1
|
Karami P, Tavakoli S, Esmaeili M. Monitoring spatiotemporal impacts of changes in land surface temperature on near eastern fire salamander ( Salamandra infraimmaculata) in the Middle East. Heliyon 2023; 9:e17241. [PMID: 37360077 PMCID: PMC10285218 DOI: 10.1016/j.heliyon.2023.e17241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
Persistence and coexistence of many pond-breeding amphibians depend on seasonality. Temperature, as a seasonal climate component, affects numerous physical and biological processes of pond-breeding amphibians. Satellite-derived land surface temperature (LST) is the radiative skin temperature of the land surface, which has received less attention in spatiotemporal seasonal habitat monitoring. The present study aims to evaluate the increasing and decreasing effects of LST trends at two levels: (1) habitat suitability and connectivity; (2) individual population sites and their longitudinal distribution (with increasing longitude). Habitat suitability modeling was conducted based on an ensemble species distribution model (eSDM). Using electrical circuit theory, the connectivity of interior and intact habitat cores was investigated. An average seasonal LST was prepared separately for each season from 2003 to 2021 and entered into Mann-Kendall (MK) analysis to determine the spatiotemporal effects of LST changes using the Z-Score (ZMK) at two confidence levels of 95 and 99%. Based on the results, in winter, 28.12% and 70.70% of the suitable habitat were affected by an increasing trend of LST at 95% and 99% confidence levels, respectively. The highest spatial overlap of the decreasing trend of LST with the suitable habitat occurred in summer and was 6.4% at the 95% confidence level and 4.2% at the 99% confidence level. Considering population site at 95% confidence interval, the increasing trend of LST was calculated to be 20.2%, 9.5%, 4.2%, and 6.3% of localities in winter, spring, summer, and autumn, respectively. At the 99% confidence level, these percentages reduced to 8.5%, 3.1%, 1%, and 1%, respectively. During winter and summer, based on the results of the longitudinal trend, an increasing trend of LST was observed in sites. Localities of Hatay and Iica village in Turkey experienced seasonally asynchronous climate change regimes. The approach used in this study allowed us to create a link between the life cycle and seasonal changes on a micro-scale (breeding sites) and macro-scale (distribution and connectivity). Findings of this paper can be effectively used by conservation managers to preserve S. infraimmaculata's metapopulation.
Collapse
Affiliation(s)
- Peyman Karami
- Department of Environmental Sciences, Malayer University, Malayer, Iran
| | - Sajad Tavakoli
- Department of Environmental and Forest Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mina Esmaeili
- Department of Biology, Razi University, Kermanshah, Iran
| |
Collapse
|
2
|
Chen Y, Tournayre O, Tian H, Lougheed SC. Assessing the breeding phenology of a threatened frog species using eDNA and automatic acoustic monitoring. PeerJ 2023; 11:e14679. [PMID: 36710869 PMCID: PMC9879156 DOI: 10.7717/peerj.14679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 12/13/2022] [Indexed: 01/25/2023] Open
Abstract
Background Climate change has driven shifts in breeding phenology of many amphibians, causing phenological mismatches (e.g., predator-prey interactions), and potentially population declines. Collecting data with high spatiotemporal sensitivity on hibernation emergence and breeding times can inform conservation best practices. However, monitoring the phenology of amphibians can be challenging because of their cryptic nature over much of their life cycle. Moreover, most salamanders and caecilians do not produce conspicuous breeding calls like frogs and toads do, presenting additional monitoring challenges. Methods In this study, we designed and evaluated the performance of an environmental DNA (eDNA) droplet digital PCR (ddPCR) assay as a non-invasive tool to assess the breeding phenology of a Western Chorus Frog population (Pseudacris maculata mitotype) in Eastern Ontario and compared eDNA detection patterns to hourly automatic acoustic monitoring. For two eDNA samples with strong PCR inhibition, we tested three methods to diminish the effect of inhibitors: diluting eDNA samples, adding bovine serum albumin to PCR reactions, and purifying eDNA using a commercial clean-up kit. Results We recorded the first male calling when the focal marsh was still largely frozen. Chorus frog eDNA was detected on April 6th, 6 days after acoustic monitoring revealed this first calling male, but only 2 days after males attained higher chorus activity. eDNA signals were detected at more sampling locales within the marsh and eDNA concentrations increased as more males participated in the chorus, suggesting that eDNA may be a reasonable proxy for calling assemblage size. Internal positive control revealed strong inhibition in some samples, limiting detection probability and quantification accuracy in ddPCR. We found diluting samples was the most effective in reducing inhibition and improving eDNA quantification. Conclusions Altogether, our results showed that eDNA ddPCR signals lagged behind male chorusing by a few days; thus, acoustic monitoring is preferable if the desire is to document the onset of male chorusing. However, eDNA may be an effective, non-invasive monitoring tool for amphibians that do not call and may provide a useful complement to automated acoustic recording. We found inhibition patterns were heterogeneous across time and space and we demonstrate that an internal positive control should always be included to assess inhibition for eDNA ddPCR signal interpretations.
Collapse
|
3
|
Walter JA, Thompson LM, Powers SD, Parry D, Agosta SJ, Grayson KL. Growth and development of an invasive forest insect under current and future projected temperature regimes. Ecol Evol 2022; 12:e9017. [PMID: 35784073 PMCID: PMC9204848 DOI: 10.1002/ece3.9017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/03/2022] Open
Abstract
Temperature and its impact on fitness are fundamental for understanding range shifts and population dynamics under climate change. Geographic climate heterogeneity, behavioral and physiological plasticity, and thermal adaptation to local climates make predicting the responses of species to climate change complex. Using larvae from seven geographically distinct wild populations in the eastern United States of the non-native forest pest Lymantria dispar dispar (L.), we conducted a simulated reciprocal transplant experiment in environmental chambers using six custom temperature regimes representing contemporary conditions near the southern and northern extremes of the US invasion front and projections under two climate change scenarios for the year 2050. Larval growth and development rates increased with climate warming compared with current thermal regimes and tended to be greater for individuals originally sourced from southern rather than northern populations. Although increases in growth and development rates with warming varied somewhat by region of the source population, there was not strong evidence of local adaptation, southern populations tended to outperform those from northern populations in all thermal regimes. Our study demonstrates the utility of simulating thermal regimes under climate change in environmental chambers and emphasizes how the impacts from future increases in temperature can vary based on geographic differences in climate-related performance among populations.
Collapse
Affiliation(s)
- Jonathan A. Walter
- Department of BiologyUniversity of RichmondRichmondVirginiaUSA
- Department of Environmental SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Lily M. Thompson
- Department of BiologyUniversity of RichmondRichmondVirginiaUSA
- Department of Forestry and Environmental ConservationClemson UniversityClemsonSouth CarolinaUSA
| | - Sean D. Powers
- Integrative Life Sciences Doctoral ProgramVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Dylan Parry
- Department of Environmental BiologySUNY College of Environmental Science and ForestrySyracuseNew YorkUSA
| | - Salvatore J. Agosta
- Center for Environmental StudiesVirginia Commonwealth UniversityRichmondVirginiaUSA
| | | |
Collapse
|
4
|
Moldowan PD, Tattersall GJ, Rollinson N. Climate-associated decline of body condition in a fossorial salamander. GLOBAL CHANGE BIOLOGY 2022; 28:1725-1739. [PMID: 34542922 DOI: 10.1111/gcb.15766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 06/13/2023]
Abstract
Temperate ectotherms have responded to recent environmental change, likely due to the direct and indirect effects of temperature on key life cycle events. Yet, a substantial number of ectotherms are fossorial, spending the vast majority of their lives in subterranean microhabitats that are assumed to be buffered against environmental change. Here, we examine whether seasonal climatic conditions influence body condition (a measure of general health and vigor), reproductive output, and breeding phenology in a northern population of fossorial salamander (Spotted Salamander, Ambystoma maculatum). We found that breeding body condition declined over a 12-year monitoring period (2008-2019) with warmer summer and autumn temperatures at least partly responsible for the observed decline in body condition. Our findings are consistent with the hypothesis that elevated metabolism drives the negative association between temperature and condition. Population-level reproduction, assessed via egg mass counts, showed high interannual variation and was weakly influenced by autumn temperatures. Salamander breeding phenology was strongly correlated with lake ice melt but showed no long-term temporal trend (1986-2019). Climatic warming in the region, which has been and is forecasted to be strongest in the summer and autumn, is predicted to lead to a 5%-27% decline in salamander body condition under realistic near-future climate scenarios. Although the subterranean environment offers a thermal buffer, the observed decline in condition and relatively strong effect of summer temperature on body condition suggest that fossorial salamanders are sensitive to the effects of a warming climate. Given the diversity of fossorial taxa, heightened attention to the vulnerability of subterranean microhabitat refugia and their inhabitants is warranted amid global climatic change.
Collapse
Affiliation(s)
- Patrick D Moldowan
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
- Algonquin Wildlife Research Station, Whitney, ON, Canada
| | - Glenn J Tattersall
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Zhang P, Grenouillet G, Dong X, Zheng Y, Lek S, Chang J. Capturing response differences of species distribution to climate and human pressures by incorporating local adaptation: Implications for the conservation of a critically endangered species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 284:111998. [PMID: 33540195 DOI: 10.1016/j.jenvman.2021.111998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/05/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Considering local adaptation has been increasingly involved in forecasting species distributions under climate change and the management of species conservation. Herein, we take the critically endangered Chinese giant salamander (Andrias davidianus) that has both a low dispersal ability and distinct population divergence in different regions as an example. Basin-scale models that represent different populations in the Huanghe River Basin (HRB), the Yangtze River Basin (YRB), and the Pearl River Basin (PRB) were established using ensemble species distribution models. The species ranges under the future human population density (HPD) and climate change were predicted, and the range loss was evaluated for local basins in 2050 and 2070. Our results showed that the predominant factors affecting species distributions differed among basins, and the responses of the species occurrence to HPD and climate factors were distinctly different from northern to southern basins. Future HPD changes would be the most influential factor that engenders negative impacts on the species distribution in all three basins, especially in the HRB. Climate change will likely be less prominent in decreasing the species range, excluding in the YRB and PRB under the highest-emissions scenario in 2050. Overall, the high-emissions scenario would more significantly aggravate the negative impacts produced by HPD change in both 2050 and 2070, with maximum losses of species ranges in the HRB, YRB, and PRB of 83.4%, 60.0%, and 53.5%, respectively, under the scenarios of the combined impacts of HPD and climate changes. We proposed adapted conservation policies to effectively protect the habitat of this critically endangered animal in different basins based on the outcomes. Our research addresses the importance of incorporating local adaptation into species distribution modeling to inform conservation and management decisions.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China; Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France.
| | - Gaël Grenouillet
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France; Institut Universitaire de France, Paris, 75231, France
| | - Xianghong Dong
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yichen Zheng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China
| | - Sovan Lek
- Laboratoire Evolution et Diversité Biologique, UMR5174, Université de Toulouse III Paul Sabatier, CNRS, IRD, Toulouse, 31062, France
| | - Jianbo Chang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
6
|
Zhang P, Dong X, Grenouillet G, Lek S, Zheng Y, Chang J. Species range shifts in response to climate change and human pressure for the world's largest amphibian. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139543. [PMID: 32485455 DOI: 10.1016/j.scitotenv.2020.139543] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 05/05/2023]
Abstract
The Chinese giant salamander, Andrias davidianus, the world's largest amphibian, is critically endangered and has an extremely unique evolutionary history. Therefore, this species represents a global conservation priority and will be impacted by future climate and human pressures. Understanding the range and response to environmental change of this species is a priority for the identification of targeted conservation activities. We projected future range shifts of the Chinese giant salamander under the independent and combined impacts of climate change and human population density (HPD) variations by using ensemble species distribution models. We further evaluated the sustainability of existing nature reserves and identified priority areas for the mitigation or prevention of such pressures. Both climate change and increasing HPD tended to reduce the species range, with the latter leading to greater range losses and fragmentation of the range. Notably, 65.6%, 18.0% and 18.4% of the range loss were attributed solely to HPD change, solely to climate change and to their overlapping impacts, respectively. Overall, the average total and net losses of the species range were 52.5% and 23.4%, respectively, and HPD and climate changes were responsible for 71.4% and 28.6% of the net losses, respectively. We investigated the stability of the remaining species range and found that half of the nature reserves are likely vulnerable, with 57.1% and 66.7% of them likely to lose their conservation value in 2050 and 2070, respectively. To effectively protect this salamander, conservation policies should address both pressures simultaneously, especially considering the negative impact of human pressures in both contemporary periods and the near future. The species range shifts over space and time projected by this research could help guide long-term surveys and the sustainable conservation of wild habitats and populations of this ancient and endangered amphibian.
Collapse
Affiliation(s)
- Peng Zhang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China; UMR Laboratoire Evolution et Diversité Biologique, UPS, Toulouse 31062, France.
| | - Xianghong Dong
- UMR Laboratoire Evolution et Diversité Biologique, UPS, Toulouse 31062, France; State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaël Grenouillet
- UMR Laboratoire Evolution et Diversité Biologique, UPS, Toulouse 31062, France; Institut Universitaire de France, Paris 75231, France
| | - Sovan Lek
- UMR Laboratoire Evolution et Diversité Biologique, UPS, Toulouse 31062, France
| | - Yichen Zheng
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China
| | - Jianbo Chang
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
7
|
Taylor EN, Diele‐Viegas LM, Gangloff EJ, Hall JM, Halpern B, Massey MD, Rödder D, Rollinson N, Spears S, Sun B, Telemeco RS. The thermal ecology and physiology of reptiles and amphibians: A user's guide. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 335:13-44. [DOI: 10.1002/jez.2396] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/13/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Emily N. Taylor
- Biological Sciences Department California Polytechnic State University San Luis Obispo California
| | | | | | - Joshua M. Hall
- Department of Biological Sciences Auburn University Auburn Alabama
| | | | - Melanie D. Massey
- Department of Biology Dalhousie University Halifax Nova Scotia Canada
| | - Dennis Rödder
- Zoologisches Forschungsmuseum Alexander Koenig Bonn Germany
| | - Njal Rollinson
- Department of Ecology and Evolutionary Biology University of Toronto St. Toronto Ontario Canada
- School of the Environment University of Toronto Toronto Ontario Canada
| | - Sierra Spears
- Department of Zoology Ohio Wesleyan University Delaware Ohio
| | - Bao‐jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Rory S. Telemeco
- Department of Biology California State University Fresno California
| |
Collapse
|