1
|
Saranholi BH, França FM, Vogler AP, Barlow J, Vaz de Mello FZ, Maldaner ME, Carvalho E, Gestich CC, Howes B, Banks-Leite C, Galetti PM. Testing and optimizing metabarcoding of iDNA from dung beetles to sample mammals in the hyperdiverse Neotropics. Mol Ecol Resour 2024; 24:e13961. [PMID: 38646932 DOI: 10.1111/1755-0998.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024]
Abstract
Over the past few years, insects have been used as samplers of vertebrate diversity by assessing the ingested-derived DNA (iDNA), and dung beetles have been shown to be a good mammal sampler given their broad feeding preference, wide distribution and easy sampling. Here, we tested and optimized the use of iDNA from dung beetles to assess the mammal community by evaluating if some biological and methodological aspects affect the use of dung beetles as mammal species samplers. We collected 403 dung beetles from 60 pitfall traps. iDNA from each dung beetle was sequenced by metabarcoding using two mini-barcodes (12SrRNA and 16SrRNA). We assessed whether dung beetles with different traits related to feeding, nesting and body size differed in the number of mammal species found in their iDNA. We also tested differences among four killing solutions in preserving the iDNA and compared the effectiveness of each mini barcode to recover mammals. We identified a total of 50 mammal OTUs (operational taxonomic unit), including terrestrial and arboreal species from 10 different orders. We found that at least one mammal-matching sequence was obtained from 70% of the dung beetle specimens. The number of mammal OTUs obtained did not vary with dung beetle traits as well as between the killing solutions. The 16SrRNA mini-barcode recovered a higher number of mammal OTUs than 12SrRNA, although both sets were partly non-overlapping. Thus, the complete mammal diversity may not be achieved by using only one of them. This study refines the methodology for routine assessment of tropical mammal communities via dung beetle 'samplers' and its universal applicability independently of the species traits of local beetle communities.
Collapse
Affiliation(s)
- Bruno H Saranholi
- Department of Life Sciences, Imperial College London, Ascot, UK
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Filipe M França
- School of Biological Sciences, University of Bristol, Bristol, UK
- Graduate Program in Ecology, Biological Sciences Institute, Federal University of Pará, Belém, Pará, Brazil
| | - Alfried P Vogler
- Department of Life Sciences, Imperial College London, Ascot, UK
- Department of Life Sciences, Natural History Museum, London, UK
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Fernando Z Vaz de Mello
- Departamento de Biologia e Zoologia, Universidade Federal de Mato Grosso, Instituto de Biociências, Cuiabá, MT, Brazil
| | - Maria E Maldaner
- Programa de Pós-Graduação Em Ecologia e Conservação da Biodiversidade (PPGECB), Universidade Federal de Mato Grosso (UFMT), Cuiabá, Brazil
| | - Edrielly Carvalho
- Programa de Pós-Graduação Em Entomologia, Instituto Nacional de Pesquisas da Amazônia, INPA, Manaus, Amazonas, Brazil
| | - Carla C Gestich
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Benjamin Howes
- Department of Life Sciences, Imperial College London, Ascot, UK
| | | | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
2
|
Saranholi BH, Rodriguez-Castro KG, Carvalho CS, Chahad-Ehlers S, Gestich CC, Andrade SCS, Freitas PD, Galetti PM. Comparing iDNA from mosquitoes and flies to survey mammals in a semi-controlled Neotropical area. Mol Ecol Resour 2023; 23:1790-1799. [PMID: 37535317 DOI: 10.1111/1755-0998.13851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Ingested-derived DNA (iDNA) from insects represents a powerful tool for assessing vertebrate diversity because insects are easy to sample, have a diverse diet and are widely distributed. Because of these advantages, the use of iDNA for detecting mammals has gained increasing attention. Here we aimed to compare the effectiveness of mosquitoes and flies to detect mammals with a small sampling effort in a semi-controlled area, a zoo that houses native and non-native species. We compared mosquitoes and flies regarding the number of mammal species detected, the amount of mammal sequence reads recovered, and the flight distance range for detecting mammals. We also verified if the combination of two mini-barcodes (12SrRNA and 16SrRNA) would perform better than either mini-barcode alone to inform local mammal biodiversity from iDNA. To capture mosquitoes and flies, we distributed insect traps in eight sampling points during 5 days. We identified 43 Operational Taxonomic Units from 10 orders, from the iDNA of 17 mosquitoes and 46 flies. There was no difference in the number of species recovered per individual insect between mosquitoes and flies, but the number of flies captured was higher, resulting in more mammal species recovered by flies. Eight species were recorded exclusively by mosquitoes and 20 by flies, suggesting that using both samplers would allow a more comprehensive screening of the biodiversity. The maximum distance recorded was 337 m for flies and 289 m for mosquitoes, but the average range distance did not differ between insect groups. Our assay proved to be efficient for mammal detection, considering the high number of species detected with a reduced sampling effort.
Collapse
Affiliation(s)
- Bruno H Saranholi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Karen G Rodriguez-Castro
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
- Facultad Ciencias Básicas e Ingeniería, Universidad de los Llanos, Villavicencio, Colombia
| | - Carolina S Carvalho
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
- Instituto Tecnológico Vale, Belém, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Carla C Gestich
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Sónia C S Andrade
- Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Patrícia D Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
3
|
Huang S, Yoshitake K, Watabe S, Asakawa S. Environmental DNA study on aquatic ecosystem monitoring and management: Recent advances and prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116310. [PMID: 36261997 DOI: 10.1016/j.jenvman.2022.116310] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Environmental DNA (eDNA) is organismal DNA that can be detected in the environment and is derived from cellular material of organisms shed into aquatic or terrestrial environments. It can be sampled and monitored using molecular methods, which is important for the early detection of invasive and native species as well as the discovery of rare and cryptic species. While few reviews have summarized the latest findings on eDNA for most aquatic animal categories in the aquatic ecosystem, especially for aquatic eDNA processing and application. In the present review, we first performed a bibliometric network analysis of eDNA studies on aquatic animals. Subsequently, we summarized the abiotic and biotic factors affecting aquatic eDNA occurrence. We also systematically discussed the relevant experiments and analyses of aquatic eDNA from various aquatic organisms, including fish, molluscans, crustaceans, amphibians, and reptiles. Subsequently, we discussed the major achievements of eDNA application in studies on the aquatic ecosystem and environment. The application of eDNA will provide an entirely new paradigm for biodiversity conservation, environment monitoring, and aquatic species management at a global scale.
Collapse
Affiliation(s)
- Songqian Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai, 200120, China; Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan.
| | - Kazutoshi Yoshitake
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa, 252-0313, Japan
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
4
|
Nordstrom B, Mitchell N, Byrne M, Jarman S. A review of applications of environmental DNA for reptile conservation and management. Ecol Evol 2022; 12:e8995. [PMID: 35784065 PMCID: PMC9168342 DOI: 10.1002/ece3.8995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/15/2022] [Accepted: 05/19/2022] [Indexed: 11/28/2022] Open
Abstract
Reptile populations are in decline globally, with total reptile abundance halving in the past half century, and approximately a fifth of species currently threatened with extinction. Research on reptile distributions, population trends, and trophic interactions can greatly improve the accuracy of conservation listings and planning for species recovery, but data deficiency is an impediment for many species. Environmental DNA (eDNA) can detect species and measure community diversity at diverse spatio-temporal scales, and is especially useful for detection of elusive, cryptic, or rare species, making it potentially very valuable in herpetology. We aim to summarize the utility of eDNA as a tool for informing reptile conservation and management and discuss the benefits and limitations of this approach. A literature review was conducted to collect all studies that used eDNA and focus on reptile ecology, conservation, or management. Results of the literature search are summarized into key discussion points, and the review also draws on eDNA studies from other taxa to highlight methodological challenges and to identify future research directions. eDNA has had limited application to reptiles, relative to other vertebrate groups, and little use in regions with high species richness. eDNA techniques have been more successfully applied to aquatic reptiles than to terrestrial reptiles, and most (64%) of studies focused on aquatic habitats. Two of the four reptilian orders dominate the existing eDNA studies (56% Testudines, 49% Squamata, 5% Crocodilia, 0% Rhynchocephalia). Our review provides direction for the application of eDNA as an emerging tool in reptile ecology and conservation, especially when it can be paired with traditional monitoring approaches. Technologies associated with eDNA are rapidly advancing, and as techniques become more sensitive and accessible, we expect eDNA will be increasingly valuable for addressing key knowledge gaps for reptiles.
Collapse
Affiliation(s)
- Bethany Nordstrom
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Nicola Mitchell
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Margaret Byrne
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- Department of Biodiversity, Conservation and AttractionsBiodiversity and Conservation SciencePerthWestern AustraliaAustralia
| | - Simon Jarman
- School of Biological SciencesThe University of Western AustraliaCrawleyWestern AustraliaAustralia
- UWA Oceans InstituteThe University of Western AustraliaCrawleyWestern AustraliaAustralia
| |
Collapse
|
5
|
Villacorta-Rath C, Espinoza T, Cockayne B, Schaffer J, Burrows D. Environmental DNA analysis confirms extant populations of the cryptic Irwin’s turtle within its historical range. BMC Ecol Evol 2022; 22:57. [PMID: 35501685 PMCID: PMC9059348 DOI: 10.1186/s12862-022-02009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background Approximately 50% of freshwater turtles worldwide are currently threatened by habitat loss, rural development and altered stream flows. Paradoxically, reptiles are understudied organisms, with many species lacking basic geographic distribution and abundance data. The iconic Irwin’s turtle, Elseya irwini, belongs to a unique group of Australian endemic freshwater turtles capable of cloacal respiration. Water resource development, increased presence of saltwater crocodiles and its cryptic behaviour, have made sampling for Irwin’s turtle in parts of its range problematic, resulting in no confirmed detections across much of its known range for > 25 years. Here, we used environmental DNA (eDNA) analysis for E. irwini detection along its historical and contemporary distribution in the Burdekin, Bowen and Broken River catchments and tributaries. Five replicate water samples were collected at 37 sites across those three river catchments. Environmental DNA was extracted using a glycogen-aided precipitation method and screened for the presence of E. irwini through an eDNA assay targeting a 127 base pair-long fragment of the NADH dehydrogenase 4 (ND4) mitochondrial gene. Results Elseya irwini eDNA was detected at sites within its historic distribution in the lower Burdekin River, where the species had not been formally recorded for > 25 years, indicating the species still inhabits the lower Burdekin area. We also found higher levels of E. iriwni eDNA within its contemporary distribution in the Bowen and Broken Rivers, matching the prevailing scientific view that these areas host larger populations of E. irwini. Conclusions This study constitutes the first scientific evidence of E. irwini presence in the lower Burdekin since the original type specimens were collected as part of its formal description, shortly after the construction of the Burdekin Falls Dam. From the higher percentage of positive detections in the upper reaches of the Broken River (Urannah Creek), we conclude that this area constitutes the core habitat area for the species. Our field protocol comprises a user-friendly, time-effective sampling method. Finally, due to safety risks associated with traditional turtle sampling methods in the Burdekin River (e.g., estuarine crocodiles) we propose eDNA sampling as the most pragmatic detection method available for E. irwini. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02009-6.
Collapse
|
6
|
Lam IPY, Sung YH, Fong JJ. Using eDNA techniques to find the endangered big-headed turtle (Platysternon megacephalum). PLoS One 2022; 17:e0262015. [PMID: 35130297 PMCID: PMC8820637 DOI: 10.1371/journal.pone.0262015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022] Open
Abstract
We evaluate the efficacy of environmental DNA (eDNA) techniques to locate wild populations and estimate the population size of the endangered big-headed turtle (Platysternon megacephalum) in Hong Kong. The results from this study are important for identifying priority sites for protection and further research. Additionally, we assess the impact of two environmental variables (temperature and pH) on eDNA quantity. We surveyed 34 streams for three years, sampling four times each year. Four new populations were first identified with eDNA analysis, and then verified by field surveys. Our multi-year survey highlights that eDNA detection can be inconsistent over time, even in streams with known populations. There was no significant relationship between eDNA quantity and the environmental variables tested. Lastly, our results suggest that eDNA methods remain promising to estimate population size, since number of positive detections were positively correlated with population size in streams with known populations. We conclude that eDNA methods are powerful, but care must be taken when interpreting field results as they are affected by species ecology and environmental conditions.
Collapse
Affiliation(s)
| | - Yik-Hei Sung
- Science Unit, Lingnan University, Hong Kong, China
| | | |
Collapse
|
7
|
Green H, Wilder M, Wiedmann M, Weller D. Integrative Survey of 68 Non-overlapping Upstate New York Watersheds Reveals Stream Features Associated With Aquatic Fecal Contamination. Front Microbiol 2021; 12:684533. [PMID: 34475855 PMCID: PMC8406625 DOI: 10.3389/fmicb.2021.684533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Aquatic fecal contamination poses human health risks by introducing pathogens in water that may be used for recreation, consumption, or agriculture. Identifying fecal contaminant sources, as well as the factors that affect their transport, storage, and decay, is essential for protecting human health. However, identifying these factors is often difficult when using fecal indicator bacteria (FIB) because FIB levels in surface water are often the product of multiple contaminant sources. In contrast, microbial source-tracking (MST) techniques allow not only the identification of predominant contaminant sources but also the quantification of factors affecting the transport, storage, and decay of fecal contaminants from specific hosts. We visited 68 streams in the Finger Lakes region of Upstate New York, United States, between April and October 2018 and collected water quality data (i.e., Escherichia coli, MST markers, and physical–chemical parameters) and weather and land-use data, as well as data on other stream features (e.g., stream bed composition), to identify factors that were associated with fecal contamination at a regional scale. We then applied both generalized linear mixed models and conditional inference trees to identify factors and combinations of factors that were significantly associated with human and ruminant fecal contamination. We found that human contaminants were more likely to be identified when the developed area within the 60 m stream buffer exceeded 3.4%, the total developed area in the watershed exceeded 41%, or if stormwater outfalls were present immediately upstream of the sampling site. When these features were not present, human MST markers were more likely to be found when rainfall during the preceding day exceeded 1.5 cm. The presence of upstream campgrounds was also significantly associated with human MST marker detection. In addition to rainfall and water quality parameters associated with rainfall (e.g., turbidity), the minimum distance to upstream cattle operations, the proportion of the 60 m buffer used for cropland, and the presence of submerged aquatic vegetation at the sampling site were all associated based on univariable regression with elevated levels of ruminant markers. The identification of specific features associated with host-specific fecal contaminants may support the development of broader recommendations or policies aimed at reducing levels of aquatic fecal contamination.
Collapse
Affiliation(s)
- Hyatt Green
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Maxwell Wilder
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Daniel Weller
- Department of Environmental Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, NY, United States
| |
Collapse
|
8
|
Wilder ML, Middleton F, Larsen DA, Du Q, Fenty A, Zeng T, Insaf T, Kilaru P, Collins M, Kmush B, Green HC. Co-quantification of crAssphage increases confidence in wastewater-based epidemiology for SARS-CoV-2 in low prevalence areas. WATER RESEARCH X 2021; 11:100100. [PMID: 33842875 PMCID: PMC8021452 DOI: 10.1016/j.wroa.2021.100100] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/16/2021] [Accepted: 04/01/2021] [Indexed: 05/17/2023]
Abstract
Wastewater surveillance of SARS-CoV-2 RNA is increasingly being incorporated into public health efforts to respond to the COVID-19 pandemic. In order to obtain the maximum benefit from these efforts, approaches to wastewater monitoring need to be rapid, sensitive, and relatable to relevant epidemiological parameters. In this study, we present an ultracentrifugation-based method for the concentration of SARS-CoV-2 wastewater RNA and use crAssphage, a bacteriophage specific to the human gut, to help account for RNA loss during transit in the wastewater system and sample processing. With these methods, we were able to detect, and sometimes quantify, SARS-CoV-2 RNA from 20 mL wastewater samples within as little as 4.5 hours. Using known concentrations of bovine coronavirus RNA and deactivated SARS-CoV-2, we estimate recovery rates of approximately 7-12% of viral RNA using our method. Results from 24 sewersheds across Upstate New York during the spring and summer of 2020 suggested that stronger signals of SARS-CoV-2 RNA from wastewater may be indicative of greater COVID-19 incidence in the represented service area approximately one week in advance. SARS-CoV-2 wastewater RNA was quantifiable in some service areas with daily positives tests of less than 1 per 10,000 people or when weekly positive test rates within a sewershed were as low as 1.7%. crAssphage DNA concentrations were significantly lower during periods of high flow in almost all areas studied. After accounting for flow rate and population served, crAssphage levels per capita were estimated to be about 1.35 × 1011 and 2.42 × 108 genome copies per day for DNA and RNA, respectively. A negative relationship between per capita crAssphage RNA and service area size was also observed likely reflecting degradation of RNA over long transit times. Our results reinforce the potential for wastewater surveillance to be used as a tool to supplement understanding of infectious disease transmission obtained by traditional testing and highlight the potential for crAssphage co-detection to improve interpretations of wastewater surveillance data.
Collapse
Affiliation(s)
- Maxwell L. Wilder
- Department of Environmental and Forest Biology, SUNY-ESF, Syracuse, NY 13210
| | - Frank Middleton
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210
| | - David A. Larsen
- Department of Public Health, Syracuse University, Syracuse, NY 13244
| | - Qian Du
- Quadrant Biosciences, Syracuse, NY 13210
| | - Ariana Fenty
- Department of Environmental and Forest Biology, SUNY-ESF, Syracuse, NY 13210
| | - Teng Zeng
- Department of Civil & Environmental Engineering, Syracuse University, Syracuse, NY 13244
| | - Tabassum Insaf
- Bureau of Environmental and Occupational Epidemiology, New York State Department of Health, Albany, NY 12337
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY 12144
| | - Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, NY 13244
| | - Mary Collins
- Department of Environmental Studies, SUNY-ESF, Syracuse, NY 13210
| | - Brittany Kmush
- Department of Public Health, Syracuse University, Syracuse, NY 13244
| | - Hyatt C. Green
- Department of Environmental and Forest Biology, SUNY-ESF, Syracuse, NY 13210
| |
Collapse
|
9
|
Tarof SA, Crookes S, Moxley K, Hathaway J, Cameron G, Hanner RH. Environmental DNA bioassays corroborate field data for detection of overwintering species at risk Blanding's turtles ( Emydoidea blandingii). Genome 2021; 64:299-310. [PMID: 33538216 DOI: 10.1139/gen-2020-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Environmental DNA (eDNA) is gaining traction in conservation ecology as a powerful tool for detecting species at risk. We developed a quantitative polymerase chain reaction assay to detect a DNA amplicon fragment of the mitochondrial nicotinamide adenine dinucleotide locus of the Blanding's turtle (Emydoidea blandingii) for detecting overwintering individuals. Seventy-eight water samples were collected from 17 wetland sites in Ontario, Canada. We used traditional field data to identify a priori positive and negative control sites. Fifty percent of positive control sites amplified. Detection was related to the number of individuals estimated from field observations in at least one region surveyed. Positive control sites had lower total dissolved solids and electrical conductivity in relation to negative control sites. Shedding rates were within the same order of magnitude for brumating and active turtles. We recommend collecting additional samples at a larger number of locations to maximize detection. Recommended sampling design changes may overshadow the additional effects of water chemistry and low eDNA shedding rates. eDNA offers tremendous potential to practitioners conducting species at risk assessments in environmental consulting by providing a faster, more efficient method of detection compared with traditional surveys.
Collapse
Affiliation(s)
- Scott A Tarof
- Azimuth Environmental Consulting, Inc., 642 Welham Road, Barrie, ON L4N 9A1, Canada
| | - Steven Crookes
- Precision Biomonitoring Inc., Orchard Park, Suite #226, 5420 Highway 6 North, Guelph, ON N1H 6J2, Canada
| | - Kelsey Moxley
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Jeff Hathaway
- Scales Nature Park, 82 Line 15 South, Oro-Medonte, ON L3V 8H9, Canada
| | - Graham Cameron
- Ministry of Natural Resources and Forestry (Bancroft District), 106 Monck Street, Bancroft, ON K0L 1C0, Canada
| | - Robert H Hanner
- Biodiversity Institute of Ontario, Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Kirtane A, Atkinson JD, Sassoubre L. Design and Validation of Passive Environmental DNA Samplers Using Granular Activated Carbon and Montmorillonite Clay. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11961-11970. [PMID: 32659082 DOI: 10.1021/acs.est.0c01863] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Environmental DNA (eDNA) analysis is gaining prominence as a tool for species and biodiversity monitoring in aquatic environments. eDNA shed by organisms is captured in grab samples, concentrated by filtration, extracted, and analyzed using molecular methods. Conventional capture and filtration methods are limited because (1) filtration does not capture all extracellular DNA, (2) eDNA can degrade during sample transport and storage, (3) filters often clog in turbid waters, reducing the eDNA captured, and (4) grab samples are time sensitive due to pulse eDNA inputs. To address these limitations, this work designs and validates Passive Environmental DNA Samplers (PEDS). PEDS consist of an adsorbent-filled sachet that is suspended in water to collect eDNA over time. Both extracellular and cellular DNA are captured, and the extracellular DNA is protected from degradation. The eDNA captured over time may be more representative than a grab sample. Two adsorbents, Montmorillonite Clay (MC) and Granular Activated Carbon (GAC), are tested. In laboratory experiments, MC-PEDS adsorbed five times more extracellular DNA and desorbed up to four times more than GAC-PEDS (despite high levels of eDNA loss during desorption). In microcosm and field experiments, GAC-PEDS captured over an order of magnitude more eDNA than MC-PEDS. Field results further validated PEDS as an effective eDNA capture method compared to conventional methods.
Collapse
Affiliation(s)
- Anish Kirtane
- Department of Civil, Structural, and Environmental Engineering, The State University of New York at Buffalo, Buffalo, New York 14228, United States
| | - John D Atkinson
- Department of Civil, Structural, and Environmental Engineering, The State University of New York at Buffalo, Buffalo, New York 14228, United States
| | - Lauren Sassoubre
- Department of Civil, Structural, and Environmental Engineering, The State University of New York at Buffalo, Buffalo, New York 14228, United States
- Department of Engineering, University of San Francisco, San Francisco, California 94117, United States
| |
Collapse
|
11
|
Weller D, Belias A, Green H, Roof S, Wiedmann M. Landscape, Water Quality, and Weather Factors Associated With an Increased Likelihood of Foodborne Pathogen Contamination of New York Streams Used to Source Water for Produce Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020; 3:124. [PMID: 32440656 PMCID: PMC7241490 DOI: 10.3389/fsufs.2019.00124] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
There is a need for science-based tools to (i) help manage microbial produce safety hazards associated with preharvest surface water use, and (ii) facilitate comanagement of agroecosystems for competing stakeholder aims. To develop these tools an improved understanding of foodborne pathogen ecology in freshwater systems is needed. The purpose of this study was to identify (i) sources of potential food safety hazards, and (ii) combinations of factors associated with an increased likelihood of pathogen contamination of agricultural water Sixty-eight streams were sampled between April and October 2018 (196 samples). At each sampling event separate 10-L grab samples (GS) were collected and tested for Listeria, Salmonella, and the stx and eaeA genes. A 1-L GS was also collected and used for Escherichia coli enumeration and detection of four host-associated fecal source-tracking markers (FST). Regression analysis was used to identify individual factors that were significantly associated with pathogen detection. We found that eaeA-stx codetection [Odds Ratio (OR) = 4.2; 95% Confidence Interval (CI) = 1.3, 13.4] and Salmonella isolation (OR = 1.8; CI = 0.9, 3.5) were strongly associated with detection of ruminant and human FST markers, respectively, while Listeria spp. (excluding Listeria monocytogenes) was negatively associated with log10 E. coli levels (OR = 0.50; CI = 0.26, 0.96). L. monocytogenes isolation was not associated with the detection of any fecal indicators. This observation supports the current understanding that, unlike enteric pathogens, Listeria is not fecally-associated and instead originates from other environmental sources. Separately, conditional inference trees were used to identify scenarios associated with an elevated or reduced risk of pathogen contamination. Interestingly, while the likelihood of isolating L. monocytogenes appears to be driven by complex interactions between environmental factors, the likelihood of Salmonella isolation and eaeA-stx codetection were driven by physicochemical water quality (e.g., dissolved oxygen) and temperature, respectively. Overall, these models identify environmental conditions associated with an enhanced risk of pathogen presence in agricultural water (e.g., rain events were associated with L. monocytogenes isolation from samples collected downstream of dairy farms; P = 0.002). The information presented here will enable growers to comanage their operations to mitigate the produce safety risks associated with preharvest surface water use.
Collapse
Affiliation(s)
- Daniel Weller
- Department of Food Science, Cornell University, Ithaca, NY, United States
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, United States
| | - Alexandra Belias
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Sherry Roof
- Department of Food Science, Cornell University, Ithaca, NY, United States
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|