1
|
Asiri F. Polyhydroxyalkanoates for Sustainable Aquaculture: A Review of Recent Advancements, Challenges, and Future Directions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:2034-2058. [PMID: 38227436 DOI: 10.1021/acs.jafc.3c06488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Polyhydroxyalkanoates (PHA) are biodegradable biopolymers produced by prokaryotic microbes, which, at the same time, can be applied as single-cell proteins (SCPs), growing on renewable waste-derived substrates. These PHA polymers have gained increasing attention as a sustainable alternative to conventional plastics. One promising application of PHA and PHA-rich SCPs lies within the aquaculture food industry, where they hold potential as feed additives, biocontrol agents against diseases, and immunostimulants. Nevertheless, the cost of PHA production and application remains high, partly due to expensive substrates for cultivating PHA-accumulating SCPs, costly sterilization, energy-intensive SCPs harvesting techniques, and toxic PHA extraction and purification processes. This review summarizes the current state of PHA production and its application in aquaculture. The structure and classification of PHA, microbial sources, cultivation substrates, biosynthesis pathways, and the production challenges and solutions are discussed. Next, the potential of PHA application in aquaculture is explored, focusing on aquaculture challenges, common and innovative PHA-integrated farming practices, and PHA mechanisms in inhibiting pathogens, enhancing the immune system, and improving growth and gut health of various aquatic species. Finally, challenges and future research needs for PHA production and application in aquaculture are identified. Overall, this review paper provides a comprehensive overview of the potential of PHA in aquaculture and highlights the need for further research in this area.
Collapse
Affiliation(s)
- Fahad Asiri
- Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat 13109, Kuwait
| |
Collapse
|
2
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
3
|
Dai Z, Pomraning KR, Deng S, Kim J, Campbell KB, Robles AL, Hofstad BA, Munoz N, Gao Y, Lemmon T, Swita MS, Zucker JD, Kim YM, Burnum-Johnson KE, Magnuson JK. Metabolic engineering to improve production of 3-hydroxypropionic acid from corn-stover hydrolysate in Aspergillus species. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:53. [PMID: 36991437 DOI: 10.1186/s13068-023-02288-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/20/2023] [Indexed: 03/31/2023]
Abstract
BACKGROUND Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS In this study, the 3-HP β-alanine pathway consisting of aspartate decarboxylase, β-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the β-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional β-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.
Collapse
Affiliation(s)
- Ziyu Dai
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| | - Kyle R Pomraning
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Shuang Deng
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joonhoon Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristen B Campbell
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Ana L Robles
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Beth A Hofstad
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Nathalie Munoz
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Yuqian Gao
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Teresa Lemmon
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Marie S Swita
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jeremy D Zucker
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Young-Mo Kim
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Kristin E Burnum-Johnson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jon K Magnuson
- DOE Agile Biofoundry, Emeryville, CA, 94608, USA.
- Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA.
| |
Collapse
|
4
|
Using runaway replication to express polyhydroxyalkanoic acid (pha) genes from a novel marine bacterium in enteric bacteria: The influence of temperature and phasins on PHA accumulation. PLoS One 2022; 17:e0275597. [PMID: 36477445 PMCID: PMC9728866 DOI: 10.1371/journal.pone.0275597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/20/2022] [Indexed: 12/13/2022] Open
Abstract
While plastics have revolutionized our world, plastic waste has serious environmental and economic impacts. Polyhydroxyalkanoic acid (PHA) is a bacterial carbon and energy reserve shown to be both biodegradable and biocompatible and could potentially replace conventional plastics. However, cost-effective mass production remains elusive. Bacteria often accumulate PHA as cytoplasmic granules. PHA synthase creates the PHA polymer from acetoacyl-CoA monomers, while phasins are small multifunctional proteins that are found in abundance on the granule surface. The PHA synthase gene from a novel marine isolate, Vibrio B-18 (or B-18), was placed in the presence or absence of an upstream phasin gene in a runaway replication plasmid using polymerase chain reaction (PCR) technology. Plasmid gene expression may be induced chemically or thermally. Overexpression of the PHA genes was demonstrated by SDS-PAGE analysis, and microscopy was used to detect PHA accumulation in three different enteric bacteria (Escherichia coli, Klebsiella aerogenes, and Shigella flexneri). While the B-18 genes were clearly overexpressed at 41°C, PHA accumulation occurred more readily at the lower (30°C) non-inducing temperature regardless of chemical induction if the phasin gene was present. A mutational analysis confirmed the identity of the start codon for the PHA synthase gene and provided evidence supporting the requirement for phasins to allow for PHA accumulation in the recombinant hosts. The findings described in this study confirm the conclusions obtained from related studies from other laboratories and lend support to the importance of including a phasin gene in addition to the basic genes needed for PHA synthesis and accumulation in recombinant enteric bacteria, such as Escherichia coli, Klebsiella aerogenes, and Shigella flexneri.
Collapse
|
5
|
Asiri F, Chu KH. Valorization of agro-industrial wastes into polyhydroxyalkanoates-rich single-cell proteins to enable a circular waste-to-feed economy. CHEMOSPHERE 2022; 309:136660. [PMID: 36191769 DOI: 10.1016/j.chemosphere.2022.136660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Recovering and converting carbon and nutrients from waste streams into healthy single-cell proteins (SCPs) can be an effective strategy to address costly waste management and support the increasing animal feed demand for the global food supply. Recently, SCPs rich in polyhydroxybutyrate (PHB) have been identified as an effective biocontrol healthy feed to replace conventional antibiotics-supplemented aquaculture feed. PHB, an intercellular polymer of short-chain-length (SCL) hydroxy-fatty acids, is a common type of polyhydroxyalkanoates (PHA) that can be microbially produced from various organics, including agro-industrial wastes. The complex chemical properties of agro-industrial wastes might produce SCPs containing PHA with SCL and/or medium chain-length (MCL) hydroxy-fatty acids. However, the effects of MCL-PHA-containing SCPs on aqua species' health and disease-fighting ability remains poorly understood. This study investigated the feasibility of producing various PHA-containing SCPs from renewable agro-industrial wastes/wastewaters, the effectiveness of SCL- and MCL-PHA as biocontrol agents, and the effects of these PHA-rich SCPs on the growth and disease resistance of an aquaculture animal model, brine shrimp Artemia. Zobellella denitrificans ZD1 and Pseudomonas oleovorans were able to grow on different pure substrates and agro-industrial wastes/wastewaters to produce various SCL- and/or MCL-PHA-rich SCPs. Low doses of MCL-fatty acids (i.e., PHA intermediates) efficiently suppressed the growth of aquaculture pathogens. Moreover, MCL-PHA-rich SCPs served as great food/energy sources for Artemia and improved Artemia's ability to fight pathogens. This study offers a win-win approach to address the challenges of wastes/wastewater management and feed supply faced by the aquaculture industry.
Collapse
Affiliation(s)
- Fahad Asiri
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA; Environment & Life Sciences Research Center, Kuwait Institute for Scientific Research, P.O. Box 24885, Safat, 13109, Kuwait
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA.
| |
Collapse
|
6
|
Yasin A, Begum MK, Eshik MME, Punom NJ, Ahmmed S, Rahman MS. Molecular identification and antibiotic resistance patterns of diverse bacteria associated with shrimp PL nurseries of Bangladesh: suspecting Acinetobacter venetianus as future threat. PeerJ 2022; 10:e12808. [PMID: 35223199 PMCID: PMC8868018 DOI: 10.7717/peerj.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 12/27/2021] [Indexed: 01/11/2023] Open
Abstract
Shrimp aquaculture has been accomplished with breeding and nursing of shrimp in an artificial environment to fulfill the increasing demand of shrimp consumption worldwide. However, the microbial diseases appear as a serious problem in this industry. The study was designed to identify the diverse bacteria from shrimp PL (post-larvae) nurseries and to profile antibiotic resistance patterns. The rearing water (raw seawater, treated and outlet water) and shrimp PL were collected from eight nurseries of south-west Bangladesh. Using selective agar plates, thirty representative isolates were selected for 16S rRNA gene sequencing, antibiotic susceptibility test and MAR index calculation. Representative isolates were identified as Aeromonas caviae, Pseudomonas monteilii, Shewanella algae, Vibrio alginolyticus, V. brasiliensis, V. natriegens, V. parahaemolyticus, V. shilonii, V. xuii, Zobellella denitrificans which are Gram-negative, and Bacillus licheniformis and B. pumilus which are Gram-positive. Notably, six strains identified as Acinetobacter venetianus might be a concern of risk for shrimp industry. The antibiotic resistance pattern reveals that the strain YWO8-97 (identified as P. monteilii) was resistant to all twelve antibiotics. Ceftazidime was the most powerful antibiotic since most of the studied strains were sensitive against it. The six strains of A. venetianus showed multiple antibiotic resistance patterns. MAR index were ranged from 0.08 to 1.0, and values of 26 isolates were more than 0.2 which means prior high exposure to the antibiotics. From the present study, it can be concluded that shrimp PL nurseries in southern part of Bangladesh are getting contaminated with antibiotic resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Abdullah Yasin
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mst. Khadiza Begum
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Md. Mostavi Enan Eshik
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Nusrat Jahan Punom
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Shawon Ahmmed
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh,Brackishwater Station, Bangladesh Fisheries Research Institute (BFRI), Khulna, Bangladesh
| | - Mohammad Shamsur Rahman
- Aquatic Animal Health Group, Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
7
|
Hwangbo M, Gill JJ, Young R, Chu KH. Dual-function oleaginous biocatalysts for non-sterile cultivation and solvent-free biolipid bioextraction to reduce biolipid-based biofuel production costs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143969. [PMID: 33333303 PMCID: PMC8061307 DOI: 10.1016/j.scitotenv.2020.143969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/31/2020] [Accepted: 11/14/2020] [Indexed: 06/12/2023]
Abstract
Triacylglycerols (TAGs) are starting materials for the production of biolipid-based fuels such as biodiesel and biojet fuel. While various microorganisms can produce TAGs from renewable resources, the cultivation of TAG-producing microorganisms under sterilization conditions to avoid microbial contamination and application of solvent to extract TAGs from the TAG-filled microorganisms are costly. To overcome these challenges, this study reports the feasibility of a non-sterile cultivation of an oleaginous bacterium Rhodococcus opacus PD631SpAHB under saline conditions, followed by the use of a solvent-free, phage-lysis-protein-based bioextraction approach for TAGs release. The engineered strain PD631SpAHB was developed by introducing a recombinant plasmid carrying a phage lytic gene cassette (pAHB) into Rhodococcus opacus PD631 via transformation, followed by adaptive evolution under saline conditions. This newly developed strain is a salt-tolerant strain with the inducible plasmid pAHB to enable TAGs release into the supernatant upon induction. Cell lysis of PD631SpAHB was confirmed by the decrease of the optical density of cell suspension, by the loss of cell membrane integrity, and by the detection of TAGs in the culture medium. Up to 38% of the total TAGs accumulated in PD631SpAHB was released into supernatant after the expression of the lytic genes. PD631SpAHB strain is a promising candidate to produce TAGs from non-sterile growth medium and release of its TAGs without solvent extraction - a new approach to reduce the overall cost of biolipid-based biofuel production.
Collapse
Affiliation(s)
- Myung Hwangbo
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, United States
| | - Jason J Gill
- Department of Animal Science, Texas A&M University, College Station, TX 77843, United States; Center for Phage Technology, Texas A&M University, College Station, TX 77843, United States
| | - Ry Young
- Center for Phage Technology, Texas A&M University, College Station, TX 77843, United States; Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, United States
| | - Kung-Hui Chu
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX 77843, United States.
| |
Collapse
|
8
|
Asiri F, Chen CH, Hwangbo M, Shao Y, Chu KH. From Organic Wastes to Bioplastics: Feasibility of
Nonsterile Poly(3-hydroxybutyrate) Production by Zobellella
denitrificans ZD1. ACS OMEGA 2020; 5:24158-24168. [PMID: 33015431 PMCID: PMC7528165 DOI: 10.1021/acsomega.9b04002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/03/2020] [Indexed: 05/04/2023]
Abstract
![]()
Poly(3-hydroxybutyrate)
(PHB)—a renewable and biodegradable
polymer—is a promising alternative to nonbiodegradable synthetic
plastics that are derived from petrochemicals. The methods currently
employed for PHB production are costly, in part, due to the expensive
cultivation feedstocks and the need to sterilize the culture medium,
which is energy-intensive. This study investigates the feasibility
of nonsterile PHB production from several saline organic wastes using
a salt-tolerant strain, Zobellella denitrificans ZD1 (referred to as strain ZD1). Factors such as the pH, salinity,
carbon/nitrogen (C/N) ratio, nitrogen source, and electron acceptor
that might affect the growth of strain ZD1 and its PHB production
were determined. Our results showed successful nonsterile PHB production
by growing the strain ZD1 on nonsterile synthetic crude glycerol,
high-strength saline wastewater, and real municipal wastewater-activated
sludge under saline conditions. The PHB production was significantly
enhanced when the levels of salts and nitrate-nitrogen in the culture
medium were increased. This study suggested a promising low-cost nonsterile
PHB production strategy from organic wastes using strain ZD1.
Collapse
Affiliation(s)
- Fahad Asiri
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
| | - Chih-Hung Chen
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
- Department
of Environmental Engineering, National Cheng
Kung University, Tainan 70101, Taiwan
| | - Myung Hwangbo
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
| | - Yiru Shao
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
| | - Kung-Hui Chu
- Zachry
Department of Civil and Environmental Engineering, Texas A&M University, College
Station, Texas 77843-3136, United States
- . Tel: (979)-845-1403. Fax: (979)-862-1542
| |
Collapse
|