1
|
Kim JH, Kim K, Kim I, Seong S, Che X, Choi JY, Koh JT, Kim N. The MCP-3/Ccr3 axis contributes to increased bone mass by affecting osteoblast and osteoclast differentiation. Exp Mol Med 2024:10.1038/s12276-024-01344-6. [PMID: 39482538 DOI: 10.1038/s12276-024-01344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/04/2024] [Accepted: 08/19/2024] [Indexed: 11/03/2024] Open
Abstract
Several CC subfamily chemokines have been reported to regulate bone metabolism by affecting osteoblast or osteoclast differentiation. However, the role of monocyte chemotactic protein 3 (MCP-3), a CC chemokine, in bone remodeling is not well understood. Here, we show that MCP-3 regulates bone remodeling by promoting osteoblast differentiation and inhibiting osteoclast differentiation. In a Ccr3-dependent manner, MCP-3 promoted osteoblast differentiation by stimulating p38 phosphorylation and suppressed osteoclast differentiation by upregulating interferon beta. MCP-3 increased bone morphogenetic protein 2-induced ectopic bone formation, and mice with MCP-3-overexpressing osteoblast precursor cells presented increased bone mass. Moreover, MCP-3 exhibited therapeutic effects by abrogating receptor activator of nuclear factor kappa-B ligand-induced bone loss. Therefore, MCP-3 has therapeutic potential for diseases involving bone loss due to its positive role in osteoblast differentiation and negative role in osteoclast differentiation.
Collapse
Affiliation(s)
- Jung Ha Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kabsun Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Inyoung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Semun Seong
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Xiangguo Che
- Korea Mouse Phenotyping Center (KMPC), Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Je-Yong Choi
- Korea Mouse Phenotyping Center (KMPC), Department of Biochemistry and Cell Biology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Tae Koh
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
- Department of Pharmacology and Dental Therapeutics, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam National University Medical School, Gwangju, Republic of Korea.
- Hard-Tissue Biointerface Research Center, School of Dentistry, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
2
|
Boss-Kennedy A, Kim D, Barai P, Maldonado C, Reyes-Ordoñez A, Chen J. Muscle cell-derived Ccl8 is a negative regulator of skeletal muscle regeneration. FASEB J 2024; 38:e23841. [PMID: 39051762 PMCID: PMC11279459 DOI: 10.1096/fj.202400184r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/24/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
Skeletal muscles undergo robust regeneration upon injury, and infiltrating immune cells play a major role in not only clearing damaged tissues but also regulating the myogenic process through secreted cytokines. Chemokine C-C motif ligand 8 (Ccl8), along with Ccl2 and Ccl7, has been reported to mediate inflammatory responses to suppress muscle regeneration. Ccl8 is also expressed by muscle cells, but a role of the muscle cell-derived Ccl8 in myogenesis has not been reported. In this study, we found that knockdown of Ccl8, but not Ccl2 or Ccl7, led to increased differentiation of C2C12 myoblasts. Analysis of existing single-cell transcriptomic datasets revealed that both immune cells and muscle stem cells (MuSCs) in regenerating muscles express Ccl8, with the expression by MuSCs at a much lower level, and that the temporal patterns of Ccl8 expression were different in MuSCs and macrophages. To probe a function of muscle cell-derived Ccl8 in vivo, we utilized a mouse system in which Cas9 was expressed in Pax7+ myogenic progenitor cells (MPCs) and Ccl8 gene editing was induced by AAV9-delivered sgRNA. Depletion of Ccl8 in Pax7+ MPCs resulted in accelerated muscle regeneration after barium chloride-induced injury in both young and middle-aged mice, and intramuscular administration of a recombinant Ccl8 reversed the phenotype. Accelerated regeneration was also observed when Ccl8 was depleted in Myf5+ or MyoD+ MPCs by similar approaches. Our results suggest that muscle cell-derived Ccl8 plays a unique role in regulating the initiation of myogenic differentiation during injury-induced muscle regeneration.
Collapse
Affiliation(s)
- A Boss-Kennedy
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - D Kim
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - P Barai
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - C Maldonado
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - A Reyes-Ordoñez
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Alvarez AM, Trufen CEM, Buri MV, de Sousa MBN, Arruda-Alves FI, Lichtenstein F, Castro de Oliveira U, Junqueira-de-Azevedo IDLM, Teixeira C, Moreira V. Tumor Necrosis Factor-Alpha Modulates Expression of Genes Involved in Cytokines and Chemokine Pathways in Proliferative Myoblast Cells. Cells 2024; 13:1161. [PMID: 38995013 PMCID: PMC11240656 DOI: 10.3390/cells13131161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Skeletal muscle regeneration after injury is a complex process involving inflammatory signaling and myoblast activation. Pro-inflammatory cytokines like tumor necrosis factor-alpha (TNF-α) are key mediators, but their effects on gene expression in proliferating myoblasts are unclear. We performed the RNA sequencing of TNF-α treated C2C12 myoblasts to elucidate the signaling pathways and gene networks regulated by TNF-α during myoblast proliferation. The TNF-α (10 ng/mL) treatment of C2C12 cells led to 958 differentially expressed genes compared to the controls. Pathway analysis revealed significant regulation of TNF-α signaling, along with the chemokine and IL-17 pathways. Key upregulated genes included cytokines (e.g., IL-6), chemokines (e.g., CCL7), and matrix metalloproteinases (MMPs). TNF-α increased myogenic factor 5 (Myf5) but decreased MyoD protein levels and stimulated the release of MMP-9, MMP-10, and MMP-13. TNF-α also upregulates versican and myostatin mRNA. Overall, our study demonstrates the TNF-α modulation of distinct gene expression patterns and signaling pathways that likely contribute to enhanced myoblast proliferation while suppressing premature differentiation after muscle injury. Elucidating the mechanisms involved in skeletal muscle regeneration can aid in the development of regeneration-enhancing therapeutics.
Collapse
Affiliation(s)
- Angela María Alvarez
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Reproduction Group, Pharmacy Department, School of Pharmaceutical and Food Sciences, University of Antioquia—UdeA, Medellín 050010, Colombia
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| | - Carlos Eduardo Madureira Trufen
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Czech Centre for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, v.i, 252 50 Vestec, Czech Republic
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Marcela Bego Nering de Sousa
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| | - Francisco Ivanio Arruda-Alves
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Flavio Lichtenstein
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
| | - Ursula Castro de Oliveira
- Laboratório de Toxinologia Aplicada, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (U.C.d.O.); (I.d.L.M.J.-d.-A.)
| | | | - Catarina Teixeira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Laboratório de Farmacologia, Butantan Institute, Sao Paulo 05503-900, SP, Brazil
| | - Vanessa Moreira
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, Sao Paulo 05503-900, SP, Brazil; (A.M.A.); (C.E.M.T.); (M.V.B.); (F.I.A.-A.); (F.L.)
- Departamento de Farmacologia, Escola Paulista de Medicina, Universidade Federal de Sao Paulo, Sao Paulo 04044-020, SP, Brazil;
| |
Collapse
|
4
|
Zhao H, Zhang H, Zhou Y, Shuai L, Chen Z, Wang L. Deletion of Fbxw7 in oocytes causes follicle loss and premature ovarian insufficiency in mice. J Cell Mol Med 2024; 28:e18487. [PMID: 39031722 PMCID: PMC11190952 DOI: 10.1111/jcmm.18487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024] Open
Abstract
Premature ovarian insufficiency (POI) is one of the important causes of female infertility. Yet the aetiology for POI is still elusive. FBXW7 (F-box with 7 tandem WD) is one of the important components of the Skp1-Cullin1-F-box (SCF) E3 ubiquitin ligase. FBXW7 can regulate cell growth, survival and pluripotency through mediating ubiquitylation and degradation of target proteins via triggering the ubiquitin-proteasome system, and is associated with tumorigenesis, haematopoiesis and testis development. However, evidence establishing the function of FBXW7 in ovary is still lacking. Here, we showed that FBXW7 protein level was significantly decreased in the ovaries of the cisplatin-induced POI mouse model. We further showed that mice with oocyte-specific deletion of Fbxw7 demonstrated POI, characterized with folliculogenic defects, early depletion of follicle reserve, disordered hormonal secretion, ovarian dysfunction and female infertility. Impaired oocyte-GCs communication, manifested as down-regulation of connexin 37, may contribute to follicular development failure in the Fbxw7-mutant mice. Furthermore, single-cell RNA sequencing and in situ hybridization results indicated an accumulation of Clu and Ccl2 transcripts, which may alter follicle microenvironment deleterious to oocyte development and accelerate POI. Our results establish the important role of Fbxw7 in folliculogenesis and ovarian function, and might provide valuable information for understanding POI and female infertility.
Collapse
Affiliation(s)
- Huihui Zhao
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongP.R. China
- Guangdong Provincial People's HospitalSouthern Medical UniversityGuangzhouGuangdongP.R. China
| | - Hanbin Zhang
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education InstitutesThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdongP. R. China
| | - Yuxia Zhou
- Department of Obstetrics and Gynecology, Guangdong Second Provincial General HospitalGuangzhouGuangdongP.R. China
| | - Ling Shuai
- Department of Reproductive medicine, Shenzhen Second People's HospitalShenzhenGuangdongP.R. China
| | - Zhenguo Chen
- Department of Cell Biology, School of Basic Medical SciencesSouthern Medical UniversityGuangzhouGuangdongP.R. China
| | - Liping Wang
- Department of Reproductive medicine, Shenzhen Second People's HospitalShenzhenGuangdongP.R. China
| |
Collapse
|
5
|
Yu W, Yao Y, Ye N, Zhao Y, Ye Z, Wei W, Zhang L, Chen J. The myokine CCL5 recruits subcutaneous preadipocytes and promotes intramuscular fat deposition in obese mice. Am J Physiol Cell Physiol 2024; 326:C1320-C1333. [PMID: 38497114 DOI: 10.1152/ajpcell.00591.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Intramuscular fat (IMF) refers to the lipid stored in skeletal muscle tissue. The number and size of intramuscular adipocytes are the primary factors that regulate IMF content. Intramuscular adipocytes can be derived from either in situ or ectopic migration. In this study, it was discovered that the regulation of IMF levels is achieved through the chemokine (C-C motif) ligand 5 (CCL5)/chemokine (C-C motif) receptor 5 (CCR5) pathway by modulating adipocyte migration. In coculture experiments, C2C12 myotubes were more effective in promoting the migration of 3T3-L1 preadipocytes than C2C12 myoblasts, along with increasing CCL5. Correspondingly, overexpressing the CCR5, one of the receptors of CCL5, in 3T3-L1 preadipocytes facilitated their migration. Conversely, the application of the CCL5/CCR5 inhibitor, MARAVIROC (MVC), reduced this migration. In vivo, transplanted experiments of subcutaneous adipose tissue (SCAT) from transgenic mice expressing green fluorescent protein (GFP) provided evidence that injecting recombinant CCL5 (rCCL5) into skeletal muscle promotes the migration of subcutaneous adipocytes to the skeletal muscle. The level of CCL5 in skeletal muscle increased with obesity. Blocking the CCL5/CCR5 axis by MVC inhibited IMF deposition, whereas elevated skeletal muscle CCL5 promoted IMF deposition in obese mice. These results establish a link between the IMF and the CCL5/CCR5 pathway, which could have a potential application for modulating IMF through adipocyte migration.NEW & NOTEWORTHY C2C12 myotubes attract 3T3-L1 preadipocyte migration regulated by the chemokine (C-C motif) ligand 5 (CCL5)/ chemokine (C-C motif) receptor 5 (CCR5) axis. High levels of skeletal muscle-specific CCL5 promote the migration of subcutaneous adipocytes to skeletal muscle and induce the intramuscular fat (IMF) content.
Collapse
Affiliation(s)
- Wensai Yu
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yao Yao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Nanwei Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Yuelei Zhao
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Zijian Ye
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Wei Wei
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Lifan Zhang
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| | - Jie Chen
- College of Animal Science and TechnologyNanjing Agricultural University, NanjingPeople's Republic of China
| |
Collapse
|
6
|
Choi D, Gonzalez‐Suarez AM, Dumbrava MG, Medlyn M, de Hoyos‐Vega JM, Cichocki F, Miller JS, Ding L, Zhu M, Stybayeva G, Gaspar‐Maia A, Billadeau DD, Ma WW, Revzin A. Microfluidic Organoid Cultures Derived from Pancreatic Cancer Biopsies for Personalized Testing of Chemotherapy and Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303088. [PMID: 38018486 PMCID: PMC10837378 DOI: 10.1002/advs.202303088] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/17/2023] [Indexed: 11/30/2023]
Abstract
Patient-derived cancer organoids (PDOs) hold considerable promise for personalizing therapy selection and improving patient outcomes. However, it is challenging to generate PDOs in sufficient numbers to test therapies in standard culture platforms. This challenge is particularly acute for pancreatic ductal adenocarcinoma (PDAC) where most patients are diagnosed at an advanced stage with non-resectable tumors and where patient tissue is in the form of needle biopsies. Here the development and characterization of microfluidic devices for testing therapies using a limited amount of tissue or PDOs available from PDAC biopsies is described. It is demonstrated that microfluidic PDOs are phenotypically and genotypically similar to the gold-standard Matrigel organoids with the advantages of 1) spheroid uniformity, 2) minimal cell number requirement, and 3) not relying on Matrigel. The utility of microfluidic PDOs is proven by testing PDO responses to several chemotherapies, including an inhibitor of glycogen synthase kinase (GSKI). In addition, microfluidic organoid cultures are used to test effectiveness of immunotherapy comprised of NK cells in combination with a novel biologic. In summary, our microfluidic device offers considerable benefits for personalizing oncology based on cancer biopsies and may, in the future, be developed into a companion diagnostic for chemotherapy or immunotherapy treatments.
Collapse
Affiliation(s)
- Daheui Choi
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | | | - Mihai G. Dumbrava
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Michael Medlyn
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | | | - Frank Cichocki
- Department of MedicineUniversity of MinnesotaMinneapolisMN55455USA
| | | | - Li Ding
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Mojun Zhu
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| | - Alexandre Gaspar‐Maia
- Division of Experimental PathologyMayo ClinicRochesterMN55905USA
- Center for Individualized MedicineEpigenomics programMayo ClinicRochesterMN55905USA
| | - Daniel D. Billadeau
- Division of Oncology ResearchCollege of MedicineMayo ClinicRochesterMN55905USA
| | - Wen Wee Ma
- Division of Medical OncologyMayo ClinicRochesterMN55905USA
| | - Alexander Revzin
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMN55905USA
| |
Collapse
|
7
|
Zhang J, Gao Y, Yan J. Roles of Myokines and Muscle-Derived Extracellular Vesicles in Musculoskeletal Deterioration under Disuse Conditions. Metabolites 2024; 14:88. [PMID: 38392980 PMCID: PMC10891558 DOI: 10.3390/metabo14020088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Prolonged inactivity and disuse conditions, such as those experienced during spaceflight and prolonged bedrest, are frequently accompanied by detrimental effects on the motor system, including skeletal muscle atrophy and bone loss, which greatly increase the risk of osteoporosis and fractures. Moreover, the decrease in glucose and lipid utilization in skeletal muscles, a consequence of muscle atrophy, also contributes to the development of metabolic syndrome. Clarifying the mechanisms involved in disuse-induced musculoskeletal deterioration is important, providing therapeutic targets and a scientific foundation for the treatment of musculoskeletal disorders under disuse conditions. Skeletal muscle, as a powerful endocrine organ, participates in the regulation of physiological and biochemical functions of local or distal tissues and organs, including itself, in endocrine, autocrine, or paracrine manners. As a motor organ adjacent to muscle, bone tissue exhibits a relative lag in degenerative changes compared to skeletal muscle under disuse conditions. Based on this phenomenon, roles and mechanisms involved in the communication between skeletal muscle and bone, especially from muscle to bone, under disuse conditions have attracted widespread attention. In this review, we summarize the roles and regulatory mechanisms of muscle-derived myokines and extracellular vesicles (EVs) in the occurrence of muscle atrophy and bone loss under disuse conditions, as well as discuss future perspectives based on existing research.
Collapse
Affiliation(s)
- Jie Zhang
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| | - Yunfang Gao
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiangwei Yan
- Institute of Special Medicine, Shanxi Medical University, Jinzhong 030619, China;
| |
Collapse
|
8
|
Shao M, Wang Q, Lv Q, Zhang Y, Gao G, Lu S. Advances in the research on myokine-driven regulation of bone metabolism. Heliyon 2024; 10:e22547. [PMID: 38226270 PMCID: PMC10788812 DOI: 10.1016/j.heliyon.2023.e22547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/17/2024] Open
Abstract
The traditional view posits that bones and muscles interact primarily through mechanical coupling. However, recent studies have revealed that myokines, proteins secreted by skeletal muscle cells, play a crucial role in the regulation of bone metabolism. Myokines are widely involved in bone metabolism, influencing bone resorption and formation by interacting with factors related to bone cell secretion or influencing bone metabolic pathways. Here, we review the research progress on the myokine regulation of bone metabolism, discuss the mechanism of myokine regulation of bone metabolism, explore the pathophysiological relationship between sarcopenia and osteoporosis, and provide future perspectives on myokine research, with the aim of identify potential specific diagnostic markers and therapeutic entry points.
Collapse
Affiliation(s)
- MingHong Shao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiYang Wang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - QiuNan Lv
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - YuQiong Zhang
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - GuoXi Gao
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Sheng Lu
- Department of Orthopedic Surgery, the Key Laboratory of Digital Orthopaedics of Yunnan Provincial, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
9
|
Mi C, Zhao Y, Ren L, Zhang D. HIF1α/CCL7/KIAA1199 axis mediates hypoxia-induced gastric cancer aggravation and glycolysis alteration. J Clin Biochem Nutr 2023; 72:225-233. [PMID: 37251956 PMCID: PMC10209595 DOI: 10.3164/jcbn.22-48] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 09/03/2022] [Indexed: 09/04/2024] Open
Abstract
Gastric cancer is a common digestion tumor with high malignant severity and prevalence. Emerging studies reported C-C motif chemokine ligand 7 (CCL7) as a regulator of various tumor diseases. Our research explored the function and underlying mechanism of CCL7 during gastric cancer development. RT-qPCR, Western blot and other datasets were employed to evaluate CCL7 expression in tissues and cells. Kaplan-Meier and Cox regression analyses were recruited to evaluate the correlations between CCL7 expression and patients' survival or clinical features. A loss-of-function assay was performed to evaluate the function of CCL7 in gastric cancer. 1% O2 was utilized to mimic hypoxic condition. KIAA1199 and HIF1α were included in the regulatory mechanism. The results showed that CCL7 was up-regulated and its high expression was correlated with poor survival of gastric cancer patients. Depressing CCL7 attenuated proliferation, migration, invasion, and induced apoptosis of gastric cancer cells. Meanwhile, CCL7 inhibition weakened hypoxia-induced gastric cancer aggravation. Besides, KIAA1199 and HIF1α were involved in the mechanism of CCL7-mediated gastric cancer aggravation under hypoxia. Our research identified CCL7 as a novel tumor-activator in gastric cancer pathogenesis and hypoxia-induced tumor aggravation was regulated by HIF1α/CCL7/KIAA1199 axis. The evidence may provide a novel target for gastric cancer treatment.
Collapse
Affiliation(s)
- Chen Mi
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Yan Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Li Ren
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| | - Dan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi Province 710061, China
| |
Collapse
|
10
|
Hei W, You Z, An J, Zhao T, Li J, Zhang W, Li M, Yang Y, Gao P, Cao G, Guo X, Cai C, Li B. FNDC5 Promotes Adipogenic Differentiation of Primary Preadipocytes in Mashen Pigs. Genes (Basel) 2022; 14:genes14010090. [PMID: 36672836 PMCID: PMC9858987 DOI: 10.3390/genes14010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Fibronectin type III domain-containing protein 5 (FNDC5) plays an important role in fat deposition, which can be cut to form Irisin to promote fat thermogenesis, resulting in a decrease in fat content. However, the mechanism of FNDC5 related to fat deposition in pigs is still unclear. In this research, we studied the expression of FNDC5 on different adiposes and its function in the adipogenic differentiation of primary preadipocytes in Mashen pigs. The expression pattern of FNDC5 was detected by qRT-PCR and Western blotting in Mashen pigs. FNDC5 overexpression and interference vectors were constructed and transfected into porcine primary preadipocytes by lentivirus. Then, the expression of key adipogenic genes was detected by qRT-PCR and the content of lipid droplets was detected by Oil Red O staining. The results showed that the expression of FNDC5 in abdominal fat was higher than that in back subcutaneous fat in Mashen pigs, whereas the expression in back subcutaneous fat of Mashen pigs was significantly higher than that of Large White pigs. In vitro, FNDC5 promoted the adipogenic differentiation of primary preadipocytes of Mashen pigs and upregulated the expression of genes related to adipogenesis, but did not activate the extracellular signal-regulated kinase (ERK) signaling pathway. This study can provide a theoretical basis for FNDC5 in adipogenic differentiation in pigs.
Collapse
Affiliation(s)
- Wei Hei
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Ziwei You
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiaqi An
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Tianzhi Zhao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Jiao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wanfeng Zhang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Meng Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Yang Yang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Pengfei Gao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
| | - Chunbo Cai
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (C.C.); (B.L.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China
- Correspondence: (C.C.); (B.L.)
| |
Collapse
|
11
|
Ning K, Wang Z, Zhang XA. Exercise-induced modulation of myokine irisin in bone and cartilage tissue—Positive effects on osteoarthritis: A narrative review. Front Aging Neurosci 2022; 14:934406. [PMID: 36062149 PMCID: PMC9439853 DOI: 10.3389/fnagi.2022.934406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis is a chronic degenerative musculoskeletal disease characterized by pathological changes in joint structures along with the incidence of which increases with age. Exercise is recommended for all clinical treatment guidelines of osteoarthritis, but the exact molecular mechanisms are still unknown. Irisin is a newly discovered myokine released mainly by skeletal muscle in recent years—a biologically active protein capable of being released into the bloodstream as an endocrine factor, the synthesis and secretion of which is specifically induced by exercise-induced muscle contraction. Although the discovery of irisin is relatively recent, its role in affecting bone density and cartilage homeostasis has been reported. Here, we review the production and structural characteristics of irisin and discuss the effects of the different types of exercise involved in the current study on irisin and the role of irisin in anti-aging. In addition, the role of irisin in the regulation of bone mineral density, bone metabolism, and its role in chondrocyte homeostasis and metabolism is reviewed. A series of studies on irisin have provided new insights into the mechanisms of exercise training in improving bone density, resisting cartilage degeneration, and maintaining the overall environmental homeostasis of the joint. These studies further contribute to the understanding of the role of exercise in the fight against osteoarthritis and will provide an important reference and aid in the development of the field of osteoarthritis prevention and treatment.
Collapse
|
12
|
Irisin, An Exercise-induced Bioactive Peptide Beneficial for Health Promotion During Aging Process. Ageing Res Rev 2022; 80:101680. [DOI: 10.1016/j.arr.2022.101680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 12/11/2022]
|
13
|
KRAS Affects Adipogenic Differentiation by Regulating Autophagy and MAPK Activation in 3T3-L1 and C2C12 Cells. Int J Mol Sci 2021; 22:ijms222413630. [PMID: 34948427 PMCID: PMC8707842 DOI: 10.3390/ijms222413630] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022] Open
Abstract
Kirsten rat sarcoma 2 viral oncogene homolog (Kras) is a proto-oncogene that encodes the small GTPase transductor protein KRAS, which has previously been found to promote cytokine secretion, cell survival, and chemotaxis. However, its effects on preadipocyte differentiation and lipid accumulation are unclear. In this study, the effects of KRAS inhibition on proliferation, autophagy, and adipogenic differentiation as well as its potential mechanisms were analyzed in the 3T3-L1 and C2C12 cell lines. The results showed that KRAS was localized mainly in the nuclei of 3T3-L1 and C2C12 cells. Inhibition of KRAS altered mammalian target of rapamycin (Mtor), proliferating cell nuclear antigen (Pcna), Myc, peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein beta (C/ebp-β), diacylglycerol O-acyltransferase 1 (Dgat1), and stearoyl-coenzyme A desaturase 1 (Scd1) expression, thereby reducing cell proliferation capacity while inducing autophagy, enhancing differentiation of 3T3-L1 and C2C12 cells into mature adipocytes, and increasing adipogenesis and the capacity to store lipids. Moreover, during differentiation, KRAS inhibition reduced the levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), p38, and phosphatidylinositol 3 kinase (PI3K) activation. These results show that KRAS has unique regulatory effects on cell proliferation, autophagy, adipogenic differentiation, and lipid accumulation.
Collapse
|
14
|
Li X, Zhu X, Wu H, Van Dyke TE, Xu X, Morgan EF, Fu W, Liu C, Tu Q, Huang D, Chen J. Roles and Mechanisms of Irisin in Attenuating Pathological Features of Osteoarthritis. Front Cell Dev Biol 2021; 9:703670. [PMID: 34650969 PMCID: PMC8509718 DOI: 10.3389/fcell.2021.703670] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 02/05/2023] Open
Abstract
To investigate the effects and mechanisms of irisin, a newly discovered myokine, in cartilage development, osteoarthritis (OA) pathophysiology and its therapeutic potential for treating OA we applied the following five strategical analyses using (1) murine joint tissues at different developmental stages; (2) human normal and OA pathological tissue samples; (3) experimental OA mouse model; (4) irisin gene knockout (KO) and knock in (KI) mouse lines and their cartilage cells; (5) in vitro mechanistic experiments. We found that Irisin was involved in all stages of cartilage development. Both human and mouse OA tissues showed a decreased expression of irisin. Intra-articular injection of irisin attenuated ACLT-induced OA progression. Irisin knockout mice developed severe OA while irisin overexpression in both irisin KI mice and intraarticular injection of irisin protein attenuated OA progression. Irisin inhibited inflammation and promoted anabolism in chondrogenic ADTC5 cells. Proliferative potential of primary chondrocytes from KI mice was found to be enhanced, while KO mice showed an inhibition under normal or inflammatory conditions. The primary chondrocytes from irisin KI mice showed reduced expression of inflammatory factors and the chondrocytes isolated from KO mice showed an opposite pattern. In conclusion, it is the first time to show that irisin is involved in cartilage development and OA pathogenesis. Irisin has the potential to ameliorate OA progression by decreasing cartilage degradation and inhibiting inflammation, which could lead to the development of a novel therapeutic target for treating bone and cartilage disorders including osteoarthritis.
Collapse
Affiliation(s)
- Xiangfen Li
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Xiaofang Zhu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Hongle Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Thomas E Van Dyke
- Clinical and Translational Research, Forsyth Institute, Cambridge, MA, United States.,Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Xiaoyang Xu
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, United States
| | - Elise F Morgan
- Department of Mechanical Engineering, Boston University, Boston, MA, United States
| | - Wenyu Fu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - Chuanju Liu
- Department of Orthopedics Surgery, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| | - Qisheng Tu
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| | - Dingming Huang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jake Chen
- Division of Oral Biology, Tufts University School of Dental Medicine, Boston, MA, United States
| |
Collapse
|
15
|
He C, He W, Hou J, Chen K, Huang M, Yang M, Luo X, Li C. Bone and Muscle Crosstalk in Aging. Front Cell Dev Biol 2020; 8:585644. [PMID: 33363144 PMCID: PMC7758235 DOI: 10.3389/fcell.2020.585644] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoporosis and sarcopenia are two age-related diseases that affect the quality of life in the elderly. Initially, they were thought to be two independent diseases; however, recently, increasing basic and clinical data suggest that skeletal muscle and bone are both spatially and metabolically connected. The term "osteosarcopenia" is used to define a condition of synergy of low bone mineral density with muscle atrophy and hypofunction. Bone and muscle cells secrete several factors, such as cytokines, myokines, and osteokines, into the circulation to influence the biological and pathological activities in local and distant organs and cells. Recent studies reveal that extracellular vesicles containing microRNAs derived from senescent skeletal muscle and bone cells can also be transported and aid in regulating bone-muscle crosstalk. In this review, we summarize the age-related changes in the secretome and extracellular vesicle-microRNAs secreted by the muscle and bone, and discuss their interactions between muscle and bone cells during aging.
Collapse
Affiliation(s)
- Chen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Wenzhen He
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Jing Hou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Kaixuan Chen
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mei Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
16
|
Zhao M, Zhou X, Yuan C, Li R, Ma Y, Tang X. Association between serum irisin concentrations and sarcopenia in patients with liver cirrhosis: a cross-sectional study. Sci Rep 2020; 10:16093. [PMID: 32999391 PMCID: PMC7527993 DOI: 10.1038/s41598-020-73176-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcopenia is an independent predictor of mortality in patients with liver cirrhosis. However, evidence has emerged that skeletal muscles mediate their protective effect against sarcopenia by secreting myokines. Therefore, we investigated whether irisin was associated with sarcopenia in patients with liver cirrhosis. This was an observational cross-sectional study of data collected from 187 cirrhotic patients. Sarcopenia was defined by computed tomography (CT) scans using specific cutoffs of the 3rd lumbar vertebra skeletal muscle index (L3 SMI). Morning irisin levels were obtained in all patients. Of the 187 patients, sarcopenia was noted in 73 (39%). Irisin concentrations were lower in sarcopenic patients (32.40 pg/ml [interquartile range (IQR): 18.70, 121.26], p < 0.001) than in nonsarcopenic patients. There was a weak correlation between L3 SMI and irisin levels (r = 0.516, p < 0.001). Multivariable regression analysis including L3 SMI, body mass index (BMI), very-low-density lipoprotein (VLDL)-cholesterol, aspartate aminotransferase (AST), adiponectin, and irisin levels showed that L3 SMI (odds ratio [OR] = 0.915, p = 0.023), adiponectin levels (OR = 1.074, p = 0.014), irisin levels (OR = 0.993, p < 0.001) and BMI (OR = 0.456, p = 0.004) were independently associated with sarcopenia. Irisin levels are associated with sarcopenia in patients with liver cirrhosis. This paper addresses a gap in the literature and facilitates the future transition into clinical treatment.
Collapse
Affiliation(s)
- Mingyuan Zhao
- Department of Internal Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaoshuang Zhou
- Department of Internal Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China
| | - Chengying Yuan
- Department of Internal Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China.
| | - Rongshan Li
- Department of Internal Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China
| | - Yuehong Ma
- Department of Internal Medicine, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China
| | - Xiaoxian Tang
- Department of Radiology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Taiyuan, 030012, China
| |
Collapse
|
17
|
Huang C, Foster SR, Shah AD, Kleifeld O, Canals M, Schittenhelm RB, Stone MJ. Phosphoproteomic characterization of the signaling network resulting from activation of the chemokine receptor CCR2. J Biol Chem 2020; 295:6518-6531. [PMID: 32241914 DOI: 10.1074/jbc.ra119.012026] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
Leukocyte recruitment is a universal feature of tissue inflammation and regulated by the interactions of chemokines with their G protein-coupled receptors. Activation of CC chemokine receptor 2 (CCR2) by its cognate chemokine ligands, including CC chemokine ligand 2 (CCL2), plays a central role in recruitment of monocytes in several inflammatory diseases. In this study, we used phosphoproteomics to conduct an unbiased characterization of the signaling network resulting from CCL2 activation of CCR2. Using data-independent acquisition MS analysis, we quantified both the proteome and phosphoproteome in FlpIn-HEK293T cells stably expressing CCR2 at six time points after activation with CCL2. Differential expression analysis identified 699 significantly regulated phosphorylation sites on 441 proteins. As expected, many of these proteins are known to participate in canonical signal transduction pathways and in the regulation of actin cytoskeleton dynamics, including numerous guanine nucleotide exchange factors and GTPase-activating proteins. Moreover, we identified regulated phosphorylation sites in numerous proteins that function in the nucleus, including several constituents of the nuclear pore complex. The results of this study provide an unprecedented level of detail of CCR2 signaling and identify potential targets for regulation of CCR2 function.
Collapse
Affiliation(s)
- Cheng Huang
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia.,Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Simon R Foster
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Anup D Shah
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia.,Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia.,Monash Bioinformatics Platform, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Meritxell Canals
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, United Kingdom.,Centre of Membrane Protein and Receptors, Universities of Birmingham and Nottingham, The Midlands NG7 2UH, United Kingdom
| | - Ralf B Schittenhelm
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia .,Monash Proteomics and Metabolomics Facility, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| | - Martin J Stone
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, Victoria, Australia
| |
Collapse
|
18
|
Chen Z, Zhang J, Yuan A, Han J, Tan L, Zhou Z, Zhao H, Su R, Huang B, Wang B, Sun B, Fan X, Yang Q. R-spondin3 promotes the tumor growth of choriocarcinoma JEG-3 cells. Am J Physiol Cell Physiol 2019; 318:C664-C674. [PMID: 31851527 DOI: 10.1152/ajpcell.00295.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
R-spondin3 (RSPO3), an activator of Wnt/β-catenin signaling, plays a key role in tumorigenesis of various cancers, but its role in choriocarcinoma remains unknown. To investigate the effect of RSPO3 on the tumor growth of choriocarcinoma JEG-3 cells, the expression of RSPO3 in human term placenta was detected, and a stable RSPO3-overexpressing JEG-3 cell line was established via lentivirus-mediated transduction. The expression of biomarkers involved in tumorigenicity was detected in the RSPO3-overexpressing JEG-3 cells, and cell proliferation, invasion, migration, and apoptosis were investigated. Moreover, soft agar clonogenic assays and xenograft tumorigenicity assays were performed to assess the effect of RSPO3 on tumor growth in vitro and in vivo. The results showed that RSPO3 was widely expressed in human term placenta and overexpression of RSPO3 promoted the proliferation and inhibited the migration, invasion, and apoptosis of the JEG-3 cells. Meanwhile, RSPO3 overexpression promoted tumor growth both in vivo and in vitro. Further investigation showed that the phosphorylation levels of Akt, phosphatidylinositol 3-kinase (PI3K), and ERK as well the expression of β-catenin and proliferating cell nuclear antigen (PCNA) were increased in the RSPO3-overexpressing JEG-3 cells and tumor xenograft. Taken together, these data indicate that RSPO3 promotes the tumor growth of choriocarcinoma via Akt/PI3K/ERK signaling, which supports RSPO3 as an oncogenic driver promoting the progression of choriocarcinoma.
Collapse
Affiliation(s)
- Zhilong Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Juzuo Zhang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Biological and Food Engineering, Huaihua University, Huaihua, China
| | - Anwen Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| | - Jinyu Han
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lunbo Tan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhuoqun Zhou
- Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Huashan Zhao
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Rui Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China.,Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Binbin Huang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Baobei Wang
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Beini Sun
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiujun Fan
- Research Center for Reproduction and Health Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
| |
Collapse
|