1
|
Khairulmunir M, Gani M, Mohd-Ridwan AR, Karuppannan KV, Abdul-Latiff MAB, Md-Zain BM. Alteration of the gut microbial composition of critically endangered Malayan tigers (Panthera tigris jacksoni) in captivity during enrichment phase. Mol Biol Rep 2024; 51:742. [PMID: 38874703 DOI: 10.1007/s11033-024-09642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Enrichment activities may influence the microbiomes of captive tigers', affecting their health, digestion, and behavior. Currently, there are few studies that address the impact of enrichment activity on tigers' health. This study aimed to determine the diversity of the gut microbiome in captive Malayan tigers at Zoo Melaka and Night Safari during the environmental enrichment phase using a metabarcoding approach. METHODS AND RESULTS This study utilized different enrichment activities which catered for food, sensory, and cognitive enrichment. Eleven fresh fecal samples from captive Malayan tigers at Zoo Melaka and Night Safari were collected under different conditions. All samples were extracted and 16S rRNA V3-V4 region amplicon sequencing was used to characterize the gut microbiome of captive Malayan tigers subjected to various enrichment activities. Firmicutes, Actinobacteriota, and Fusobacteriota were the dominant phyla observed in the gut microbiome of captive Malayan tigers during enrichment activities. This study revealed β-diversity significantly varied between normal and enrichment phase, however no significant differences were observed in α-diversity. This study demonstrates that environmental enrichment improves the gut microbiome of Malayan tigers because gut microbes such as Lachnoclostridium, which has anti-inflammatory effects and helps maintain homeostasis, and Romboutsia, which has a probiotic effect on the gut microbiome. CONCLUSIONS This study provides valuable insights into the effects of enrichment activities on the gut microbiome of captive Malayan tigers, offering guidance for enhancing captive management practices aimed at promoting the health and well-being of Malayan tiger in captivity.
Collapse
Affiliation(s)
- Mohamad Khairulmunir
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, KM 10 Jalan Cheras, Kuala Lumpur, 56100, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, 94300, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, KM 10 Jalan Cheras, Kuala Lumpur, 56100, Malaysia
| | | | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, 43600, Selangor, Malaysia.
| |
Collapse
|
2
|
Gani M, Mohd-Ridwan AR, Sitam FT, Kamarudin Z, Selamat SS, Awang NMZ, Karuppannan KV, Md-Zain BM. Habitat shapes the gut microbiome diversity of Malayan tigers (Panthera tigris jacksoni) as revealed through metabarcoding 16S rRNA profiling. World J Microbiol Biotechnol 2024; 40:111. [PMID: 38416247 DOI: 10.1007/s11274-023-03868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/06/2023] [Indexed: 02/29/2024]
Abstract
The gut microbiome refers to the microorganism community living within the digestive tract. The environment plays a crucial role in shaping the gut microbiome composition of animals. The gut microbiome influences the health and behavior of animals, including the critically endangered Malayan tiger (Panthera tigris jacksoni). However, the gut microbiome composition of Malayan tigers, especially those living in their natural habitats, remains poorly understood. To address this knowledge gap, we used next-generation sequencing DNA metabarcoding techniques to analyze the gut microbiome of wild Malayan tigers using fecal samples collected from their natural habitats and in captivity. Our aim was to determine the gut microbiota composition of the Malayan tiger, considering the different types of habitat environments. The results revealed a diverse microbial community within the gut microbiome of Malayan tigers. The prominent phyla that were observed included Firmicutes, Proteobacteria, Actinobacteriota, Fusobacteriota and Bacteroidota. Beta diversity analysis revealed significant differences in gut microbiome composition of Malayan tigers that inhabited oil palm plantations, in villages and protected areas. Diversity analysis also revealed significant difference in the gut microbiome between wild and captive Malayan tigers. However, the distinctions of gut microbiome between wild and captive alpha diversity did not yield significant differences. The differences in microbiome diversity resulted from the interplay of dietary intake and environmental factors. This information will facilitate the establishment of focused conservation approaches and enhance our understanding of the effect of microbiome composition on Malayan tiger health.
Collapse
Affiliation(s)
- Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia
| | - Frankie Thomas Sitam
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Zubaidah Kamarudin
- National Wildlife Rescue Centre (NWRC), Department of Wildlife and National Parks (PERHILITAN), 35600, Sungkai, Perak, Malaysia
| | - Siti Suzana Selamat
- National Wildlife Rescue Centre (NWRC), Department of Wildlife and National Parks (PERHILITAN), 35600, Sungkai, Perak, Malaysia
| | - Nik Mohd Zamani Awang
- National Wildlife Rescue Centre (NWRC), Department of Wildlife and National Parks (PERHILITAN), 35600, Sungkai, Perak, Malaysia
| | - Kayal Vizi Karuppannan
- National Wildlife Forensic Laboratory (NWFL), Ex-Situ Conservation Division, Department of Wildlife and National Parks (PERHILITAN), KM 10 Jalan Cheras, 56100, Kuala Lumpur, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
3
|
Fountain-Jones NM, Giraud T, Zinger L, Bik H, Creer S, Videvall E. Molecular ecology of microbiomes in the wild: Common pitfalls, methodological advances and future directions. Mol Ecol 2024; 33:e17223. [PMID: 38014746 DOI: 10.1111/mec.17223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non-bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field.
Collapse
Affiliation(s)
| | - Tatiana Giraud
- Laboratoire Ecologie Systématique et Evolution, UMR 8079, Bâtiment 680, Université Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
- Laboratoire Evolution et Diversité Biologique (EDB), UMR5174, CNRS, Institut de Recherche pour le Développement (IRD), Université Toulouse 3 Paul Sabatier, Toulouse, France
| | - Holly Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Simon Creer
- School of Environmental and Natural Sciences, Bangor University, Bangor, UK
| | - Elin Videvall
- Department of Ecology, Evolution and Organismal Biology, Brown University, Providence, Rhode Island, USA
- Institute at Brown for Environment and Society, Brown University, Providence, Rhode Island, USA
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
4
|
Zoelzer F, Schneider S, Dierkes PW. Time series cluster analysis reveals individual assignment of microbiota in captive tiger ( Panthera tigris) and wildebeest ( Connochaetes taurinus). Ecol Evol 2023; 13:e10066. [PMID: 37168984 PMCID: PMC10166651 DOI: 10.1002/ece3.10066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
Fecal microbiota variability and individuality are well studied in humans and also in farm animals (related to diet- or disease-specific influences), but very little is known for exotic zoo-housed animals. This includes a wide range of species that differ greatly in microbiota composition and variation. For example, herbivorous species show a very similar and constant fecal microbiota over time, whereas carnivorous species appear to be highly variable in fecal microbial diversity and composition. Our objective was to determine whether species-specific and individual-specific clustering patterns were observed in the fecal microbiota of wildebeest (Connochaetes taurinus) and tigers (Panthera tigris). We collected 95 fecal samples of 11 animal individuals that were each sampled over eight consecutive days and analyzed those with Illumina MiSeq sequencing of the V3-V4 region of the 16SrRNA gene. In order to identify species or individual clusters, we applied two different agglomerative hierarchical clustering algorithms - a community detection algorithm and Ward's linkage. Our results showed that both, species-specific and individual-specific clustering is possible, but more reliable results were achieved when applying dynamic time warping which finds the optimal alignment between different time series. Furthermore, the bacterial families that distinguish individuals from each other in both species included daily occurring core bacteria (e.g., Acidaminococcaceae in wildebeests or Clostridiaceae in tigers) as well as individual dependent and more fluctuating bacterial families. Our results suggest that while it is necessary to consider multiple consecutive samples per individual, it is then possible to characterize individual abundance patterns in fecal microbiota in both herbivorous and carnivorous species. This would allow establishing individual microbiota profiles of animals housed in zoos, which is a basic prerequisite to quickly detect deviations and use microbiome analysis as a non-invasive and cost-effective tool in animal welfare.
Collapse
Affiliation(s)
- Franziska Zoelzer
- Bioscience Education and Zoo BiologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Sebastian Schneider
- Bioscience Education and Zoo BiologyGoethe University FrankfurtFrankfurt am MainGermany
| | - Paul Wilhelm Dierkes
- Bioscience Education and Zoo BiologyGoethe University FrankfurtFrankfurt am MainGermany
| |
Collapse
|
5
|
DISCOVR strain pipeline screening – Part I: Maximum specific growth rate as a function of temperature and salinity for 38 candidate microalgae for biofuels production. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Zhu D, Xie T, Du R, Guo L. Characterizing the Gut Microbiota of Eurasian Otter ( Lutra lutra chinensis) and Snub-Nosed Monkey ( Rhinopithecus roxellana) to Enhance Conservation Practices in the Foping National Nature Reserve of China. Animals (Basel) 2022; 12:ani12223097. [PMID: 36428325 PMCID: PMC9686598 DOI: 10.3390/ani12223097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
Understanding the interaction between the microbial composition in the habitat and the gut of wildlife will contribute to conservation efforts since changes in the gut microbiome have been proven to influence the healthy and nutritional status of the host. This study analyzed the relationship between soil microbes and the microbial diversity and structure of the distal gut of the terrestrial golden snub-nosed monkey and Eurasian otter in the Foping National Nature Reserve (FNNR). A total of 15 otter fecal samples and 18 monkey fecal samples were collected from which 5 and 6 samples, respectively, were randomly selected for microbiome analysis. The remaining samples were used for fecal short-chain fatty acids (SCFAs) analysis. Soil samples from the otter and monkey habitats at each sampling point (eight in total) were also collected for microbiome analysis. The microbial phyla with the greatest relative abundance in soil or animal samples were Proteobacteria (41.2, 32.7, and 73.3% for soil, otters, and monkeys, respectively), Firmicutes (0.4% soil, 30.1% otters, and 14.4% monkeys), Bacteroidota (5.6% soil, 17.0% otters, and 8.3% monkeys), and Acidobacteriota (24.6% soil, 1.7% otters, and 0.1% monkeys). The estimation of alpha diversity indices revealed that the feature, Chao1, and Shannon indices of the soil microbiome were the greatest (p < 0.01) among the three groups, followed by those of the otter microbiome and those of the monkey microbiome (p < 0.01). Beta diversity analyses confirmed differences in the microbiota of the three types of samples. The determination of SCFA concentration in feces revealed that total volatile fatty acids, acetic acid, and isovaleric acid were greater (p < 0.05) in otters than in monkeys, while propionic acid followed the opposite pattern (p < 0.05). Correlation analysis of the microbiome and SCFA contents showed that propionic acid was positively correlated with significantly different bacterial groups, while acetic and butyric acid and total volatile acids were negatively correlated. This study confirmed that the fecal microbes of Eurasian otters and golden snub-nosed monkeys in the reserve are related to the soil microbial communities of their habitats, but they have different bacterial community structures and compositions, and there are different SCFA metabolic patterns in the gut of the two animals. The present study will help to improve wildlife protection in the FNNR.
Collapse
Affiliation(s)
- Dapeng Zhu
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Foping National Nature Reserve, Hanzhong 723000, China
| | - Tongtong Xie
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruifang Du
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Long Guo
- State Key Laboratory of Grassland Agro-Ecosystem, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Correspondence:
| |
Collapse
|
7
|
Zhang X, Liao Y, Qin T, Ma J, Liu J, Zou J, Huang H, Zhong X, Yang M. Developmental stage variation in the gut microbiome of South China tigers. Front Microbiol 2022; 13:962614. [PMID: 36439793 PMCID: PMC9682017 DOI: 10.3389/fmicb.2022.962614] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2024] Open
Abstract
South China tigers (Panthera tigris amoyensis, SC) are the most threatened tiger subspecies in the world. All the living SCs are captive in zoos or reserves and depend on artificial feeding. The composition of the gut microbiome plays an important role in sustaining the health of the host. A comprehensive understanding of the composition and development of the microbial community of SC is helpful to improve the feeding of captive SC. In this study, we collected 47 fecal samples, 37 of which were from SC of three developmental stages, 5 from adult Amur tigers (Am), and 5 from adult Bengal tigers (Bg), which were all housed in the same zoo. We investigated the diversity, richness, and composition of the bacterial microbiomes and we found that the gut microbiome of SC is strongly affected by host aging. The composition of the gut microbiome of juvenile SC experienced dramatic changes from 5 months old to 1 year old, and it showed much less difference when compared to the samples of 1 year old and the subadult. No significant differences were observed between the samples of subadult and the adult groups. The predominant phylum of 5-month-old SC is Fusobacteriota (33.99%) when the juvenile tigers were older than 5 months, and Firmicutes, but not Fusobacteriota, became the predominant phylum of bacteria in their gut. The gut microbiome of SC, Am, and Bg is possibly affected by their genetic variation; however, the core microbiome of these three subspecies is the same. Our data suggest that the gut microbiome of SC undergoes a developmental progression: a developmental phase (cub), a transitional phase (subadult), and a stable phase (adult). These results expand our understanding of the role of age in the development of the gut microbiome of SC.
Collapse
Affiliation(s)
- Xianfu Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Yanxin Liao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Tao Qin
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | | | | | | | | | - Xiaojun Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| | - Menghua Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection and Internet Technology, College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
8
|
Chen L, Xu D, Sun M, Li Y, Wang S, Gao Y, Gao Z, Shi Y. The effect of environment on intestinal microbial diversity of Panthera animals may exceed genetic relationship. Front Microbiol 2022; 13:938900. [PMID: 35966667 PMCID: PMC9366613 DOI: 10.3389/fmicb.2022.938900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Intestinal microbes are important symbiotes in the gastrointestinal tract of mammals, which are affected by food, environment, climate, genetics, and other factors. The gut microbiota of felines has been partially studied, but a comprehensive comparison of the gut microbiota of Panthera species was less reported. In this study, we compared the gut microbial composition and diversity of five species of Panthera (Panthera tigris, Panthera leo, Panthera onca, Panthera pardus, and Panthera uncia) by 16S ribosomal RNA (rRNA) amplicon sequencing. The results showed that Firmicutes was the most abundant phylum among all the Panthera species, followed by Actinobacteria, Fusobacteria, Bacteroidetes, Proteobacteria, Acidobacteria, Verrucomicrobia, Gemmatimonadetes, and Euryarchaeota. There were significant differences in observed species of fecal microbiota among different Panthera animals (P < 0.05), indicating that there is species specificity among Panthera fecal microbiota. When the samples were further grouped according to sampling locations, the comparison of the alpha diversity index between groups and beta diversity analysis showed that there were significant differences in the fecal microflora of animals from different sampling locations. Cluster analysis showed that fecal microbes of animals from the same sampling location were clustered, while gut microbes of animals of the same species, but from different sampling locations, were separated. These results indicate that environment may have more influence on mammals’ fecal microbial diversity than genetic relationships.
Collapse
Affiliation(s)
- Lei Chen
- College of Life Sciences, Qufu Normal University, Qufu, China
- *Correspondence: Lei Chen,
| | - Di Xu
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Mengyao Sun
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ying Li
- Jinan Wildlife Park, Jinan, China
| | - Shen Wang
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Ying Gao
- Jinan Wildlife Park, Jinan, China
| | - Zenghao Gao
- College of Life Sciences, Qufu Normal University, Qufu, China
| | - Yuying Shi
- College of Life Sciences, Qufu Normal University, Qufu, China
| |
Collapse
|
9
|
Sun Y, Yao J, Zhang M, Chen T, Xu W, Fu W, Wu Q, Li Y, Chen X, Zhu Y, Zhang X, Liu L, Chen D, Wang Z, You Z, Zhang X, Liu Y, Lin K, Lin W. Colonization and Development of the Fecal Microflora of South China Tiger Cubs (Panthera tigris amoyensis) by Sequencing of the 16S rRNA Gene. Microb Physiol 2021; 32:18-29. [PMID: 34535588 DOI: 10.1159/000518395] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/08/2021] [Indexed: 11/19/2022]
Abstract
Postnatal colonization and development of the gut microbiota is linked to health and growth. A comprehensive understanding of the postnatal compositional changes and development of the microbial community is helpful to understand the gut health and improve the survival rate of South China tiger cubs (Panthera tigris amoyensis). Fecal samples from three tiger cubs were collected on the day of birth in 2018 (June 17-21 [G0], July 18 [G1], July 31 [G2], and August 7 [G3]). The 16S rRNA genes of the fecal microflora were sequenced. Results showed that 38 phyla, 58 classes, 134 orders, 272 families, and 636 genera of bacteria from 3,059 operational taxonomic units were identified from 12 fecal samples. The diversity and abundance of species of group G0 were significantly higher (p < 0.05 or 0.01) than those of groups G2 and G3. The predominant phylum was Proteobacteria in groups G0 and G1 (38.85% and 48%, respectively) and Firmicutes in groups G2 and G3 (71.42% and 75.29%, respectively). At the phylum level, the abundance of Deinococcus-Thermus was significantly decreased in groups G1, G2, and G3 as compared to group G0 (p < 0.05), while that of Firmicutes was significantly increased in groups G2 and G3 (p < 0.05). At the genus level, the abundance of Faecalibacterium, Ralstonia, and unidentified Rickettsiales was significantly decreased in groups G1, G2, and G3 as compared with group G0 (p < 0.05), while that of Pseudomonas was significantly decreased in groups G2 and G3 (p < 0.05). The composition and structure of fecal microbiota of South China tiger cubs changed after birth.
Collapse
Affiliation(s)
- Yanfa Sun
- College of Life Science, Longyan University, Longyan, China, .,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China, .,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China,
| | - Jie Yao
- College of Life Science, Longyan University, Longyan, China
| | - Min Zhang
- College of Life Science, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
| | - Tengteng Chen
- Fujian Meihuashan South China Tiger Breeding Institute, Longyan, China
| | - Weihua Xu
- College of Life Science, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
| | - Wenyuan Fu
- Fujian Meihuashan South China Tiger Breeding Institute, Longyan, China
| | - Qiong Wu
- College of Life Science, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
| | - Yan Li
- College of Life Science, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
| | - Xingxing Chen
- College of Life Science, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
| | - Yuting Zhu
- College of Life Science, Longyan University, Longyan, China
| | - Xuemei Zhang
- College of Life Science, Longyan University, Longyan, China
| | - Lingyu Liu
- College of Life Science, Longyan University, Longyan, China
| | - Donghong Chen
- College of Life Science, Longyan University, Longyan, China
| | - Zhenyuan Wang
- College of Life Science, Longyan University, Longyan, China
| | - Zhangjing You
- College of Life Science, Longyan University, Longyan, China
| | - Xuebing Zhang
- College of Life Science, Longyan University, Longyan, China
| | - Yi Liu
- College of Life Science, Longyan University, Longyan, China
| | - Kaixiong Lin
- Fujian Meihuashan South China Tiger Breeding Institute, Longyan, China
| | - Weiming Lin
- College of Life Science, Longyan University, Longyan, China.,Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, China.,Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan, China
| |
Collapse
|
10
|
Adaptation of the Gut Microbiota of Amur Tigers to a Special Diet. Curr Microbiol 2021; 78:1628-1635. [PMID: 33686506 DOI: 10.1007/s00284-021-02399-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
The microorganisms inhabiting the gastrointestinal tract play important roles in many host physiological processes, including the absorption and metabolism of nutrients and immune function. The Amur tiger (Panthera tigris altaica) is listed by the International Union for the Conservation of Nature (IUCN) as a threatened species. Efforts are underway to breed Amur tigers under artificial settings to preserve this rare species. To maximize the imitation of the diet that this species consumes in the wild, the diet in the present study was composed of a variety of raw meats and was administered with regular fasting. In view of the important roles that the microbiota play in the host, in the present study, the microbiota of Amur tigers at three different ages were investigated. The results showed that the microbial diversity and richness decreased with age. Principal coordinate analysis showed significant differences among the three age groups. Linear discriminant analysis (LDA) of effect size (LEfSe) demonstrated the enrichment of the genus unclassified_f__Ruminococcaceae, genus Coprococcus_1, genus Ruminococcus__gauvreauii_group, family unclassified_o__Clostridiales and genus unclassified_o__Clostridiales in the JB group (1- year old) and the enrichment of the genus Catenisphaera in the AB group (over 4-year old). The results of the present study demonstrated the adaptation of the microbiota in captive Amur tigers to a diet similar to the one they consume in the wild. Furthermore, these results may reflect the microbiota of wild Amur tigers to a certain extent.
Collapse
|
11
|
Contrasting gut microbiota in captive Eurasian otters (Lutra lutra) by age. Arch Microbiol 2021; 203:5405-5416. [PMID: 34398307 PMCID: PMC8502154 DOI: 10.1007/s00203-021-02526-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/01/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
Understanding the gut microbiota characteristics of endangered species such as the Eurasian otter (Lutra lutra), especially in their early stages of life, could be essential for improving their management and ex situ conservation strategies. Here, we analyzed the gut microbiota diversity, composition, and function of captive Eurasian otters at different ages using high-throughput 16S rRNA gene sequencing. We found that: (1) Clostridiaceae was abundant in all age stages; (2) Lactococcus in cubs is thought to predominate for digesting milk; (3) bacteria associated with amino acid metabolism increase with age, while bacteria associated with carbohydrate metabolism decrease with age, which is likely due to decrease in dietary carbohydrate content (e.g., milk) and increase in dietary protein contents (e.g., fishes) with age; and (4) fish-related bacteria were detected in feces of healthy adults and juveniles. Overall, the gut microbiota of captive Eurasian otters was taxonomically and functionally different by age, which is thought to be attributed to the difference in the diet in their life stages. This study provided baseline information regarding the gut microbiota of Eurasian otters for the first time and contributes to improvement in their management in captivity.
Collapse
|