1
|
Zong J, Yang L, Wei L, Wang D, Wang X, Zhang Z. MALT1 Positively Relates to T Helper 1 and T Helper 17 cells, and Serves as a Potential Biomarker for Predicting 30-Day Mortality in Stanford Type A Aortic Dissection Patients. TOHOKU J EXP MED 2023; 261:299-307. [PMID: 37704417 DOI: 10.1620/tjem.2023.j077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Mucosa-associated lymphoid tissue 1 (MALT1) regulates inflammation and T helper (Th) cell differentiation, which may participate in the progression of Stanford type A aortic dissection (TAAD). This study intended to assess the association of MALT1 expression with prognosis in TAAD patients. In this prospective study, MALT1 expression was measured by reverse transcription-quantitative polymerase chain reaction assay from peripheral blood samples in 100 TAAD patients and 100 non-AD controls (non-AD patients with chest pain) before treatment. Besides, Th1, Th2, and Th17 cells of TAAD patients before treatment were measured by flow cytometry assay, and their 30-day mortality was recorded. MALT1 expression was ascended in TAAD patients vs. non-AD controls (P < 0.001). In TAAD patients, elevated MALT1 expression was linked with hypertension complication (P = 0.009), increased systolic blood pressure (r = 0.291, P = 0.003), C-reactive protein (CRP) (r = 0.286, P = 0.004), and D-dimer (r = 0.359, P < 0.001). Additionally, MALT1 expression was positively correlated with Th1 cells (r = 0.312, P = 0.002) and Th17 cells (r = 0.397, P < 0.001), but not linked with Th2 cells (r = -0.166, P = 0.098). Notably, the 30-day mortality of TAAD patients was 28.0%. MALT1 expression [odds ratio (OR) = 1.936, P = 0.004], CRP (OR = 1.108, P = 0.002), D-dimer (OR = 1.094, P = 0.003), and surgery timing (emergency vs. selective) (OR = 8.721, P = 0.024) independently predicted increased risk of death within 30 days in TAAD patients. Furthermore, the combination of the above-mentioned independent factors had an excellent ability in predicting 30-day mortality with the area under curve of 0.949 (95% confidence interval: 0.909-0.989). MALT1 expression relates to increased Th1 cells, Th17 cells, and 30-day mortality risk in TAAD patients.
Collapse
Affiliation(s)
- Junqing Zong
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Lingbo Yang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Lei Wei
- Department of Cardiovascular Surgery, Shanxi Provincial People's Hospital
| | - Dong Wang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| | - Zhongjie Zhang
- Department of Cardiovascular Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University
| |
Collapse
|
2
|
Verhelst SHL, Prothiwa M. Chemical Probes for Profiling of MALT1 Protease Activity. Chembiochem 2023; 24:e202300444. [PMID: 37607867 DOI: 10.1002/cbic.202300444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 08/24/2023]
Abstract
The paracaspase MALT1 is a key regulator of the human immune response. It is implicated in a variety of human diseases. For example, deregulated protease activity drives the survival of malignant lymphomas and is involved in the pathophysiology of autoimmune/inflammatory diseases. Thus, MALT1 has attracted attention as promising drug target. Although many MALT1 inhibitors have been identified, molecular tools to study MALT1 activity, target engagement and inhibition in complex biological samples, such as living cells and patient material, are still scarce. Such tools are valuable to validate MALT1 as a drug target in vivo and to assess yet unknown biological roles of MALT1. In this review, we discuss the recent literature on the development and biological application of molecular tools to study MALT1 activity and inhibition.
Collapse
Affiliation(s)
- Steven H L Verhelst
- Department of Cellular and Molecular Medicine, KU Leuven - University of Leuven, Herestraat 49, box 901b, 3000, Leuven, Belgium
- Leibniz Institut für Analytische Wissenschaften - ISAS - e.V., Otto-Hahn Strasse 6b, 44227, Dortmund, Germany
| | - Michaela Prothiwa
- Department of Pharmaceutical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| |
Collapse
|
3
|
Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer 2023; 9:911-927. [PMID: 37598003 DOI: 10.1016/j.trecan.2023.07.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/21/2023]
Abstract
Immunosuppressive regulatory T cells (Tregs) provide a main mechanism of tumor immune evasion. Targeting Tregs, especially in the tumor microenvironment (TME), continues to be investigated to improve cancer immunotherapy. Recent studies have unveiled intratumoral Treg heterogeneity and plasticity, furthering the complexity of the role of Tregs in tumor immunity and immunotherapy response. The phenotypic and functional diversity of intratumoral Tregs can impact their response to therapy and may offer new targets to modulate specific Treg subsets. In this review we provide a unifying framework of critical factors contributing to Treg heterogeneity and plasticity in the TME, and we discuss how this information can guide the development of more specific Treg-targeting therapies for cancer immunotherapy.
Collapse
Affiliation(s)
- Jee Hye Kang
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA
| | - Roberta Zappasodi
- Weill Cornell Medicine, Weill Cornell Medical College of Cornell University, New York, NY, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School, New York, NY, USA.
| |
Collapse
|
4
|
Li C, Yu F, Xu W. Early low blood MALT1 expression levels forecast better efficacy of PD‑1 inhibitor‑based treatment in patients with metastatic colorectal cancer. Oncol Lett 2023; 26:329. [PMID: 37415633 PMCID: PMC10320427 DOI: 10.3892/ol.2023.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/30/2023] [Indexed: 07/08/2023] Open
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) modulates colorectal cancer (CRC) malignant behaviors and tumor immune escape. The present study aimed to explore the association of MALT1 with treatment response and survival time among patients with metastatic CRC (mCRC) after programmed cell death protein-1 (PD-1) inhibitor-based treatment. MALT1 from the blood samples of 75 patients with unresectable mCRC receiving PD-1 inhibitor-based treatment at baseline and after 2-cycle treatment, as well as 20 healthy controls (HCs), was detected by reverse transcription-quantitative PCR. In the patients with mCRC, the objective response rate (ORR), disease control rate (DCR), progression-free survival (PFS) and overall survival (OS) were calculated. MALT1 expression was elevated in patients with mCRC compared with that in HCs (P<0.001). In patients with mCRC, MALT1 expression was positively correlated with multiple (vs. single) metastasis (P=0.032) and peritoneum metastasis (P=0.029). MALT1 levels before treatment were decreased in ORR patients vs. non-ORR patients (P=0.043) and in DCR patients vs. non-DCR patients (P=0.007). Additionally, MALT1 expression was reduced after treatment compared with that before treatment (P<0.001). Meanwhile, MALT1 expression after treatment was notably decreased in ORR patients vs. non-ORR patients (P<0.001) and in DCR patients vs. non-DCR patients (P<0.001). Furthermore, a low MALT1 level before treatment was associated with longer PFS (P=0.030) and OS (P=0.025) times. Decreased MALT1 expression after treatment and a decline in MALT1 expression of >30% after treatment (ratio to MALT1 before treatment) (both P≤0.001) presented more significant associations with prolonged PFS and OS times. In conclusion, early low levels of blood MALT1 during therapy may predict an improved response to PD-1 inhibitor-based treatment and survival time in patients with mCRC.
Collapse
Affiliation(s)
- Chuanming Li
- Department of Anorectal Surgery, Wuhan No. 8 Hospital (Wuhan Anorectal Hospital), Wuhan, Hubei 430000, P.R. China
| | - Fan Yu
- Department of Anorectal Surgery, Wuhan No. 8 Hospital (Wuhan Anorectal Hospital), Wuhan, Hubei 430000, P.R. China
| | - Wanli Xu
- Department of Gastroenterology, Wuhan No. 8 Hospital (Wuhan Anorectal Hospital), Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
5
|
Geng H, Wang Y, Wang S. Blood MALT1 deficiency is common and relates to unfavorable induction therapy response and survival profile in acute myeloid leukemia patients. Hematology 2022; 27:1176-1183. [DOI: 10.1080/16078454.2022.2139909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Haili Geng
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yiting Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Shaoyuan Wang
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
6
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
7
|
Wang Q, Wang Y, Liu Q, Chu Y, Mi R, Jiang F, Zhao J, Hu K, Luo R, Feng Y, Lee H, Zhou D, Mi J, Deng R. MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in rheumatoid arthritis. Front Immunol 2022; 13:913830. [PMID: 35967391 PMCID: PMC9367691 DOI: 10.3389/fimmu.2022.913830] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Objective MALT1 regulates immunity and inflammation in multiple ways, while its role in rheumatoid arthritis (RA) is obscure. This study aimed to investigate the relationship of MALT1 with disease features, treatment outcome, as well as its effect on Th1/2/17 cell differentiation and underlying molecule mechanism in RA. Methods Totally 147 RA patients were enrolled. Then their blood Th1, Th2, and Th17 cells were detected by flow cytometry. Besides, PBMC MALT1 expression was detected before treatment (baseline), at week (W) 6, W12, and W24. PBMC MALT1 in 30 osteoarthritis patients and 30 health controls were also detected. Then, blood CD4+ T cells were isolated from RA patients, followed by MALT1 overexpression or knockdown lentivirus transfection and Th1/2/17 polarization assay. In addition, IMD 0354 (NF-κB antagonist) and SP600125 (JNK antagonist) were also added to treat CD4+ T cells. Results MALT1 was increased in RA patients compared to osteoarthritis patients and healthy controls. Meanwhile, MALT1 positively related to CRP, ESR, DAS28 score, Th17 cells, negatively linked with Th2 cells, but did not link with other features or Th1 cells in RA patients. Notably, MALT1 decreased longitudinally during treatment, whose decrement correlated with RA treatment outcome (treatment response, low disease activity, or disease remission). In addition, MALT1 overexpression promoted Th17 differentiation, inhibited Th2 differentiation, less affected Th1 differentiation, activated NF-κB and JNK pathways in RA CD4+ T cells; while MALT1 knockdown exhibited the opposite effect. Besides, IMD 0354 and SP600125 addition attenuated MALT1’s effect on Th2 and Th17 differentiation. Conclusion MALT1 regulates Th2 and Th17 differentiation via NF-κB and JNK pathways, as well as correlates with disease activity and treatment outcome in RA.
Collapse
Affiliation(s)
- Qiubo Wang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Yapeng Wang
- Department of Orthopedics, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Qingyang Liu
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Ying Chu
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Rui Mi
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Fengying Jiang
- Department of Clinical Laboratory, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
| | - Jingjing Zhao
- Department of Laboratory and Statistics, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Kelong Hu
- Department of Laboratory and Statistics, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Ran Luo
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Yufeng Feng
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
- Department of Bioengineering, Chonnam National University, Gwangju, South Korea
| | - Harrison Lee
- Department of Rheumatology, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Dong Zhou
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
| | - Jingyi Mi
- Department of Sport Medicine, Wuxi 9th People's Hospital Affiliated to Soochow University, Wuxi, China
- *Correspondence: Ruoyu Deng, ; Jingyi Mi,
| | - Ruoyu Deng
- Department of Research Design, Shanghai QeeJen Bio-tech Institution, Shanghai, China
- Department of Life Science, The Fudan University, Shanghai, China
- *Correspondence: Ruoyu Deng, ; Jingyi Mi,
| |
Collapse
|
8
|
Yuan J, Xiang L, Wang F, Zhang L, Liu G, Chang X, Zhang A, Tao Y. MALT1 positively relates to Th17 cells, inflammation/activity degree, and its decrement along with treatment reflects TNF inhibitor response in ankylosing spondylitis patients. J Clin Lab Anal 2022; 36:e24472. [PMID: 35622982 PMCID: PMC9279967 DOI: 10.1002/jcla.24472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) facilitates CD4+ T‐cell differentiation, immune response, inflammation, and osteoclastogenesis. This study aimed to explore the relation between MALT1 and treatment efficacy to tumor necrosis factor inhibitor (TNFi) in ankylosing spondylitis (AS) patients. Methods This study recruited 73 AS patients underwent adalimumab treatment. Peripheral blood mononuclear cell (PBMC) was obtained at Week (W) 0, W4, W8, and W12 after treatment initiation; then, MALT1 was measured using RT‐qPCR. Furthermore, PBMC and serum at W0 were proposed to flow cytometry and ELISA for Th1 cells, Th17 cells, IFN‐γ, and IL‐17A levels measurement. Besides, 20 osteoarthritis patients and 20 healthy controls (HCs) were enrolled to detect MALT1. Results Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 expression was higher in AS patients compared with HCs (p < 0.001) and osteoarthritis patients (p < 0.001). Besides, MALT1 expression was positively linked with CRP (p = 0.002), BASDAI (p = 0.026), PGADA (p = 0.040), ASDASCRP (p = 0.028), Th17 cells (p = 0.020), and IL‐17A (p = 0.017) in AS patients, but did not relate to other clinical features, Th1 cells or IFN‐γ (all p>0.050). MALT1 was decreased along with treatment only in AS patients with ASAS40 response (p < 0.001), but not in those without ASAS40 response (p = 0.064). Notably, MALT1 expression was of no difference at W0 (p = 0.328), W4 (p = 0.280), and W8 (p = 0.080), but lower at W12 (p = 0.028) in AS patients with ASAS40 response compared with those without ASAS40 response. Conclusion Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 positively correlates with Th17 cells, inflammatory, and activity degree; meanwhile, its decrement along with treatment reflects the response to TNF inhibitor in AS patients.
Collapse
Affiliation(s)
- Jie Yuan
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lei Xiang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Feng Wang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Lin Zhang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Gaozhan Liu
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Xiuli Chang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Anbing Zhang
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Ying Tao
- Department of Rheumatology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
9
|
Biswas S, Chalishazar A, Helou Y, DiSpirito J, DeChristopher B, Chatterjee D, Merselis L, Vincent B, Monroe JG, Rabah D, Long AJ. Pharmacological Inhibition of MALT1 Ameliorates Autoimmune Pathogenesis and Can Be Uncoupled From Effects on Regulatory T-Cells. Front Immunol 2022; 13:875320. [PMID: 35615349 PMCID: PMC9125252 DOI: 10.3389/fimmu.2022.875320] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
MALT1 forms part of a central signaling node downstream of immunoreceptor tyrosine-based activation motif (ITAM)-containing receptors, across a broad range of immune cell subsets, and regulates NF-κB driven transcriptional responses via dual scaffolding-protease activity. Allosteric inhibition of MALT1 activity has demonstrated benefit in animal models of inflammation. However, development of MALT1 inhibitors to treat autoimmune and inflammatory diseases (A&ID) has been hindered by reports linking MALT1 inhibition and genetic loss-of-function to reductions in regulatory T-cell (Treg) numbers and development of auto-inflammatory syndromes. Using an allosteric MALT1 inhibitor, we investigated the consequence of pharmacological inhibition of MALT1 on proinflammatory cells compared to regulatory T-cells. Consistent with its known role in ITAM-driven responses, MALT1 inhibition suppressed proinflammatory cytokine production from activated human T-cells and monocyte-derived macrophages, and attenuated B-cell proliferation. Oral administration of a MALT1 inhibitor reduced disease severity and synovial cytokine production in a rat collagen-induced arthritis model. Interestingly, reduction in splenic Treg numbers was less pronounced in the context of inflammation compared with naïve animals. Additionally, in the context of the disease model, we observed an uncoupling of anti-inflammatory effects of MALT1 inhibition from Treg reduction, with lower systemic concentrations of inhibitor needed to reduce disease severity compared to that required to reduce Treg numbers. MALT1 inhibition did not affect suppressive function of human Tregs in vitro. These data indicate that anti-inflammatory efficacy can be achieved with MALT1 inhibition without impacting the number or function of Tregs, further supporting the potential of MALT1 inhibition in the treatment of autoimmune disease.
Collapse
Affiliation(s)
| | | | - Ynes Helou
- Immunology, Rheos Medicines, Cambridge, MA, United States
| | | | | | | | - Leidy Merselis
- Immunology, Rheos Medicines, Cambridge, MA, United States
| | | | - John G. Monroe
- Research and Development, Rheos Medicines, Cambridge, MA, United States
| | - Dania Rabah
- Research and Development, Rheos Medicines, Cambridge, MA, United States
| | - Andrew J. Long
- Immunology, Rheos Medicines, Cambridge, MA, United States
| |
Collapse
|
10
|
Carter NM, Pomerantz JL. CARD11 signaling in regulatory T cell development and function. Adv Biol Regul 2022; 84:100890. [PMID: 35255409 PMCID: PMC9149070 DOI: 10.1016/j.jbior.2022.100890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 05/03/2023]
Abstract
Regulatory T cells (Tregs) are a critical subset of CD4 T cells that modulate the immune response to prevent autoimmunity and chronic inflammation. CARD11, a signaling hub and scaffold protein that links antigen receptor engagement to activation of NF-κB and other downstream signaling pathways, is essential for the development and function of thymic Tregs. Mouse models with deficiencies in CARD11 and CARD11-associated signaling components generally have Treg defects, but some mouse models develop overt autoimmunity and inflammatory disease whereas others do not. Inhibition of CARD11 signaling in Tregs within the tumor microenvironment can potentially promote anti-tumor immunity. In this review, we summarize evidence for the involvement of CARD11 signaling in Treg development and function and discuss key unanswered questions and future research opportunities.
Collapse
Affiliation(s)
- Nicole M Carter
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Joel L Pomerantz
- Department of Biological Chemistry, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
11
|
Liu L, Gao Y, Si Y, Liu B, Liu X, Li G, Wang R. MALT1 in asthma children: A potential biomarker for monitoring exacerbation risk and Th1/Th2 imbalance-mediated inflammation. J Clin Lab Anal 2022; 36:e24379. [PMID: 35353938 PMCID: PMC9102527 DOI: 10.1002/jcla.24379] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) participates in the immune-related allergic response and inflammation flare, while its clinical role in asthma children is still unknown. Herein, this study aimed to investigate MALT1 expression, and its correlation with exacerbation risk, T helper (Th)1, Th2 cells (and their secreted cytokines), as well as inflammatory cytokines in asthma children. METHODS Sixty children with asthma exacerbation and 60 children with remission asthma were enrolled in this study; then their blood MALT1, Th1, Th2 cells, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interferon-gamma (IFN-γ), and interleukin-4 (IL-4) were detected. Besides, blood MALT1 in another 20 health controls was also determined. RESULTS Mucosa-associated lymphoid tissue lymphoma translocation protein 1 was highest in children with asthma exacerbation, followed by children with remission asthma, and lowest in health controls (p < 0.001). MALT1 could distinguish children with asthma exacerbation from children with remission asthma (area under the curve (AUC): 0.757, 95% CI: 0.670-0.843). In children with asthma exacerbation, MALT1 was negatively linked with IFN-γ (p = 0.002) and Th1 cells (p = 0.050), but positively related to Th2 cells (p = 0.027) and exhibited a positive correlation trend (without statistical significance) with IL-4 (p = 0.066); meanwhile, MALT1 was positively correlated with exacerbation severity (p = 0.010) and TNF-α (p = 0.003), but not linked with IL-6 (p = 0.096). In children with remission asthma, MALT1 only was negatively associated with Th1 cells (p = 0.023), but positively linked with TNF-α (p = 0.023). CONCLUSION Mucosa-associated lymphoid tissue lymphoma translocation protein 1 serves as a potential biomarker for monitoring exacerbation risk and Th1/Th2 imbalance-mediated inflammation of asthma children.
Collapse
Affiliation(s)
- Liying Liu
- Department of Pediatrics, Cangzhou People's Hospital, Cangzhou, China
| | - Yang Gao
- Department of Pediatrics, Cangzhou People's Hospital, Cangzhou, China
| | - Yonghua Si
- Department of Pediatrics, Cangzhou People's Hospital, Cangzhou, China
| | - Baohuan Liu
- Department of Pediatrics, Cangzhou People's Hospital, Cangzhou, China
| | - Xingyue Liu
- Department of Pediatrics, Hebei Province Cangzhou Hospital of Integrated Traditional and Western Medicine, Cangzhou, China
| | - Guanhui Li
- Department of Pediatrics, Cangzhou People's Hospital, Cangzhou, China
| | - Rong Wang
- Department of Pediatrics, Cangzhou People's Hospital, Cangzhou, China
| |
Collapse
|
12
|
Zhang YY, Peng J, Luo XJ. Post-translational modification of MALT1 and its role in B cell- and T cell-related diseases. Biochem Pharmacol 2022; 198:114977. [PMID: 35218741 DOI: 10.1016/j.bcp.2022.114977] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023]
Abstract
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1) is a multifunctional protein. MALT1 functions as an adaptor protein to assemble and recruit proteins such as B-cell lymphoma 10 (BCL10) and caspase-recruitment domain (CARD)-containing coiled-coil protein 11 (CARD11). Conversely it also acts as a paracaspase to cleave specified substrates. Because of its involvement in immunity, inflammation and cancer through its dual functions of scaffolding and catalytic activity, MALT1 is becoming a promising therapeutic target in B cell- and T cell-related diseases. There is growing evidence that the function of MALT1 is subtly modulated via post-translational modifications. This review summarized recent progress in relevant studies regarding the physiological and pathophysiological functions of MALT1, post-translational modifications of MALT1 and its role in B cell- and T cell- related diseases. In addition, the current available MALT1 inhibitors were also discussed.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha 410013, China.
| |
Collapse
|
13
|
Ye Z, Chen L, Fang Y, Zhao L. Blood MALT1, Th1, and Th17 cells are dysregulated, inter-correlated, and correlated with disease activity in rheumatoid arthritis patients; meanwhile, MALT1 decline during therapy relates to treatment outcome. J Clin Lab Anal 2021; 36:e24112. [PMID: 34788483 PMCID: PMC8761436 DOI: 10.1002/jcla.24112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 12/29/2022] Open
Abstract
Objective Mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) participates in inflammatory and autoimmune diseases via activating various signaling pathways and promoting the differentiation of T‐helper (Th) 1 and Th17 cells; however, it is rarely reported in rheumatoid arthritis (RA). This study aimed to assess the correlation of MALT1 with Th1 and Th17 cells and evaluate its potential as a biomarker for evaluating disease activity and treatment outcomes in RA patients. Methods This study enrolled 139 RA patients and 45 health controls (HCs); then, blood MALT1, Th1, and Th17 cells were determined. For RA patients only, blood MALT1 at week (W) 6 and W12 after treatment was also detected. Additionally, clinical response and remission of RA patients were assessed at W12. Results MALT1 (p < 0.001), Th1 (p = 0.011), and Th17 (p < 0.001) cells were all increased in RA patients than HCs; meanwhile, increased MALT1 was associated with elevated Th1 (p = 0.003) and Th17 (p < 0.001) cells in RA patients. Besides, MALT1, Th1, and Th17 cells were positively correlated with parts of disease activity indexes in RA patients (all p < 0.050). In addition, MALT1 was gradually declined from W0 to W12 (p < 0.001) in RA patients. Specifically, MALT1 at W6 and W12 was lower in response patients than no response patients (both p < 0.010), also in remission patients than no remission patients (both p < 0.050). Conclusion MALT1, Th1, and Th17 cells are dysregulated, inter‐correlated, and correlated with disease activity in RA patients; meanwhile, the decline of MALT1 expression can partly reflect RA treatment response and remission.
Collapse
Affiliation(s)
- Zhuang Ye
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Lu Chen
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Ying Fang
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| | - Ling Zhao
- Department of Rheumatology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
14
|
O'Neill TJ, Seeholzer T, Gewies A, Gehring T, Giesert F, Hamp I, Graß C, Schmidt H, Kriegsmann K, Tofaute MJ, Demski K, Poth T, Rosenbaum M, Schnalzger T, Ruland J, Göttlicher M, Kriegsmann M, Naumann R, Heissmeyer V, Plettenburg O, Wurst W, Krappmann D. TRAF6 prevents fatal inflammation by homeostatic suppression of MALT1 protease. Sci Immunol 2021; 6:eabh2095. [PMID: 34767456 DOI: 10.1126/sciimmunol.abh2095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Thomas J O'Neill
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Thomas Seeholzer
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Andreas Gewies
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Florian Giesert
- Institute for Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Isabel Hamp
- Institute for Medicinal Chemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167 Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Carina Graß
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Henrik Schmidt
- Institute for Immunology, Biomedical Center Munich, LMU Munich, 82152 Martinsried, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marie J Tofaute
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Katrin Demski
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Tanja Poth
- Center for Model System and Comparative Pathology (CMCP), Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Marc Rosenbaum
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Theresa Schnalzger
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany
| | - Jürgen Ruland
- Institute of Clinical Chemistry and Pathobiochemistry, TUM School of Medicine, Technical University of Munich, 81675 Munich, Germany.,TranslaTUM, Center for Translational Cancer Research, Technical University of Munich, 81675 Munich, Germany.,German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Martin Göttlicher
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.,School of Medicine, Technical University of Munich, Munich, Germany
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, 01307 Dresden, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center Munich, LMU Munich, 82152 Martinsried, Germany.,Research Unit Molecular Immune Regulation, Helmholtz Zentrum München-German Research Center for Environmental Health, 81377 München, Germany
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Helmholtz Zentrum München-German Research Center for Environmental Health, 30167 Hannover, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Wolfgang Wurst
- Institute for Developmental Genetics, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Site Munich, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Technische Universität München, Lehrstuhl für Entwicklungsgenetik c/o Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, 85764 Neuherberg, Germany
| |
Collapse
|
15
|
Schiesser S, Hajek P, Pople HE, Käck H, Öster L, Cox RJ. Discovery and optimization of cyclohexane-1,4-diamines as allosteric MALT1 inhibitors. Eur J Med Chem 2021; 227:113925. [PMID: 34742013 DOI: 10.1016/j.ejmech.2021.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/19/2022]
Abstract
Inhibition of mucosa-associated lymphoid tissue lymphoma translocation protein-1 (MALT1) is a promising strategy to modulate NF-κB signaling, with the potential to treat B-cell lymphoma and autoimmune diseases. We describe the discovery and optimization of (1s,4s)-N,N'-diaryl cyclohexane-1,4-diamines, a novel series of allosteric MALT1 inhibitors, resulting in compound 8 with single digit micromolar cell potency. X-ray analysis confirms that this compound binds to an induced allosteric site in MALT1. Compound 8 is highly selective and has an excellent in vivo rat PK profile with low clearance and high oral bioavailability, making it a promising lead for further optimization.
Collapse
Affiliation(s)
- Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden.
| | - Peter Hajek
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Huw E Pople
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden; School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, United Kingdom
| | - Helena Käck
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Linda Öster
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 43183, Mölndal, Sweden
| |
Collapse
|
16
|
Chen X, Zhang X, Lan L, Xu G, Li Y, Huang S. MALT1 positively correlates with Th1 cells, Th17 cells, and their secreted cytokines and also relates to disease risk, severity, and prognosis of acute ischemic stroke. J Clin Lab Anal 2021; 35:e23903. [PMID: 34273195 PMCID: PMC8418463 DOI: 10.1002/jcla.23903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/27/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022] Open
Abstract
Background This study aimed to explore the association of mucosa‐associated lymphoid tissue lymphoma translocation protein 1 (MALT1) with acute ischemic stroke (AIS) risk and also to explore its association with T helper type 1 (Th1) cells, Th17 cells, disease severity, and prognosis in AIS patients. Methods One hundred twenty first‐episode AIS patients and 120 non‐AIS patients with high‐stroke‐risk factors (as controls) were recruited. Besides, in the cluster of differentiation 4‐positive (CD4+) T cells, the MALT1 gene expression was detected by reverse transcription quantitative polymerase chain reaction; meanwhile, Th1 and Th17 were detected by flow cytometry. Moreover, serum interferon (IFN)‐γ and interleukin (IL)‐17 were determined by enzyme‐linked immunosorbent assay. Results MALT1 expression was increased in AIS patients compared with controls and also it could differentiate AIS patients from controls, with an area under curve of 0.905 (95% confidence interval: 0.869–0.941). In AIS patients, MALT1 positively correlated with Th1 cells, Th17 cells, IFN‐γ, and IL‐17. Besides, MALT1 positively correlated with the National Institutes of Health Stroke Scale score. Furthermore, the Kaplan‐Meier curve and univariate Cox's regression analyses showed no correlation of MALT1 high expression with recurrence‐free survival (RFS) in AIS patients, although after adjustment using multivariant Cox's regression, high MALT1 expression independently correlated with worse RFS in AIS patients. Conclusion MALT1 expression is increased and positively correlates with disease severity, Th1 cells, and Th17 cells, whose high expression severs as an independent risk factor for worse RFS in AIS patients.
Collapse
Affiliation(s)
- Xia Chen
- Department of Anatomy, Hunan University of Medicine, Huaihua, China
| | - Xuemei Zhang
- Department of Anatomy, Hunan University of Medicine, Huaihua, China
| | - Ling Lan
- Department of Anatomy, Guangxi Medical University, Nanning, China
| | - Guoyao Xu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Yanchun Li
- Department of Neurology, The First Affiliated Hospital of Hunan University of Medicine, Huaihua, China
| | - Shaoming Huang
- Department of Anatomy, Guangxi Medical University, Nanning, China
| |
Collapse
|
17
|
Hamp I, O'Neill TJ, Plettenburg O, Krappmann D. A patent review of MALT1 inhibitors (2013-present). Expert Opin Ther Pat 2021; 31:1079-1096. [PMID: 34214002 DOI: 10.1080/13543776.2021.1951703] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION MALT1 is the only human paracaspase, a protease with unique cleavage activity and substrate specificity. As a key regulator of immune responses, MALT1 has attracted attention as an immune modulatory target for the treatment of autoimmune/inflammatory diseases. Further, chronic MALT1 protease activation drives survival of lymphomas, suggesting that MALT1 is a suitable drug target for lymphoid malignancies. Recent studies have indicated that MALT1 inhibition impairs immune suppressive function of regulatory T cells in the tumor microenvironment, suggesting that MALT1 inhibitors may boost anti-tumor immunity in the treatment of solid cancers. AREAS COVERED This review summarizes the literature on MALT1 patents and applications. We discuss the potential therapeutic uses for MALT1 inhibitors based on patents and scientific literature. EXPERT OPINION There has been a steep increase in MALT1 inhibitor patents. Compounds with high selectivity and good bioavailability have been developed. An allosteric binding pocket is the preferred site for potent and selective MALT1 targeting. MALT1 inhibitors have moved to early clinical trials, but toxicological studies indicate that long-term MALT1 inhibition can disrupt immune homeostasis and lead to autoimmunity. Even though this poses risks, preventing immune suppression may favor the use of MALT1 inhibitors in cancer immunotherapies.
Collapse
Affiliation(s)
- Isabel Hamp
- Institute for Medicinal Chemistry, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Thomas J O'Neill
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Oliver Plettenburg
- Institute for Medicinal Chemistry, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany.,Centre of Biomolecular Drug Research (BMWZ), Institute of Organic Chemistry, Leibniz Universität Hannover, Hannover, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|