decline. Our results also suggest that there are two alternative pathways ("CSF-first" vs. "PET-first") toward established amyloid-β pathology, characterized by different genetic profiles and rates of amyloid-β accumulation. In conclusion, CSF and PET amyloid-β biomarkers provide distinct information, with potential implications for their use as biomarkers in clinical trials.
Collapse
Affiliation(s)
- Arianna Sala
- grid.4714.60000 0004 1937 0626Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,grid.15496.3f0000 0001 0439 0892Vita-Salute San Raffaele University, Milan, Italy ,grid.18887.3e0000000417581884In Vivo Human Molecular and Structural Neuroimaging Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Agneta Nordberg
- grid.4714.60000 0004 1937 0626Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden ,grid.24381.3c0000 0000 9241 5705Theme Aging, The Aging Brain, Karolinska University Hospital, Stockholm, Sweden
| | - Elena Rodriguez-Vieitez
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
30
|
Lee J, Jang H, Kang SH, Kim J, Kim JS, Kim JP, Kim HJ, Seo SW, Na DL. Cerebrospinal Fluid Biomarkers for the Diagnosis and Classification of Alzheimer's Disease Spectrum. J Korean Med Sci 2020; 35:e361. [PMID: 33200589 PMCID: PMC7669457 DOI: 10.3346/jkms.2020.35.e361] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/27/2020] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Cerebrospinal fluid (CSF) biomarkers are increasingly used in clinical practice for the diagnosis of Alzheimer's disease (AD). We aimed to 1) determine cutoff values of CSF biomarkers for AD, 2) investigate their clinical utility by estimating a concordance with amyloid positron emission tomography (PET), and 3) apply ATN (amyloid/tau/neurodegeneration) classification based on CSF results. METHODS We performed CSF analysis in 51 normal controls (NC), 23 mild cognitive impairment (MCI) and 65 AD dementia (ADD) patients at the Samsung Medical Center in Korea. We attempted to develop cutoff of CSF biomarkers for differentiating ADD from NC using receiver operating characteristic analysis. We also investigated a concordance between CSF and amyloid PET results and applied ATN classification scheme based on CSF biomarker abnormalities to characterize our participants. RESULTS CSF Aβ42, total tau (t-tau) and phosphorylated tau (p-tau) significantly differed across the three groups. The area under curve for the differentiation between NC and ADD was highest in t-tau/Aβ42 (0.994) followed by p-tau/Aβ42 (0.963), Aβ42 (0.960), t-tau (0.918), and p-tau (0.684). The concordance rate between CSF Aβ42 and amyloid PET results was 92%. Finally, ATN classification based on CSF biomarker abnormalities led to a majority of NC categorized into A-T-N-(73%), MCI as A+T-N-(30%)/A+T+N+(26%), and ADD as A+T+N+(57%). CONCLUSION CSF biomarkers had high sensitivity and specificity in differentiating ADD from NC and were as accurate as amyloid PET. The ATN subtypes based on CSF biomarkers may further serve to predict the prognosis.
Collapse
Affiliation(s)
- Jongmin Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer's Research Center, Samsung Medical Center, Seoul, Korea
| | - Sung Hoon Kang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jaeho Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Ji Sun Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Jun Pyo Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer's Research Center, Samsung Medical Center, Seoul, Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer's Research Center, Samsung Medical Center, Seoul, Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- Neuroscience Center, Samsung Medical Center, Seoul, Korea
- Samsung Alzheimer's Research Center, Samsung Medical Center, Seoul, Korea
- Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
31
|
Carrera-Muñoz I, Triguero-Cueva L, Romero-Fábrega JC, Triviño-Ibáñez EM, Vilchez-Carrillo R, Carnero-Pardo C, Gómez-Río M. PET-Amyloid After Inconclusive Cerebrospinal Fluid Biomarkers in Clinical Practice. Is it Necessary to Duplicate Procedures? Curr Alzheimer Res 2020; 17:698-708. [PMID: 33167840 DOI: 10.2174/1567205017666201109092637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 09/01/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
INTRODUCTION In the absence of a gold standard for in vivo Alzheimer disease (AD) diagnosis, AD biomarkers such as cerebrospinal fluid biomarkers (CSF-B) and PET-Amyloid are considered diagnostically useful in clinical practice guidelines and have consensual appropriate use criteria (AUC). However, little evidence has been published on their utilization in the clinical setting or on approaches to mismatched results. The objective of this work was to evaluate the use of AD biomarkers in clinical practice, focusing on the implementation of PET-Amyloid in cases of inconclusive CSF-B. METHODS This naturalistic, ambispective case series included patients fulfilling AUC for CSF-B and PET-Amyloid whose CSF-B results were non-diagnostic (target population), analyzing the diagnostic certainty, the treatment approach, and the relationship between CSF-B and PET-Amyloid results. RESULTS Out of 2373 eligible patients, AD biomarkers were studied in 417 (17.6%), most frequently due to cognitive impairment in under 65-year-olds, using CSF-B in 311 patients and PET-Amyloid in 150. CSF-B results were non-diagnostic for 44 patients (52.3% male; aged 60.9±6.6 years), who then underwent PET-Amyloid study, which was positive in 31. A 'k' coefficient of 0.108 was obtained between CSF-B and PET-amyloid (54.5% concordance). In multivariate regression analysis, Aβ42 was the only significant predictor (p= 0.018) of a positive PET-Amyloid result. In the target population, PETAmyloid increased diagnostic confidence by 53.7% (p <0.001) and modified the therapeutic approach in 36.4% of cases. CONCLUSION These findings support the duplication of AD biomarkers and demonstrate that the implementation of PET-Amyloid provides an early and certain diagnosis to guide appropriate treatment.
Collapse
Affiliation(s)
- Ismael Carrera-Muñoz
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Lucía Triguero-Cueva
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Juan C Romero-Fábrega
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Eva M Triviño-Ibáñez
- Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Granada, Spain
| | - Rosa Vilchez-Carrillo
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain
| | - Cristóbal Carnero-Pardo
- Fidyan Neurocenter, Granada, Spain,IBS Granada Bio-Health Research Institute, Granada, Spain
| | - Manuel Gómez-Río
- Department of Neurology, Virgen de las Nieves University Hospital, Cognitive and Behavioral Neurology Unit,
Granada, Spain,Department of Nuclear Medicine, Virgen de las Nieves University Hospital, Granada, Spain
| |
Collapse
|
32
|
Li Z, Shue F, Zhao N, Shinohara M, Bu G. APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Mol Neurodegener 2020; 15:63. [PMID: 33148290 PMCID: PMC7640652 DOI: 10.1186/s13024-020-00413-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Investigations of apolipoprotein E (APOE) gene, the major genetic risk modifier for Alzheimer's disease (AD), have yielded significant insights into the pathogenic mechanism. Among the three common coding variants, APOE*ε4 increases, whereas APOE*ε2 decreases the risk of late-onset AD compared with APOE*ε3. Despite increased understanding of the detrimental effect of APOE*ε4, it remains unclear how APOE*ε2 confers protection against AD. Accumulating evidence suggests that APOE*ε2 protects against AD through both amyloid-β (Aβ)-dependent and independent mechanisms. In addition, APOE*ε2 has been identified as a longevity gene, suggesting a systemic effect of APOE*ε2 on the aging process. However, APOE*ε2 is not entirely benign; APOE*ε2 carriers exhibit increased risk of certain cerebrovascular diseases and neurological disorders. Here, we review evidence from both human and animal studies demonstrating the protective effect of APOE*ε2 against AD and propose a working model depicting potential underlying mechanisms. Finally, we discuss potential therapeutic strategies designed to leverage the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
33
|
Rochart R, Liu Q, Fonteh AN, Harrington MG, Arakaki X. Compromised Behavior and Gamma Power During Working Memory in Cognitively Healthy Individuals With Abnormal CSF Amyloid/Tau. Front Aging Neurosci 2020; 12:574214. [PMID: 33192465 PMCID: PMC7591805 DOI: 10.3389/fnagi.2020.574214] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/22/2020] [Indexed: 11/24/2022] Open
Abstract
Research shows that gamma activity changes in Alzheimer’s disease (AD), revealing synaptic pathology and potential therapeutic applications. We aim to explore whether cognitive challenge combined with quantitative EEG (qEEG) can unmask abnormal gamma frequency power in healthy individuals at high risk of developing AD. We analyzed low (30–50 Hz) and high gamma (50–80 Hz) power over six brain regions at EEG sensor level (frontal/central/parietal/left temporal/right temporal/occipital) in a dataset collected from an aging cohort during N-back working memory (WM) testing at two different load conditions (N = 0 or 2). Cognitively healthy (CH) study participants (≥60 years old) of both sexes were divided into two subgroups: normal amyloid/tau ratios (CH-NAT, n = 10) or pathological amyloid/tau (CH-PAT, n = 14) in cerebrospinal fluid (CSF). During low load (0-back) challenge, low gamma is higher in CH-PATs than CH-NATs over frontal and central regions (p = 0.014∼0.032, effect size (Cohen’s d) = 0.95∼1.11). However, during high load (2-back) challenge, low gamma is lower in CH-PATs compared to CH-NATs over the left temporal region (p = 0.045, Cohen’s d = −0.96), and high gamma is lower over the parietal region (p = 0.035, Cohen’s d = −1.02). Overall, our studies show a medium to large negative effect size across the scalp (Cohen’s d = −0.51∼−1.02). In addition, low gamma during 2-back is positively correlated with 0-back accuracy over all regions except the occipital region only in CH-NATs (r = 0.69∼0.77, p = 0.0098∼0.027); high gamma during 2-back correlated positively with 0-back accuracy over all regions in CH-NATs (r = 0.68∼0.78, p = 0.007∼0.030); high gamma during 2-back negatively correlated with 0-back response time over parietal, right temporal, and occipital regions in CH-NATs (r = −0.70∼−0.66, p = 0.025∼0.037). We interpret these preliminary results to show: (1) gamma power is compromised in AD-biomarker positive individuals, who are otherwise cognitively healthy (CH-PATs); (2) gamma is associated with WM performance in normal aging (CH-NATs) (most significantly in the frontoparietal region). Our pilot findings encourage further investigations in combining cognitive challenges and qEEG in developing neurophysiology-based markers for identifying individuals in the prodromal stage, to help improving our understanding of AD pathophysiology and the contributions of low- and high-frequency gamma oscillations in cognitive functions.
Collapse
Affiliation(s)
- Roger Rochart
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Quanying Liu
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Alfred N Fonteh
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Michael G Harrington
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| | - Xianghong Arakaki
- Neurosciences, Huntington Medical Research Institutes, Pasadena, CA, United States
| |
Collapse
|
34
|
Hagberg G, Ihle-Hansen H, Fure B, Thommessen B, Ihle-Hansen H, Øksengård AR, Beyer MK, Wyller TB, Müller EG, Pendlebury ST, Selnes P. No evidence for amyloid pathology as a key mediator of neurodegeneration post-stroke - a seven-year follow-up study. BMC Neurol 2020; 20:174. [PMID: 32384876 PMCID: PMC7206753 DOI: 10.1186/s12883-020-01753-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/29/2020] [Indexed: 12/24/2022] Open
Abstract
Background Cognitive impairment (CI) with mixed vascular and neurodegenerative pathologies after stroke is common. The role of amyloid pathology in post-stroke CI is unclear. We hypothesize that amyloid deposition, measured with Flutemetamol (18F-Flut) positron emission tomography (PET), is common in seven-year stroke survivors diagnosed with CI and, further, that quantitatively assessed 18F-Flut-PET uptake after 7 years correlates with amyloid-β peptide (Aβ42) levels in cerebrospinal fluid (CSF) at 1 year, and with measures of neurodegeneration and cognition at 7 years post-stroke. Methods 208 patients with first-ever stroke or transient Ischemic Attack (TIA) without pre-existing CI were included during 2007 and 2008. At one- and seven-years post-stroke, cognitive status was assessed, and categorized into dementia, mild cognitive impairment or normal. Etiologic sub-classification was based on magnetic resonance imaging (MRI) findings, CSF biomarkers and clinical cognitive profile. At 7 years, patients were offered 18F-Flut-PET, and amyloid-positivity was assessed visually and semi-quantitatively. The associations between 18F-Flut-PET standardized uptake value ratios (SUVr) and measures of neurodegeneration (medial temporal lobe atrophy (MTLA), global cortical atrophy (GCA)) and cognition (Mini-Mental State Exam (MMSE), Trail-making test A (TMT-A)) and CSF Aβ42 levels were assessed using linear regression. Results In total, 111 patients completed 7-year follow-up, and 26 patients agreed to PET imaging, of whom 13 had CSF biomarkers from 1 year. Thirteen out of 26 patients were diagnosed with CI 7 years post-stroke, but only one had visually assessed amyloid positivity. CSF Aβ42 levels at 1 year, MTA grade, GCA scale, MMSE score or TMT-A at 7 years did not correlate with 18F-Flut-PET SUVr in this cohort. Conclusions Amyloid binding was not common in 7-year stroke survivors diagnosed with CI. Quantitatively assessed, cortical amyloid deposition did not correlate with other measures related to neurodegeneration or cognition. Therefore, amyloid pathology may not be a key mediator of neurodegeneration 7 years post-stroke. Trial registration Clinicaltrials.gov (NCT00506818). July 23, 2007. Inclusion from February 2007, randomization and intervention from May 2007 and trial registration in July 2007.
Collapse
Affiliation(s)
- Guri Hagberg
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway. .,Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Hege Ihle-Hansen
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Brynjar Fure
- Department of Neurology, Department of Internal Medicine, Central Hospital Karlstad and Faculty of Medicine, Örebro University, Örebro, Sweden
| | - Bente Thommessen
- Department of Neurology, Akershus University Hospital, Oslo, Norway
| | - Håkon Ihle-Hansen
- Bærum Hospital, Vestre Viken Hospital Trust, N-3004, Drammen, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Mona K Beyer
- Division of Radiology, Nuclear Medicine Oslo University Hospital, Oslo, Norway
| | - Torgeir B Wyller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Geriatric Medicine, Oslo University Hospital, Oslo, Norway
| | - Ebba Gløersen Müller
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Sarah T Pendlebury
- Centre for Prevention of Stroke and Dementia, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Per Selnes
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Neurology, Akershus University Hospital, Oslo, Norway
| |
Collapse
|
35
|
Kwak DE, Ko T, Koh HS, Ji YW, Shin J, Kim K, Kim HY, Lee HK, Kim Y. Alterations of aqueous humor Aβ levels in Aβ-infused and transgenic mouse models of Alzheimer disease. PLoS One 2020; 15:e0227618. [PMID: 31923257 PMCID: PMC6953883 DOI: 10.1371/journal.pone.0227618] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an ageing-related neurodegenerative disease characterized and diagnosed by deposition of insoluble amyloid-β (Aβ) plaques in the brain. The plaque accumulation in the brain directly affects reduced levels of Aβ in cerebrospinal fluid (CSF) and blood, as Aβ can freely transport the blood-brain barrier, and clinical investigations have suggested these two biofluids as promising samples for in vitro diagnosis. Given that the human eye structurally resembles the brain and Aβ accumulation often observed in the ocular region of AD patients, in this study, we examined aqueous humor Aβ as another possible surrogate biomarker. First, using the acute Aβ-infused AD mouse model by injecting Aβ to the CSF in intracerebroventricular region of normal ICR mice, we investigated whether Aβ concentration in the aqueous humor in AD models is positively correlated with the concentration in the CSF. Then, we examined the correlation of aqueous humor Aβ levels with increased plaque deposition in the brain and reduced Aβ levels in both CSF and blood in adult and aged 5XFAD Alzheimer transgenic mice. Collectively, the synthetic Aβ injected into CSF immediately migrate to the aqueous humor, however, the age-dependently reducing pattern of Aβ levels in CSF and blood was not observed in the aqueous humor.
Collapse
Affiliation(s)
- Da Eun Kwak
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Taeho Ko
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Industrial Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Han Seok Koh
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Woo Ji
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Ophthalmology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Jisu Shin
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Kyeonghwan Kim
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hye Yun Kim
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
| | - Hyung-Keun Lee
- Department of Ophthalmology, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Republic of Korea
- * E-mail: (HKL); (YSK)
| | - YoungSoo Kim
- Department of Pharmacy, Yonsei University, Incheon, Republic of Korea
- Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Industrial Pharmaceutical Sciences, Yonsei University, Incheon, Republic of Korea
- Integrated Science and Engineering Division, Yonsei University, Incheon, Republic of Korea
- * E-mail: (HKL); (YSK)
| |
Collapse
|
36
|
|