1
|
Ji MT, Pashankar N, Harter AM, Nemesh M, Przybyl KJ, Mulligan MK, Chen H, Redei EE. Limited WKY chromosomal regions confer increases in anxiety and fear memory in a F344 congenic rat strain. Physiol Genomics 2024; 56:327-342. [PMID: 38314698 PMCID: PMC11283897 DOI: 10.1152/physiolgenomics.00114.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/16/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
This study investigated the interaction between genetic differences in stress reactivity/coping and environmental challenges, such as acute stress during adolescence on adult contextual fear memory and anxiety-like behaviors. Fischer 344 (F344) and the inbred F344;WKY-Stresp3/Eer congenic strain (congenic), in which chromosomal regions from the Wistar-Kyoto (WKY) strain were introgressed into the F344 background, were exposed to a modified forced swim test during adolescence, while controls were undisturbed. In adulthood, fear learning and memory, assessed by contextual fear conditioning, were significantly greater in congenic animals compared with F344 animals, and stress during adolescence increased them even further in males of both strains. Anxiety-like behavior, measured by the open field test, was also greater in congenic than F344 animals, and stress during adolescence increased it further in both strains of adult males. Whole genome sequencing of the F344;WKY-Stresp3/Eer strain revealed an enrichment of WKY genotypes in chromosomes 9, 14, and 15. An example of functional WKY sequence variations in the congenic strain, cannabinoid receptor interacting protein 1 (Cnrip1) had a Cnrip1 transcript isoform that lacked two exons. Although the original hypothesis that the genetic predisposition to increased anxiety of the WKY donor strain would exaggerate fear memory relative to the background strain was confirmed, the consequences of adolescent stress were strain independent but sex dependent in adulthood. Molecular genomic approaches combined with genetic mapping of WKY sequence variations in chromosomes 9, 14, and 15 could aid in finding quantitative trait genes contributing to the variation in fear memory.NEW & NOTEWORTHY This study found that 1) whole genome sequencing of congenic strains should be a criterion for their recognition; 2) sequence variations between Wistar-Kyoto and Fischer 344 strains at regions of chromosomes 9, 14, and 15 contribute to differences in contextual fear memory and anxiety-like behaviors; and 3) stress during adolescence affects these behaviors in males, but not females, and is independent of strain.
Collapse
Affiliation(s)
- Michelle T Ji
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Neha Pashankar
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Aspen M Harter
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Mariya Nemesh
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Katherine J Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Megan K Mulligan
- Department of Genetics, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
2
|
Gokula V, Terrero D, Joe B. Six Decades of History of Hypertension Research at the University of Toledo: Highlighting Pioneering Contributions in Biochemistry, Genetics, and Host-Microbiota Interactions. Curr Hypertens Rep 2022; 24:669-685. [PMID: 36301488 PMCID: PMC9708772 DOI: 10.1007/s11906-022-01226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW The study aims to capture the history and lineage of hypertension researchers from the University of Toledo in Ohio and showcase their collective scientific contributions dating from their initial discoveries of the physiology of adrenal and renal systems and genetics regulating blood pressure (BP) to its more contemporary contributions including microbiota and metabolomic links to BP regulation. RECENT FINDINGS The University of Toledo College of Medicine and Life Sciences (UTCOMLS), previously known as the Medical College of Ohio, has contributed significantly to our understanding of the etiology of hypertension. Two of the scientists, Patrick Mulrow and John Rapp from UTCOMLS, have been recognized with the highest honor, the Excellence in Hypertension award from the American Heart Association for their pioneering work on the physiology and genetics of hypertension, respectively. More recently, Bina Joe has continued their legacy in the basic sciences by uncovering previously unknown novel links between microbiota and metabolites to the etiology of hypertension, work that has been recognized by the American Heart Association with multiple awards. On the clinical research front, Christopher Cooper and colleagues lead the CORAL trials and contributed importantly to the investigations on renal artery stenosis treatment paradigms. Hypertension research at this institution has not only provided these pioneering insights, but also grown careers of scientists as leaders in academia as University Presidents and Deans of Medical Schools. Through the last decade, the university has expanded its commitment to Hypertension research as evident through the development of the Center for Hypertension and Precision Medicine led by Bina Joe as its founding Director. Hypertension being the top risk factor for cardiovascular diseases, which is the leading cause of human mortality, is an important area of research in multiple international universities. The UTCOMLS is one such university which, for the last 6 decades, has made significant contributions to our current understanding of hypertension. This review is a synthesis of this rich history. Additionally, it also serves as a collection of audio archives by more recent faculty who are also prominent leaders in the field of hypertension research, including John Rapp, Bina Joe, and Christopher Cooper, which are cataloged at Interviews .
Collapse
Affiliation(s)
- Veda Gokula
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA
| | - David Terrero
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy, University of Toledo, Toledo, OH, USA
| | - Bina Joe
- Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo College of Medicine and Life Sciences, Block Health Science Building, 3000 Arlington Ave, Toledo, OH, 43614-2598, USA.
| |
Collapse
|
3
|
Mi S, Tang Y, Dari G, Shi Y, Zhang J, Zhang H, Liu X, Liu Y, Tahir U, Yu Y. Transcriptome sequencing analysis for the identification of stable lncRNAs associated with bovine Staphylococcus aureus mastitis. J Anim Sci Biotechnol 2021; 12:120. [PMID: 34895356 PMCID: PMC8667444 DOI: 10.1186/s40104-021-00639-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Background Staphylococcus aureus (S. aureus) mastitis is one of the most difficult diseases to treat in lactating dairy cows worldwide. S. aureus with different lineages leads to different host immune responses. Long non-coding RNAs (lncRNAs) are reported to be widely involved in the progress of inflammation. However, no research has identified stable lncRNAs among different S. aureus strain infections. In addition, folic acid (FA) can effectively reduce inflammation, and whether the inflammatory response caused by S. aureus can be reduced by FA remains to be explored. Methods lncRNA transcripts were identified from Holstein mammary gland tissues infected with different concentrations of S. aureus (in vivo) and mammary alveolar cells (Mac-T cells, in vitro) challenged with different S. aureus strains. Differentially expressed (DE) lncRNAs were evaluated, and stable DE lncRNAs were identified in vivo and in vitro. On the basis of the gene sequence conservation and function conservation across species, key lncRNAs with the function of potentially immune regulation were retained for further analysis. The function of FA on inflammation induced by S. aureus challenge was also investigated. Then, the association analysis between these keys lncRNA transcripts and hematological parameters (HPs) was carried out. Lastly, the knockdown and overexpression of the important lncRNA were performed to validate the gene function on the regulation of cell immune response. Results Linear regression analysis showed a significant correlation between the expression levels of lncRNA shared by mammary tissue and Mac-T cells (P < 0.001, R2 = 0.3517). lncRNAs PRANCR and TNK2–AS1 could be regarded as stable markers associated with bovine S. aureus mastitis. Several HPs could be influenced by SNPs around lncRNAs PRANCR and TNK2–AS1. The results of gene function validation showed PRANCR regulates the mRNA expression of SELPLG and ITGB2 within the S. aureus infection pathway and the Mac-T cells apoptosis. In addition, FA regulated the expression change of DE lncRNA involved in toxin metabolism and inflammation to fight against S. aureus infection. Conclusions The remarkable association between SNPs around these two lncRNAs and partial HP indicates the potentially important role of PRANCR and TNK2–AS1 in immune regulation. Stable DE lncRNAs PRANCR and TNK2–AS1 can be regarded as potential targets for the prevention of bovine S. aureus mastitis. FA supplementation can reduce the negative effect of S. aureus challenge by regulating the expression of lncRNAs. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00639-2.
Collapse
Affiliation(s)
- Siyuan Mi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yongjie Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Gerile Dari
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yuanjun Shi
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jinning Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hailiang Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xueqin Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yibing Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Usman Tahir
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture & National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Joe B, McCarthy CG, Edwards JM, Cheng X, Chakraborty S, Yang T, Golonka RM, Mell B, Yeo JY, Bearss NR, Furtado J, Saha P, Yeoh BS, Vijay-Kumar M, Wenceslau CF. Microbiota Introduced to Germ-Free Rats Restores Vascular Contractility and Blood Pressure. Hypertension 2020; 76:1847-1855. [PMID: 33070663 DOI: 10.1161/hypertensionaha.120.15939] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Commensal gut microbiota are strongly correlated with host hemodynamic homeostasis but only broadly associated with cardiovascular health. This includes a general correspondence of quantitative and qualitative shifts in intestinal microbial communities found in hypertensive rat models and human patients. However, the mechanisms by which gut microbes contribute to the function of organs important for blood pressure (BP) control remain unanswered. To examine the direct effects of microbiota on BP, we conventionalized germ-free (GF) rats with specific pathogen-free rats for a short-term period of 10 days, which served as a model system to observe the dynamic responses when reconstituting the holobiome. The absence of microbiota in GF rats resulted with relative hypotension compared with their conventionalized counterparts, suggesting an obligatory role of microbiota in BP homeostasis. Hypotension observed in GF rats was accompanied by a marked reduction in vascular contractility. Both BP and vascular contractility were restored by the introduction of microbiota to GF rats, indicating that microbiota could impact BP through a vascular-dependent mechanism. This is further supported by the decrease in actin polymerization in arteries from GF rats. Improved vascular contractility in conventionalized GF rats, as indicated through stabilized actin filaments, was associated with an increase in cofilin phosphorylation. These data indicate that the vascular system senses the presence (or lack of) microbiota to maintain vascular tone via actin polymerization. Overall, these results constitute a fundamental discovery of the essential nature of microbiota in BP regulation.
Collapse
Affiliation(s)
- Bina Joe
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Cameron G McCarthy
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Jonnelle M Edwards
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Xi Cheng
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Saroj Chakraborty
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Tao Yang
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Rachel M Golonka
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Blair Mell
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Ji-Youn Yeo
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Nicole R Bearss
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Janara Furtado
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Piu Saha
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Beng San Yeoh
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Matam Vijay-Kumar
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| | - Camilla F Wenceslau
- From the UT Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH
| |
Collapse
|
5
|
Kolishovski G, Lamoureux A, Hale P, Richardson JE, Recla JM, Adesanya O, Simons A, Kunde-Ramamoorthy G, Bult CJ. The JAX Synteny Browser for mouse-human comparative genomics. Mamm Genome 2019; 30:353-361. [PMID: 31776723 PMCID: PMC6892358 DOI: 10.1007/s00335-019-09821-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/20/2019] [Indexed: 10/30/2022]
Abstract
Visualizing regions of conserved synteny between two genomes is supported by numerous software applications. However, none of the current applications allow researchers to select genome features to display or highlight in blocks of synteny based on the annotated biological properties of the features (e.g., type, function, and/or phenotype association). To address this usability gap, we developed an interactive web-based conserved synteny browser, The Jackson Laboratory (JAX) Synteny Browser. The browser allows researchers to highlight or selectively display genome features in the reference and/or the comparison genome according to the biological attributes of the features. Although the current implementation for the browser is limited to the reference genomes for the laboratory mouse and human, the software platform is intentionally genome agnostic. The JAX Synteny Browser software can be deployed for any two genomes where genome coordinates for syntenic blocks are defined and for which biological attributes of the features in one or both genomes are available in widely used standard bioinformatics file formats. The JAX Synteny Browser is available at: http://syntenybrowser.jax.org/. The code base is available from GitHub: https://github.com/TheJacksonLaboratory/syntenybrowser and is distributed under the Creative Commons Attribution license (CC BY).
Collapse
Affiliation(s)
- Georgi Kolishovski
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Anna Lamoureux
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Paul Hale
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Joel E Richardson
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Jill M Recla
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | - Omoluyi Adesanya
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
- Institute of Public Health, Washington University of St. Louis, St. Louis, MO, 63110, USA
| | - Al Simons
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA
| | | | - Carol J Bult
- The Jackson Laboratory for Mammalian Genomics, Bar Harbor, ME, 04609, USA.
| |
Collapse
|