1
|
Kosik I, Da Silva Santos J, Angel M, Hu Z, Holly J, Gibbs JS, Gill T, Kosikova M, Li T, Bakhache W, Dolan PT, Xie H, Andrews SF, Gillespie RA, Kanekiyo M, McDermott AB, Pierson TC, Yewdell JW. C1q enables influenza hemagglutinin stem binding antibodies to block viral attachment and broadens the antibody escape repertoire. Sci Immunol 2024; 9:eadj9534. [PMID: 38517951 DOI: 10.1126/sciimmunol.adj9534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/14/2024] [Indexed: 03/24/2024]
Abstract
Antigenic drift, the gradual accumulation of amino acid substitutions in the influenza virus hemagglutinin (HA) receptor protein, enables viral immune evasion. Antibodies (Abs) specific for the drift-resistant HA stem region are a promising universal influenza vaccine target. Although anti-stem Abs are not believed to block viral attachment, here we show that complement component 1q (C1q), a 460-kilodalton protein with six Ab Fc-binding domains, confers attachment inhibition to anti-stem Abs and enhances their fusion and neuraminidase inhibition. As a result, virus neutralization activity in vitro is boosted up to 30-fold, and in vivo protection from influenza PR8 infection in mice is enhanced. These effects reflect increased steric hindrance and not increased Ab avidity. C1q greatly expands the anti-stem Ab viral escape repertoire to include residues throughout the HA, some of which cause antigenic alterations in the globular region or modulate HA receptor avidity. We also show that C1q enhances the neutralization activity of non-receptor binding domain anti-SARS-CoV-2 spike Abs, an effect dependent on spike density on the virion surface. These findings demonstrate that C1q can greatly expand Ab function and thereby contribute to viral evolution and immune escape.
Collapse
Affiliation(s)
- Ivan Kosik
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jefferson Da Silva Santos
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Mathew Angel
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Zhe Hu
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jaroslav Holly
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - James S Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Tanner Gill
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Martina Kosikova
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Tiansheng Li
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - William Bakhache
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Patrick T Dolan
- Quantitative Virology and Evolution Unit, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hang Xie
- Laboratory of Respiratory Viral Diseases, Division of Viral Products, Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Sarah F Andrews
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca A Gillespie
- Molecular Immunoengineering Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Masaru Kanekiyo
- Molecular Immunoengineering Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adrian B McDermott
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Theodore C Pierson
- Viral Pathogenesis Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Jonathan W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| |
Collapse
|
2
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
3
|
Schuele C, Schmeisser F, Orr M, Meseda CA, Vasudevan A, Wang W, Weiss CD, Woerner A, Atukorale VN, Pedro CL, Weir JP. Neutralizing and protective murine monoclonal antibodies to the hemagglutinin of influenza H5 clades 2.3.2.1 and 2.3.4.4. Influenza Other Respir Viruses 2023; 17:e13152. [PMID: 37246149 PMCID: PMC10209644 DOI: 10.1111/irv.13152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/27/2023] [Accepted: 05/03/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND Highly pathogenic avian H5 influenza viruses have spread and diversified genetically and antigenically into multiple clades and subclades. Most isolates of currently circulating H5 viruses are in clade 2.3.2.1 or 2.3.4.4. METHODS Panels of murine monoclonal antibodies (mAbs) were generated to the influenza hemagglutinin (HA) of H5 viruses from the clade 2.3.2.1 H5N1 vaccine virus A/duck/Bangladesh/19097/2013 and the clade 2.3.4.4 H5N8 vaccine virus A/gyrfalcon/Washington/41088-6/2014. Antibodies were selected and characterized for binding, neutralization, epitope recognition, cross-reactivity with other H5 viruses, and the ability to provide protection in passive transfer experiments. RESULTS All mAbs bound homologous HA in an ELISA format; mAbs 5C2 and 6H6 were broadly binding for other H5 HAs. Potently neutralizing mAbs were identified in each panel, and all neutralizing mAbs provided protection in passive transfer experiments in mice challenged with a homologous clade influenza virus. Cross-reacting mAb 5C2 neutralized a wide variety of clade 2.3.2.1 viruses, as well as H5 viruses from other clades, and also provided protection against heterologous H5 clade influenza virus challenge. Epitope analysis indicated that the majority of mAbs recognized epitopes in the globular head of the HA. The mAb 5C2 appeared to recognize an epitope below the globular head but above the stalk region of HA. CONCLUSIONS The results suggested that these H5 mAbs would be useful for virus and vaccine characterization. The results confirmed the functional cross-reactivity of mAb 5C2, which appears to bind a novel epitope, and suggest the therapeutic potential for H5 infections in humans with further development.
Collapse
Affiliation(s)
- Carlotta Schuele
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Falko Schmeisser
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Megan Orr
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Clement A. Meseda
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Anupama Vasudevan
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Wei Wang
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Carol D. Weiss
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Amy Woerner
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Vajini N. Atukorale
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Cyntia L. Pedro
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| | - Jerry P. Weir
- Laboratory of DNA Viruses, Division of Viral Products, Center for Biologics Evaluation and Research (CBER)Food and Drug Administration (FDA)Silver SpringMarylandUSA
| |
Collapse
|
4
|
Jiao C, Wang B, Chen P, Jiang Y, Liu J. Analysis of the conserved protective epitopes of hemagglutinin on influenza A viruses. Front Immunol 2023; 14:1086297. [PMID: 36875062 PMCID: PMC9981632 DOI: 10.3389/fimmu.2023.1086297] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The conserved protective epitopes of hemagglutinin (HA) are essential to the design of a universal influenza vaccine and new targeted therapeutic agents. Over the last 15 years, numerous broadly neutralizing antibodies (bnAbs) targeting the HA of influenza A viruses have been isolated from B lymphocytes of human donors and mouse models, and their binding epitopes identified. This work has brought new perspectives for identifying conserved protective epitopes of HA. In this review, we succinctly analyzed and summarized the antigenic epitopes and functions of more than 70 kinds of bnAb. The highly conserved protective epitopes are concentrated on five regions of HA: the hydrophobic groove, the receptor-binding site, the occluded epitope region of the HA monomers interface, the fusion peptide region, and the vestigial esterase subdomain. Our analysis clarifies the distribution of the conserved protective epitope regions on HA and provides distinct targets for the design of novel vaccines and therapeutics to combat influenza A virus infection.
Collapse
Affiliation(s)
- Chenchen Jiao
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Bo Wang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Pucheng Chen
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yongping Jiang
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jinxiong Liu
- State Key Laboratory of Veterinary Biotechnology, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
6
|
Del Rosario JMM, da Costa KAS, Asbach B, Ferrara F, Ferrari M, Wells DA, Mann GS, Ameh VO, Sabeta CT, Banyard AC, Kinsley R, Scott SD, Wagner R, Heeney JL, Carnell GW, Temperton NJ. Exploiting Pan Influenza A and Pan Influenza B Pseudotype Libraries for Efficient Vaccine Antigen Selection. Vaccines (Basel) 2021; 9:741. [PMID: 34358157 PMCID: PMC8310092 DOI: 10.3390/vaccines9070741] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/09/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
We developed an influenza hemagglutinin (HA) pseudotype library encompassing Influenza A subtypes HA1-18 and Influenza B subtypes (both lineages) to be employed in influenza pseudotype microneutralization (pMN) assays. The pMN is highly sensitive and specific for detecting virus-specific neutralizing antibodies against influenza viruses and can be used to assess antibody functionality in vitro. Here we show the production of these viral HA pseudotypes and their employment as substitutes for wildtype viruses in influenza neutralization assays. We demonstrate their utility in detecting serum responses to vaccination with the ability to evaluate cross-subtype neutralizing responses elicited by specific vaccinating antigens. Our findings may inform further preclinical studies involving immunization dosing regimens in mice and may help in the creation and selection of better antigens for vaccine design. These HA pseudotypes can be harnessed to meet strategic objectives that contribute to the strengthening of global influenza surveillance, expansion of seasonal influenza prevention and control policies, and strengthening pandemic preparedness and response.
Collapse
Affiliation(s)
- Joanne Marie M. Del Rosario
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
- Department of Physical Sciences and Mathematics, College of Arts and Sciences, University of the Philippines Manila, Manila 1000, Philippines
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
| | - Kelly A. S. da Costa
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
| | - Benedikt Asbach
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (B.A.); (R.W.)
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
- Vector Development and Production Laboratory, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Matteo Ferrari
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - David A. Wells
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Gurdip Singh Mann
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
| | - Veronica O. Ameh
- Department of Veterinary Public Health and Preventive Medicine, College of Veterinary Medicine, Federal University of Agriculture Makurdi, Makurdi P.M.B. 2373, Bene State, Nigeria;
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P. Bag X04, Onderstepoort 0110, South Africa;
| | - Claude T. Sabeta
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, P. Bag X04, Onderstepoort 0110, South Africa;
- OIE Rabies Reference Laboratory, Agricultural Research Council-Onderstepoort Veterinary Research, Onderstepoort 0110, South Africa
| | - Ashley C. Banyard
- Animal and Plant Health Agency (APHA), Department of Virology, Weybridge, Surrey KT15 3NB, UK;
| | - Rebecca Kinsley
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Simon D. Scott
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
| | - Ralf Wagner
- Institute of Medical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany; (B.A.); (R.W.)
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Jonathan L. Heeney
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - George W. Carnell
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Nigel J. Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Chatham ME4 4BF, UK; (J.M.M.D.R.); (K.A.S.d.C.); (F.F.); (G.S.M.); (S.D.S.)
- DIOSynVax, Cambridge CB3 0ES, UK; (M.F.); (D.A.W.); (R.K.); (J.L.H.); (G.W.C.)
| |
Collapse
|
7
|
Lee P, Kim CU, Seo SH, Kim DJ. Current Status of COVID-19 Vaccine Development: Focusing on Antigen Design and Clinical Trials on Later Stages. Immune Netw 2021; 21:e4. [PMID: 33728097 PMCID: PMC7937514 DOI: 10.4110/in.2021.21.e4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/23/2022] Open
Abstract
The global outbreak of coronavirus disease 2019 (COVID-19) is still threatening human health, economy, and social life worldwide. As a counteraction for this devastating disease, a number of vaccines are being developed with unprecedented speed combined with new technologies. As COVID-19 vaccines are being developed in the absence of a licensed human coronavirus vaccine, there remain further questions regarding the long-term efficacy and safety of the vaccines, as well as immunological mechanisms in depth. This review article discusses the current status of COVID-19 vaccine development, mainly focusing on antigen design, clinical trials in later stages, and immunological considerations for further study.
Collapse
Affiliation(s)
- Pureum Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| | | | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
- Department of Bioscience, University of Science and Technology (UST), Daejeon 34113, Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
8
|
Viboud C, Gostic K, Nelson MI, Price GE, Perofsky A, Sun K, Sequeira Trovão N, Cowling BJ, Epstein SL, Spiro DJ. Beyond clinical trials: Evolutionary and epidemiological considerations for development of a universal influenza vaccine. PLoS Pathog 2020; 16:e1008583. [PMID: 32970783 PMCID: PMC7514029 DOI: 10.1371/journal.ppat.1008583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The prospect of universal influenza vaccines is generating much interest and research at the intersection of immunology, epidemiology, and viral evolution. While the current focus is on developing a vaccine that elicits a broadly cross-reactive immune response in clinical trials, there are important downstream questions about global deployment of a universal influenza vaccine that should be explored to minimize unintended consequences and maximize benefits. Here, we review and synthesize the questions most relevant to predicting the population benefits of universal influenza vaccines and discuss how existing information could be mined to begin to address these questions. We review three research topics where computational modeling could bring valuable evidence: immune imprinting, viral evolution, and transmission. We address the positive and negative consequences of imprinting, in which early childhood exposure to influenza shapes and limits immune responses to future infections via memory of conserved influenza antigens. However, the mechanisms at play, their effectiveness, breadth of protection, and the ability to "reprogram" already imprinted individuals, remains heavily debated. We describe instances of rapid influenza evolution that illustrate the plasticity of the influenza virus in the face of drug pressure and discuss how novel vaccines could introduce new selective pressures on the evolution of the virus. We examine the possible unintended consequences of broadly protective (but infection-permissive) vaccines on the dynamics of epidemic and pandemic influenza, compared to conventional vaccines that have been shown to provide herd immunity benefits. In conclusion, computational modeling offers a valuable tool to anticipate the benefits of ambitious universal influenza vaccine programs, while balancing the risks from endemic influenza strains and unpredictable pandemic viruses. Moving forward, it will be important to mine the vast amount of data generated in clinical studies of universal influenza vaccines to ensure that the benefits and consequences of these vaccine programs have been carefully modeled and explored.
Collapse
Affiliation(s)
- Cécile Viboud
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
- * E-mail:
| | - Katelyn Gostic
- Dept. of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States
- Dept. of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Graeme E. Price
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Amanda Perofsky
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Kaiyuan Sun
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Nídia Sequeira Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - Benjamin J. Cowling
- World Health Organization Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Suzanne L. Epstein
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - David J. Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
9
|
Nath Neerukonda S, Vassell R, Weiss CD. Neutralizing Antibodies Targeting the Conserved Stem Region of Influenza Hemagglutinin. Vaccines (Basel) 2020; 8:E382. [PMID: 32664628 PMCID: PMC7563823 DOI: 10.3390/vaccines8030382] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/18/2022] Open
Abstract
Influenza continues to be a public health threat despite the availability of annual vaccines. While vaccines are generally effective at inducing strain-specific immunity, they are sub-optimal or ineffective when drifted or novel pandemic strains arise due to sequence changes in the major surface glycoprotein hemagglutinin (HA). The discovery of a large number of antibodies targeting the highly conserved stem region of HAs that are capable of potently neutralizing a broad range of virus strains and subtypes suggests new ways to protect against influenza. The structural characterization of HA stem epitopes and broadly neutralizing antibody paratopes has enabled the design of novel proteins, mini-proteins, and peptides targeting the HA stem, thus providing a foundation for the design of new vaccines. In this narrative, we comprehensively review the current knowledge about stem-directed broadly neutralizing antibodies and the structural features contributing to virus neutralization.
Collapse
Affiliation(s)
| | | | - Carol D. Weiss
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (S.N.N.); (R.V.)
| |
Collapse
|
10
|
De Jong NMC, Aartse A, Van Gils MJ, Eggink D. Development of broadly reactive influenza vaccines by targeting the conserved regions of the hemagglutinin stem and head domains. Expert Rev Vaccines 2020; 19:563-577. [PMID: 32510256 DOI: 10.1080/14760584.2020.1777861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Influenza virus infections cause serious illness in millions of people each year. Although influenza virus vaccines are available, they are not optimally effective due to mismatches between the influenza virus strains used for the vaccine and the circulating strains. To improve protection by vaccines, a broadly protective or universal vaccine may be required. Strategies to develop universal vaccines aim to elicit broadly reactive antibodies, which target regions on the viral hemagglutinin (HA) protein which are conserved between strains. Broadly reactive antibodies have helped to identify such targets and can guide the design of such a vaccine. AREAS COVERED The first part of this review provides an in-depth overview of broadly reactive anti-HA antibodies, discussing their origin, breadth and their mechanisms of protection. The second part discusses the technical design and mode of action of potential universal vaccine candidates that aim to elicit these broadly reactive antibodies and provide protection against a majority of influenza strains. EXPERT OPINION While great strides have been made in the development of universal influenza vaccine candidates, real-life use still requires improvement of stability, enhancement of their breadth of protection and ease of production, while efficacies need to be determined in human trials.
Collapse
Affiliation(s)
- Nina M C De Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Aafke Aartse
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands.,Department of Virology, Biomedical Primate Research Centre , Rijswijk, The Netherlands
| | - Marit J Van Gils
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| | - Dirk Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam , Amsterdam, The Netherlands
| |
Collapse
|