1
|
Jajosky RP, Wu SC, Jajosky PG, Stowell SR. Plasmodium knowlesi ( Pk) Malaria: A Review & Proposal of Therapeutically Rational Exchange (T-REX) of Pk-Resistant Red Blood Cells. Trop Med Infect Dis 2023; 8:478. [PMID: 37888606 PMCID: PMC10610852 DOI: 10.3390/tropicalmed8100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Plasmodium knowlesi (Pk) causes zoonotic malaria and is known as the "fifth human malaria parasite". Pk malaria is an emerging threat because infections are increasing and can be fatal. While most infections are in Southeast Asia (SEA), especially Malaysia, travelers frequently visit this region and can present with Pk malaria around the world. So, clinicians need to know (1) patients who present with fever after recent travel to SEA might be infected with Pk and (2) Pk is often misdiagnosed as P. malariae (which typically causes less severe malaria). Here we review the history, pathophysiology, clinical features, diagnosis, and treatment of Pk malaria. Severe disease is most common in adults. Signs and symptoms can include fever, abdominal pain, jaundice, acute kidney injury, acute respiratory distress syndrome, hyponatremia, hyperparasitemia, and thrombocytopenia. Dengue is one of the diseases to be considered in the differential. Regarding pathophysiologic mechanisms, when Pk parasites invade mature red blood cells (RBCs, i.e., normocytes) and reticulocytes, changes in the red blood cell (RBC) surface can result in life-threatening cytoadherence, sequestration, and reduced RBC deformability. Since molecular mechanisms involving the erythrocytic stage are responsible for onset of severe disease and lethal outcomes, it is biologically plausible that manual exchange transfusion (ET) or automated RBC exchange (RBCX) could be highly beneficial by replacing "sticky" parasitized RBCs with uninfected, deformable, healthy donor RBCs. Here we suggest use of special Pk-resistant donor RBCs to optimize adjunctive manual ET/RBCX for malaria. "Therapeutically-rational exchange transfusion" (T-REX) is proposed in which Pk-resistant RBCs are transfused (instead of disease-promoting RBCs). Because expression of the Duffy antigen on the surface of human RBCs is essential for parasite invasion, T-REX of Duffy-negative RBCs-also known as Fy(a-b-) RBCs-could replace the majority of the patient's circulating normocytes with Pk invasion-resistant RBCs (in a single procedure lasting about 2 h). When sequestered or non-sequestered iRBCs rupture-in a 24 h Pk asexual life cycle-the released merozoites cannot invade Fy(a-b-) RBCs. When Fy(a-b-) RBC units are scarce (e.g., in Malaysia), clinicians can consider the risks and benefits of transfusing plausibly Pk-resistant RBCs, such as glucose-6-phosphate dehydrogenase deficient (G6PDd) RBCs and Southeast Asian ovalocytes (SAO). Patients typically require a very short recovery time (<1 h) after the procedure. Fy(a-b-) RBCs should have a normal lifespan, while SAO and G6PDd RBCs may have mildly reduced half-lives. Because SAO and G6PDd RBCs come from screened blood donors who are healthy and not anemic, these RBCs have a low-risk for hemolysis and do not need to be removed after the patient recovers from malaria. T-REX could be especially useful if (1) antimalarial medications are not readily available, (2) patients are likely to progress to severe disease, or (3) drug-resistant strains emerge. In conclusion, T-REX is a proposed optimization of manual ET/RBCX that has not yet been utilized but can be considered by physicians to treat Pk malaria patients.
Collapse
Affiliation(s)
- Ryan Philip Jajosky
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
- Biconcavity Inc., Lilburn, GA 30047, USA
| | - Shang-Chuen Wu
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| | | | - Sean R. Stowell
- Joint Program in Transfusion Medicine, Brigham and Women’s Hospital, Harvard Medical School, 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; (S.-C.W.)
| |
Collapse
|
2
|
Picón-Jaimes YA, Lozada-Martinez ID, Orozco-Chinome JE, Molina-Franky J, Acevedo-Lopez D, Acevedo-Lopez N, Bolaño-Romero MP, Visconti-Lopez FJ, Bonilla-Aldana DK, Rodriguez-Morales AJ. Relationship between Duffy Genotype/Phenotype and Prevalence of Plasmodium vivax Infection: A Systematic Review. Trop Med Infect Dis 2023; 8:463. [PMID: 37888591 PMCID: PMC10610806 DOI: 10.3390/tropicalmed8100463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The Duffy protein, a transmembrane molecule, functions as a receptor for various chemokines and facilitates attachment between the reticulocyte and the Plasmodium Duffy antigen-binding protein. Duffy expression correlates with the Duffy receptor gene for the chemokine, located on chromosome 1, and exhibits geographical variability worldwide. Traditionally, researchers have described the Duffy negative genotype as a protective factor against Plasmodium vivax infection. However, recent studies suggest that this microorganism's evolution could potentially diminish this protective effect. Nevertheless, there is currently insufficient global data to demonstrate this phenomenon. This study aimed to evaluate the relationship between the Duffy genotype/phenotype and the prevalence of P. vivax infection. The protocol for the systematic review was registered in PROSPERO as CRD42022353427 and involved reviewing published studies from 2012 to 2022. The Medline/PubMed, Web of Science, Scopus, and SciELO databases were consulted. Assessments of study quality were conducted using the STROBE and GRADE tools. A total of 34 studies were included, with Africa accounting for the majority of recorded studies. The results varied significantly regarding the relationship between the Duffy genotype/phenotype and P. vivax invasion. Some studies predominantly featured the negative Duffy genotype yet reported no malaria cases. Other studies identified minor percentages of infections. Conversely, certain studies observed a higher prevalence (99%) of Duffy-negative individuals infected with P. vivax. In conclusion, this systematic review found that the homozygous Duffy genotype positive for the A allele (FY*A/*A) is associated with a higher incidence of P. vivax infection. Furthermore, the negative Duffy genotype does not confer protection against vivax malaria.
Collapse
Affiliation(s)
| | - Ivan David Lozada-Martinez
- Epidemiology Program, Department of Graduate Studies in Health Sciences, Universidad Autónoma de Bucaramanga, Bucaramanga 44005, Colombia;
| | - Javier Esteban Orozco-Chinome
- Medical and Surgical Research Center, Future Surgeons Chapter, Colombian Surgery Association, Bogotá 10002, Colombia; (J.E.O.-C.); (N.A.-L.); (M.P.B.-R.)
| | - Jessica Molina-Franky
- Department of Inmunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA 91007, USA;
- Molecular Biology and Inmunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 10001, Colombia
| | - Domenica Acevedo-Lopez
- School of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira 660003, Colombia;
| | - Nicole Acevedo-Lopez
- Medical and Surgical Research Center, Future Surgeons Chapter, Colombian Surgery Association, Bogotá 10002, Colombia; (J.E.O.-C.); (N.A.-L.); (M.P.B.-R.)
| | - Maria Paz Bolaño-Romero
- Medical and Surgical Research Center, Future Surgeons Chapter, Colombian Surgery Association, Bogotá 10002, Colombia; (J.E.O.-C.); (N.A.-L.); (M.P.B.-R.)
| | | | | | - Alfonso J. Rodriguez-Morales
- Clinical Epidemiology and Biostatistics Master Program, Universidad Cientifica del Sur, Lima 15067, Peru;
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36, Lebanon
| |
Collapse
|
3
|
Ooi CH, Phang WK, Liew JWK, Atroosh WM, Lau YL. Epidemiology of indigenous Plasmodium knowlesi infection in Sarawak, 2011-2019. Trop Med Int Health 2022; 27:705-718. [PMID: 35716113 DOI: 10.1111/tmi.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVES To characterize the state-wide epidemiology of indigenous knowlesi malaria in Sarawak from 2011-2019. METHODS Longitudinal retrospective study based on Sarawak knowlesi malaria surveillance data recorded 2011-2019. Only indigenous cases were included and information extracted for analysis comprised age, sex, occupation, ethnicity, case severity, hospital admission, and parasite density. RESULTS Over the 9 years 8473 indigenous knowlesi malaria cases were recorded. Age group 40 to 49 years, males, plantation workers, and Iban communities recorded the highest percentage of cases in each demographic variable. Most of the cases were uncomplicated (85.9%) and 89.5% of the total cases were reported with ≤20,000 parasites/μL of blood. Age group and ethnic group are associated with severity of knowlesi malaria in Sarawak. Multivariable logistic regression indicated that the age group 60+ years had the highest odds of developing severe knowlesi malaria compared to other age groups (AOR 2.48; 95% CI 1.22, 5.02; p=0.012). Bidayuh patients were more likely to develop severe knowlesi malaria than Ibans, the largest ethnic group among knowlesi malaria patients (AOR 1.97; 95% CI 1.31, 2.97; p=0.001). CONCLUSIONS Identification of risk groups is important for the implementation of prevention programs and treatments targeting at specific group to combat knowlesi malaria effectively.
Collapse
Affiliation(s)
- Choo Huck Ooi
- Vector Borne Disease Section, Sarawak Health Department, Ministry of Health Malaysia, Sarawak, Malaysia
| | - Wei Kit Phang
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Currenly Environmental Health Institute, National Environment Agency, Singapore
| | - Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Microbiology and Parasitology, University of Aden, Aden, Yemen
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Liew CC, Lau YL, Fong MY, Cheong FW. Two Genetically Distinct Plasmodium knowlesi Duffy Binding Protein Alpha Region II (PkDBPαII) Haplotypes Demonstrate Higher Binding Level to Fy(a+b+) Erythrocytes than Fy(a+b--) Erythrocytes. Am J Trop Med Hyg 2020; 102:1068-1071. [PMID: 32189613 DOI: 10.4269/ajtmh.19-0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Invasion of human erythrocytes by merozoites of Plasmodium knowlesi involves interaction between the P. knowlesi Duffy binding protein alpha region II (PkDBPαII) and Duffy antigen receptor for chemokines (DARCs) on the erythrocytes. Information is scarce on the binding level of PkDBPαII to different Duffy antigens, Fya and Fyb. This study aims to measure the binding level of two genetically distinct PkDBPαII haplotypes to Fy(a+b-) and Fy(a+b+) human erythrocytes using erythrocyte-binding assay. The binding level of PkDBPαII of Peninsular Malaysian and Malaysian Borneon haplotypes to erythrocytes was determined by counting the number of rosettes formed in the assay. Overall, the Peninsular Malaysian haplotype displayed higher binding activity than the Malaysian Borneon haplotype. Both haplotypes exhibit the same preference to Fy(a+b+) compared with Fy(a+b-), hence justifying the vital role of Fyb in the binding to PkDBPαII. Further studies are needed to investigate the P. knowlesi susceptibility on individuals with different Duffy blood groups.
Collapse
Affiliation(s)
- Chin Chin Liew
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Fei Wen Cheong
- Department of Parasitology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Ortega DC, Cárdenas H, Barreto G. Joint selection for two malaria resistance mutations in a south-west Colombian population. INFECTION GENETICS AND EVOLUTION 2020; 80:104188. [PMID: 31927074 DOI: 10.1016/j.meegid.2020.104188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/05/2020] [Accepted: 01/08/2020] [Indexed: 11/19/2022]
Abstract
In regions with an Afro-descendant population and where malaria is endemic, high frequencies of polymorphisms have been found that confer resistance to this disease, such as the haemoglobin S (HbS) and Duffy genes, which provide resistance to P. falciparum and P. vivax infection, respectively. The objective of this study was to evaluate the individual and joint selection actions of these two genes in an Afro-descendant Colombian population. A total of 819 individuals were analysed using stratified random sampling. PCR-RFLP and Hardy-Weinberg equilibrium deviation analysis (H-W eq.), linkage disequilibrium (LD), D'IS2 and D'ST2 indexes, neutrality tests, correlations and fitness were performed using Arlequin 3.5.2.2 and R 3.4.1 software. In general, the population showed neutrality and H-W eq. for the HbS gene but not for the Duffy gene (FYA/FYB, FYA/FYBES and FYB/FYBES genotypes were responsible for this deviation). LD between the HbS locus and the promoter region of the Duffy gene, a value D'IS2 = 0.001 and D'ST2 = 0.020 was found, an increase in fitness of the AS*FYBES/FYBES genotype combination (marked in adolescents and adults), and a strong correlation between these genotypes (Rho = 90%, p = .001) were found, evidencing a possible joint selection action for these two alleles. This work presents evidence of the action of natural selection, both individually and jointly, on malaria resistance genes, HbS and Duffy, in the Buenaventura population.
Collapse
Affiliation(s)
- Diana Carolina Ortega
- Human Molecular Genetics Group, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Heiber Cárdenas
- Human Molecular Genetics Group, Department of Biology, Universidad del Valle, Cali, Colombia
| | - Guillermo Barreto
- Human Molecular Genetics Group, Department of Biology, Universidad del Valle, Cali, Colombia.
| |
Collapse
|