1
|
Bakky MAH, Tran NT, Zhang M, Wang S, Zhang Y, Li S. Synergistic effects of butyrate-producing bacteria (Clostridium senegalense I5 or Paraclostridium benzoelyticum G5) and Gracilaria lemaneiformis-originated polysaccharides on the growth and immunity of rabbitfish. Int J Biol Macromol 2024; 291:138683. [PMID: 39672402 DOI: 10.1016/j.ijbiomac.2024.138683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study evaluated the synergistic effects of dietary butyrate-producing bacteria (Clostridium senegalense I5 (I5) and Paraclostridium benzoelyticum G5 (G5) and Gracilaria lemaneiformis-derived polysaccharide (GLP) in rabbitfish (Siganus canaliculatus). Both bacterial strains demonstrated high susceptibility to most antibiotics, salt tolerance up to 6.5 %, pH tolerance ranging from 2 to 10, and strong auto-aggregation abilities. In a 60-day feeding trial, rabbitfish were fed either commercial pelleted feed (CPF) as a control, or CPF supplemented with 0.10 % GLP and 107 cfu of G5 (GPb), or 0.10 % GLP and 107 cfu of I5 (GCs). GCs significantly improved growth and feed utilization compared to other diets (P < 0.05), while both GPb and GCs improved intestinal health, and digestive enzyme activity (amylase and lipase). Additionally, both GPb and GCs increased the activity of immune-related enzymes and total antioxidant capacity, while reducing malondialdehyde levels (P < 0.05). Transcriptomic analysis of liver tissue revealed differential gene expression in immune-related pathways for GCs and GPb. Fish fed GCs and GPb diets exhibited enhanced resistance against Vibrio parahaemolyticus compared to controls (P < 0.05). These findings suggest the potential of synbiotics involving I5 or G5 and GLP to improve growth, immune response, intestinal health, and disease resistance in rabbitfish, providing valuable insights for rabbitfish aquaculture.
Collapse
Affiliation(s)
- Md Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shuqi Wang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou 515063, China; Institute of Marine Sciences, Shantou University, Shantou 515063, China.
| |
Collapse
|
2
|
Mansoori A, Allaf Noveirian H, Hoseinifar SH, Sajjadi M, Ashouri G, Imperatore R, Paolucci M. Polyphenol-rich extracts enhance growth, immune function, and antioxidant defense in juvenile rainbow trout ( Oncorhynchus mykiss). Front Nutr 2024; 11:1487209. [PMID: 39703334 PMCID: PMC11655229 DOI: 10.3389/fnut.2024.1487209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/29/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction The present study was conducted to investigate the effects of PMIX, a polyphenol-rich extract mixture from chestnut wood and olive, on growth performance, hematological parameters, immunity in serum and skin mucus, hepatic antioxidant enzymes, and intestinal cytokine expression in rainbow trout (Oncorhynchus mykiss). Methods Four experimental diets containing 0 g PMIX kg-1 diet (control, C), 0.5 g PMIX kg-1 diet (P0.5), 1 g PMIX kg-1 diet (P1), and 2 g PMIX kg-1 diet (P2) were fed to rainbow trout in an eight-week feeding trial. Triplicate groups of fish received each treatment. Growth performance, feed conversion ratio, protein efficiency, hepatosomatic and viscerosomatic indices, hematological parameters, immunity markers, hepatic antioxidant enzyme activities, and intestinal cytokine expression were determined. Results PMIX supplementation significantly improved feed conversion ratios, while groups P0.5 and P1 evidenced an increase in growth performance along with protein efficiency ratios. It also showed decreased hepatosomatic and viscerosomatic indices in the P1 group. Except for higher percentages of monocytes in P0.5 and P1, most hematological parameters of the fish did not differ from that of the control. Serum lysozyme and respiratory burst activities were heightened in all PMIX-treated groups, and the skin mucus lysozyme activity was enhanced in P1. The blood phagocytic activity and phagocytic index, serum immunoglobulin, total protein, and bactericidal activity against A. hydrophila did not change. Hepatic superoxide dismutase activity significantly increased in P1 and P2, even though catalase activity did not change. Intestinal interleukin-6 expression was upregulated in all PMIX-treated groups, while tumor necrosis factor-alpha and interleukin-1 beta were upregulated in P1, P2, and P0.5 respectively. Discussion The present results evidence that dietary polyphenols from chestnut wood and olive extracts enhance growth performance, antioxidant capacity, and several immunological parameters in the blood, skin mucus, and intestine of rainbow trout. A suitable supplementation level was 1 g PMIX kg-1 diet to separate these improvements.
Collapse
Affiliation(s)
- Aghil Mansoori
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Hamid Allaf Noveirian
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Seyed Hossein Hoseinifar
- Department of Fisheries, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Mirmasoud Sajjadi
- Department of Fisheries, Faculty of Natural Resources, University of Guilan, Sowmeh Sara, Iran
| | - Ghasem Ashouri
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
- National Artemia Research Center, Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Urmia, Iran
| | - Roberta Imperatore
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| | - Marina Paolucci
- Department of Sciences and Technologies, University of Sannio, Benevento, Italy
| |
Collapse
|
3
|
Wang Q, Fan D, Hu Y, Liu H, Tan B, Xie S, Chen Q. Effects of supplementation with freeze-dried Clostridium butyricum powder after replacement of fishmeal with cottonseed protein concentrate on growth performance, immune response, and intestinal microbiota of Litopenaeus vannamei. BMC Vet Res 2024; 20:519. [PMID: 39551754 PMCID: PMC11571666 DOI: 10.1186/s12917-024-04372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/07/2024] [Indexed: 11/19/2024] Open
Abstract
The present study was designed to investigate the effects of supplementation with freeze-dried Clostridium butyricum (CB) powder on the growth, immune function and intestinal health of Litopenaeus vannamei after replacing fishmeal in the diet with cottonseed protein concentrate (CPC). Six treatment groups were designed, namely the control group (CON, 25% fish meal) and five alternative groups (CPC replacing 40% fishmeal protein in the control group). Based on the alternative group, 0%, 0.065%, 0.26%, 1.04%, and 4.16% of freeze-dried CB bacterial powder (4.6 × 108 CFU/g) were added, recorded as CB 0, CB 0.065, CB 0.26, CB 1.04, and CB 4.16, respectively. Each treatment had 3 replicates of 40 shrimps (0.29 ± 0.01 g) each and breeding for 8 weeks. After the experiment, serum enzyme activities, muscle amino acids, and intestinal parameters (short-chain fatty acids, digestive enzymes, gene expression, and microbiota) were tested to explore the effects of freeze-dried CB powder in shrimp aquaculture. The results showed that the CB1.04 group had the highest final body weight, weight gain rate, and specific growth ratio (P > 0.05). Freeze-dried CB powder increased the activity of serum superoxide dismutase, glutathione peroxidase, complement 3, and complement 4. Muscle tyrosine, proline, and total essential amino acids were remarkably increased in the CB 1.04 group (P < 0.05). Propionic acid levels were elevated in the CB 1.04 and CB4.16 groups (P < 0.001). The relative expression of Dorsal, Relish, and Target of Rapamycin (TOR) genes was significantly increased in the CB 1.04 group (P < 0.01). Actinobacteria and Demequina abundance was significantly higher in the CB 1.04 group (P < 0.01). The results of the Vibrio parahaemolyticus challenge test showed the highest cumulative mortality rate (43.33%) in the CB0 group and the lowest cumulative mortality rate (20%) in the CB1.04 group. This study confirmed that freeze-dried CB powder alleviated the negative effects of CPC replacement of fish meal protein in Litopenaeus vannamei, and the optimum additive level was 2.11% (9.71 × 109 CFU/kg) as indicated by binary regression analysis of specific growth ratio.
Collapse
Affiliation(s)
- Qi Wang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Depeng Fan
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Yadong Hu
- Bio-Form Biotechnology (Guangdong) Co., Ltd, Foshan, 528200, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Shiwei Xie
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524025, P.R. China
| | - Qiang Chen
- Bai Yang Industrial Investment Group Co., Ltd, Nanning, 530000, PR China
| |
Collapse
|
4
|
Bharathi Rathinam R, Tripathi G, Das BK, Jain R, Acharya A. Comparative analysis of gut microbiome in Pangasionodon hypopthalmus and Labeo catla during health and disease. Int Microbiol 2024; 27:1557-1571. [PMID: 38483744 DOI: 10.1007/s10123-024-00494-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 03/01/2024] [Indexed: 10/05/2024]
Abstract
The present study was conducted to study the composition of gut microbiome in the advanced fingerling and fingerling stage of striped pangasius catfish and catla during healthy and diseased conditions. Healthy pangasius and catla fishes were obtained from commercial farms and injected with the LD50 dose of A. hydrophila. The intestinal samples from the control and injected group were collected and pooled for 16 s metagenomic analysis. Community analysis was performed by targeting the 16 s rRNA gene to explore and compare the gut microbiota composition of these fishes. The operational taxonomic units (OTUs) consisted of four major phyla: Bacteroidia, Proteobacteria, Firmicutes, and Actinobacteria. Alpha and beta diversity indices were carried out to understand the diversity of microbes within and between a sample. While comparing the advanced fingerling and fingerling stage gut microbiome of Pangasius catfish, the dominance of Proteobacteria was found in fingerlings, whereas Firmicutes and Bacteroides were found in advanced fingerlings. In catla, Proteobacteria and Bacteroides were predominant. Taxonomic abundance of the microbiota in control and diseased Pangasius and catla fishes at phylum, class, order, family, genus, and species levels were also depicted. The present study is the first of its kind, and it will help to identify the diversity of novel potential bacterial species involved in disease protection of fishes. It can lead to the development of sustainable prophylactic measures against (re-)emerging bacterial diseases in aquaculture.
Collapse
Affiliation(s)
| | | | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, West Bengal, India
| | | | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, India
| |
Collapse
|
5
|
Yang H, Du D, Zhang Q, Teame T, Wang A, Hao Q, Liu S, Ding Q, Yao Y, Yang Y, Ran C, Li S, Zhang Z, Zhou Z. Dietary Bacillus velezensis T23 fermented products supplementation improves growth, hepatopancreas and intestine health of Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109595. [PMID: 38692381 DOI: 10.1016/j.fsi.2024.109595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
This study aimed to elucidate the effects of dietary fermented products of Bacillus velezensis T23 on the growth, immune response and gut microbiota in Pacific white shrimp (Litopenaeus vannamei). Shrimp were fed with diets containing fermentation products of B. velezensis T23 at levels of (0, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 g/kg) for 4 weeks, to assess the influence on shrimp growth. The results showed that 0.3 and 0.4 g/kg T23 supplementation improved shrimp growth and feed utilization. Based on these results we selected these three diets (Control, 0.3T23 and 0.4T23) to assess the effect on immune response and gut microbiota of shrimp. Compared with the control, the 0.3T23 and 0.4T23 groups enhanced lipase and α-amylase activities in the gut significantly. Moreover, the 0.4T23 group decreased TAG and MDA levels in hepatopancreas, ALT and AST levels of serum significantly (P < 0.05). In hepatopancreas, CAT and SOD activities were improved observably and the MDA content was reduced markedly in both T23 groups. The expressions of antimicrobial related genes, Cru and peroxinectin in the 0.3T23 group, and proPO and peroxinectin in the 0.4T23 group were up-regulated remarkably (P < 0.05). Moreover, hepatopancreas of shrimp fed with a diet amended with T23 showed a significant down-regulated expression of nf-kb and tnf-α genes, while expressions of tgf-β was considerably up-regulated. Furthermore, serum LPS and LBP contents were reduced markedly in T23 groups. Intestinal SOD and CAT were noteworthy higher in T23 groups (P < 0.05). In the intestine of shrimp fed on the diet enriched with T23 the expression of nf-κb and tnf-α exhibited markedly down-regulated, whereas hif1α was up-regulated (P < 0.05). Besides, in the intestine of shrimp grouped under T23, Cru and peroxinectin genes were markedly up-regulated (P < 0.05). Dietary 0.3 g/kg T23 also upregulated the ratio of Rhodobacteraceae to Vibrionaceae in the gut of the shrimp. Taken together, the inclusion of B. velezensis T23 in the diet of shrimp enhanced the growth and feed utilization, enhanced hepatopancreas and intestine health.
Collapse
Affiliation(s)
- Hongwei Yang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Dongdong Du
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qingshuang Zhang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tsegay Teame
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Tigray Agricultural Research Institute (TARI), Mekelle, Tigray, Ethiopia
| | - Anran Wang
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Hao
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Norway-China Joint Lab on Fish Gut Microbiota, Department of Biology, Norwegian University of Science and Technology, Trondheim, 7491, Norway
| | - Shubin Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qianwen Ding
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuanyuan Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chao Ran
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shengkang Li
- Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Zhen Zhang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Land and Food Systems, The University of British Columbia, Vancouver, Canada.
| | - Zhigang Zhou
- China-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Kunpeng Institute of Modern Agriculture of Foshan, Chinese Academy of Agricultural Sciences, Foshan, 528225, China.
| |
Collapse
|
6
|
Tao J, Gong Y, Chen S, Li W, Xie R, Zhang H, Chen N, Huang X, Li S. Dietary inclusion of Clostridium butyricum cultures alleviated impacts of high-carbohydrate diets in largemouth bass ( Micropterus salmoides). Br J Nutr 2024; 131:1308-1325. [PMID: 38073302 DOI: 10.1017/s0007114523002842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A 60-d feeding trial was conducted to explore the potential regulatory effects of dietary Clostridium butyricum cultures (CBC) supplementation in high-carbohydrate diet (HCD) on carbohydrate utilisation, antioxidant capacity and intestinal microbiota of largemouth bass. Triplicate groups of largemouth bass (average weight 35·03 ± 0·04 g), with a destiny of twenty-eight individuals per tank, were fed low-carbohydrate diet and HCD supplemented with different concentration of CBC (0 %, 0·25 %, 0·50 % and 1·00 %). The results showed that dietary CBC inclusion alleviated the hepatic glycogen accumulation induced by HCD intake. Additionally, the expression of hepatic ampkα1 and insulin signaling pathway-related genes (ira, irb, irs, p13kr1 and akt1) increased linearly with dietary CBC inclusion, which might be associated with the activation of glycolysis-related genes (gk, pfkl and pk). Meanwhile, the expression of intestinal SCFA transport-related genes (ffar3 and mct1) was significantly increased with dietary CBC inclusion. In addition, the hepatic antioxidant capacity was improved with dietary CBC supplementation, as evidenced by linear decrease in malondialdehyde concentration and expression of keap1, and linear increase in antioxidant enzyme activities (total antioxidative capacity, total superoxide dismutase and catalase) and expression of antioxidant enzyme-related genes (nrf2, sod1, sod2 and cat). The analysis of bacterial 16S rRNA V3-4 region indicated that dietary CBC inclusion significantly reduced the enrichment of Firmicutes and potential pathogenic bacteria genus Mycoplasma but significantly elevated the relative abundance of Fusobacteria and Cetobacterium. In summary, dietary CBC inclusion improved carbohydrate utilization, antioxidant capacity and intestinal microbiota of largemouth bass fed HCD.
Collapse
Affiliation(s)
- Jiajie Tao
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ye Gong
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Shiwen Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Wenfei Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Ruitao Xie
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, People's Republic of China
| | - Haitao Zhang
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, People's Republic of China
| | - Naisong Chen
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Xuxiong Huang
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| | - Songlin Li
- Research Centre of the Ministry of Agriculture and Rural Affairs on Environmental Ecology and Fish Nutrition, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
- National Demonstration Center on Experiment Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, People's Republic of China
| |
Collapse
|
7
|
Habte-Tsion HM, Hawkyard M, Sealey WM, Bradshaw D, Meesala KM, Bouchard DA. Effects of Fishmeal Substitution with Mealworm Meals ( Tenebrio molitor and Alphitobius diaperinus) on the Growth, Physiobiochemical Response, Digesta Microbiome, and Immune Genes Expression of Atlantic Salmon ( Salmo salar). AQUACULTURE NUTRITION 2024; 2024:6618117. [PMID: 38221936 PMCID: PMC10787657 DOI: 10.1155/2024/6618117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024]
Abstract
A 12-week growth trial was conducted to assess the effects of mealworm meals, as a substitution for fishmeal, on the growth, physiobiochemical responses, digesta microbiome, and immune-related genes expression of Atlantic salmon (Salmo salar). Twenty Atlantic salmon parr (38.5 ± 0.1 g, initial weight) were stocked into each of 16 tanks in a recirculating aquaculture system. A fishmeal-based diet (100% FM) was used as the control treatment and was compared with three test diets where: (1) fishmeal was partially (50%) replaced with defatted mealworm meal, Tenebrio molitor (50% DMM), (2) fishmeal was fully replaced with defatted mealworm meal (100% DMM), and (3) fishmeal was partially replaced with whole lesser mealworm meal, Alphitobius diaperinus (50% WMM). All substitutions were done on a crude protein basis. Each of the four experimental diets was evaluated in quadruplicate tanks as part of randomized design. The results indicated that Atlantic salmon showed high survival (greater or equal to 98.8%), and no significant difference in final growth, feed efficiency, feces stability and condition indices. Hepatosomatic index was lower in fish fed 100% DMM and 50% WMM when compared to fish fed the control diet (100% FM). Whole-body proximate and amino acid compositions were not statistically different between treatments, while essential fatty acids, including linolenic, eicosapentaenoic acid, and homo-a-linolenic, were lower in fish fed 100% DMM. Plasma parameters (total protein, alanine aminotransferase, alkaline phosphatase, and total iron-binding capacity), hepatic peroxide, and antioxidant enzymes were not significantly affected by dietary substitutions, whereas plasma immunoglobulin M showed significantly higher levels in fish fed 50% DMM and 100% DMM when compared to fish fed the control diet (100% FM). The inclusion of mealworm meals significantly impacted the overall microbiome composition but not the richness and evenness of the salmon digesta microbiomes compared to control. The most common genus in all treatments was Pseudomonas, which has been previously shown to have both commensal and pathogenic members. The relative expressions of growth (IGF-I) and protein synthesis (TIPRL) were not significantly different between the treatments, whereas immunoglobulin genes (IgM, IgD, and IgT) were significantly upregulated in fish fed the DMM diets when compared to fish fed the control diet. Overall, this study suggests that the mealworm meals tested could be suitable alternatives to fishmeal in the diet of Atlantic salmon.
Collapse
Affiliation(s)
- H-Michael Habte-Tsion
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Matt Hawkyard
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Wendy M. Sealey
- Bozeman Fish Technology Center, USDA—ARS, Bozeman, MT 59715, USA
| | - David Bradshaw
- Department of Aquaculture and Stock Enhancements, Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - Kala-Mallik Meesala
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| | - Deborah A. Bouchard
- Aquaculture Research Institute and Cooperative Extension, University of Maine, Orono, ME 04469, USA
| |
Collapse
|
8
|
Cai Y, Shi H, Zheng Y, Zhou Y, Guo W, Liao J, Wang S. Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper ( Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life (Basel) 2023; 13:2336. [PMID: 38137937 PMCID: PMC10745030 DOI: 10.3390/life13122336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
The tiger grouper (Epinephelus fuscoguttatus), an important mariculture fish in Southeast Asia, faces increasing health issues in recent years. Phellodendri Cortex (PC) is a traditional Chinese herbal medicine that exhibits a variety of beneficial effects on tiger groupers. The effects of PC, however, varies with the period of dietary intervention. This study aims to investigate the long-term effects of 1% PC supplementation on tiger groupers, focusing on growth, immunity, disease resistance, and intestinal gene expression. The tiger groupers (with an initial mean weight of 27.5 ± 0.5 g) were fed with a diet of Phellodendri Cortex supplementation and a control diet for 8 weeks. Our results indicate that the long-term PC supplementation did not affect growth or Vibrio disease resistance in tiger groupers. However, the transcriptome analysis revealed potential damage to the structural and functional integrity of the groupers' intestines. On the other hand, anti-inflammatory and cathepsin inhibition effects were also observed, offering potential benefits to fish enteritis prevention and therapy. Therefore, long-term PC supplementation in grouper culture should be applied with caution.
Collapse
Affiliation(s)
- Yan Cai
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Huizhong Shi
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yu Zheng
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Yongcan Zhou
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Weiliang Guo
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| | - Jingqiu Liao
- Guangxi Academy of Sciences, Nanning 530007, China
| | - Shifeng Wang
- Collaborative Innovation Center of Marine Science and Technology, Hainan University, Haikou 570228, China; (Y.C.); (H.S.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China
| |
Collapse
|
9
|
Hegde A, Kabra S, Basawa RM, Khile DA, Abbu RUF, Thomas NA, Manickam NB, Raval R. Bacterial diseases in marine fish species: current trends and future prospects in disease management. World J Microbiol Biotechnol 2023; 39:317. [PMID: 37743401 PMCID: PMC10518295 DOI: 10.1007/s11274-023-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The fisheries sub-sector of aquaculture-i.e., the pisciculture industry, contributes significantly to a country's economy, employing a sizable proportion of the population. It also makes important contributions to household food security because the current demand for animal protein cannot be fulfilled by harvesting wild fish from riverines, lakes, dams, and oceans. For good pond management techniques and sustaining fish health, the fisherfolk, and the industry require well-established regulatory structures, efficient disease management strategies, and other extended services. In rearing marine fish, infections resulting from disease outbreaks are a weighty concern because they can cause considerable economic loss due to morbidity and mortality. Consequently, to find effective solutions for the prevention and control of the major diseases limiting fish production in aquaculture, multidisciplinary studies on the traits of potential fish pathogens, the biology of the fish as hosts, and an adequate understanding of the global environmental factors are fundamental. This review highlights the various bacterial diseases and their causative pathogens prevalent in the pisciculture industry and the current solutions while emphasising marine fish species. Given that preexisting methods are known to have several disadvantages, other sustainable alternatives like antimicrobial peptides, synthetic peptides, probiotics, and medicinal treatments have emerged to be an enormous potential solution to these challenges.
Collapse
Affiliation(s)
- Avani Hegde
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Suhani Kabra
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Renuka Manjunath Basawa
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Dnyanada Anil Khile
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Rahil Ummar Faruk Abbu
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Naomi Ann Thomas
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Nava Bharati Manickam
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
- Manipal Biomachines, Manipal Institute of Technology (MIT), Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India.
| |
Collapse
|
10
|
Huaiquipán R, Quiñones J, Díaz R, Velásquez C, Sepúlveda G, Velázquez L, Paz EA, Tapia D, Cancino D, Sepúlveda N. Review: Effect of Experimental Diets on the Microbiome of Productive Animals. Microorganisms 2023; 11:2219. [PMID: 37764062 PMCID: PMC10536378 DOI: 10.3390/microorganisms11092219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 09/29/2023] Open
Abstract
The microorganisms that inhabit the gastrointestinal tract are responsible for multiple chains of reactions that affect their environment and modify the internal metabolism, their study receives the name of microbiome, which has become more relevant in recent years. In the near future, the challenges related to feeding are anticipated to escalate, encompassing the nutritional needs to sustain an overpopulated world. Therefore, it is expected that a better understanding of the interactions between microorganisms within the digestive tract will allow their modulation in order to provide an improvement in the immune system, feed efficiency or the promotion of nutritional characteristics in production animals, among others. In the present study, the main effects of experimental diets in production animals were described, emphasizing the diversity of the bacterial populations found in response to the diets, ordering them between polygastric and monogastric animals, and then describing the experimental diets used and their effect on the microorganisms. It is hoped that this study will help as a first general approach to the study of the role of the microbiome in production animals under different diets.
Collapse
Affiliation(s)
- Rodrigo Huaiquipán
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - John Quiñones
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Rommy Díaz
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Carla Velásquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Gastón Sepúlveda
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Lidiana Velázquez
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - Erwin A. Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - Daniela Tapia
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.H.); (C.V.); (G.S.); (L.V.); (D.T.)
| | - David Cancino
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de la Frontera, Temuco 4780000, Chile; (R.D.); (D.C.)
- Centro de Tecnología e Innovación de la Carne, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
11
|
Li P, Chen X, Hou D, Chen B, Peng K, Huang W, Cao J, Zhao H. Positive effects of dietary Clostridium butyricum supplementation on growth performance, antioxidant capacity, immunity and viability against hypoxic stress in largemouth bass. Front Immunol 2023; 14:1190592. [PMID: 37711631 PMCID: PMC10498469 DOI: 10.3389/fimmu.2023.1190592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1β (interleukin 1β), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-β (transforming growth factor β) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Peijia Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoying Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongqiang Hou
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Peng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junming Cao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Liang H, Tran NT, Deng T, Li J, Lei Y, Bakky MAH, Zhang M, Li R, Chen W, Zhang Y, Chen X, Li S. Identification and Characterization of a Potential Probiotic, Clostridium butyricum G13, Isolated from the Intestine of the Mud Crab (Scylla paramamosain). Microbiol Spectr 2023; 11:e0131723. [PMID: 37522814 PMCID: PMC10434012 DOI: 10.1128/spectrum.01317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
The butyrate-producing bacterium Clostridium butyricum has been proven to be important in improving the growth and health benefits of aquatic animals. In this study, C. butyricum G13 was isolated for the first time from the gut of the mud crab (Scylla paramamosain). The results of this study showed that C. butyricum G13 could produce a high concentration of butyric acid and grow well in a wide range of pHs (4 to 9) and NaCl (1 to 2.5%) and bile salt (0.2 to 1.0%) concentrations. In vitro characterization revealed that C. butyricum G13 is a Gram-positive and gamma-hemolytic bacterium sensitive to most antibiotics and shows hydrophobicity and the capacity to degrade starch. In vitro fermentation using mud crab gut contents showed that C. butyricum G13 alone or in combination with galactooligosaccharides (GOS) and/or resistant starch (RS) significantly increased butyric acid production and beneficially affected the abundance and diversity of intestinal microbiota. In addition, C. butyricum G13 can improve the survival rate of mud crabs and effectively maintain the normal structure of gut morphology after infection with Vibrio parahaemolyticus. In conclusion, C. butyricum G13 can be considered a potential probiotic that improves the immune capacity and confers health benefits on mud crabs. IMPORTANCE With the development of society, more and more aquatic animals are demanded. Intensification in the aquaculture scale is facing problems, such as disease outbreaks, eutrophication of water bodies, and misuse of antibiotics. Among these challenges, disease outbreak is the most important factor directly affecting aquaculture production. It is crucial to explore new approaches effective for the prevention and control of diseases. Probiotics have been widely used in aquaculture and have shown beneficial effects on the host. In this study, the butyrate-producing bacterium Clostridium butyricum G13 was isolated for the first time from the intestine of the mud crab through in vitro fermentation. The bacterium has probiotic properties and changes the gut microbiota to be beneficial to hosts in vitro as well as protecting hosts from Vibrio parahaemolyticus infection in vivo. The outcomes of this study indicate that C. butyricum G13 can be used as a potential probiotic in mud crab aquaculture.
Collapse
Affiliation(s)
- Huifen Liang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Taoqiu Deng
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Jinkun Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yifan Lei
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Mohammad Akibul Hasan Bakky
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Rui Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Wenxuan Chen
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Yueling Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| | - Xiuli Chen
- Guangxi Academy of Fishery Sciences, Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Nanning, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, China
- Institute of Marine Sciences, Shantou University, Shantou, China
| |
Collapse
|
13
|
Fan L, Liao G, Wang Z, Liu H, Cheng K, Hu J, Yang Y, Zhou Z. Insight into three water additives: Revealing the protective effects on survival and stress response under cold stress for Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108845. [PMID: 37257571 DOI: 10.1016/j.fsi.2023.108845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
The reproduction, development and growth of shrimp were hindered by cold stress, and even death was caused in severe cases. Moreover, huge economic losses to the shrimp aquaculture industry were caused every year by cold currents. The purpose of this study was to investigate the potential protective effects of water additives on the cold stress resistance of Pacific white shrimp (Litopenaeus vannamei) and their ability to improve the survival and stress response of the shrimp. Three potential cold-resistant additives adenosine triphosphate (A), soybean phospholipid (SP) and Clostridium butyricum (CB) on Pacific white shrimp under cold stress were added to the water with three concentrations for each additive. The mortality, activities of antioxidation enzymes and expression of anti-stress related genes in each group under cold stress were detected. The results showed that the cumulative mortality of low concentration for adenosine triphosphate (AL) and soybean phospholipid (SPL), medium concentration for soybean phospholipid (SPM) and high concentration for Clostridium butyricum (CBH) groups were significantly lower than that of the control (C) group when temperature maintained at 13 °C for 6 days. Total antioxidant capacity (T-AOC) content in shrimp plasma was significantly higher, while malondialdehyde (MDA) content was significantly lower than that in the C group. Gene expression analysis showed that 0.4 mg/L of adenosine triphosphate could regulate the immune defense ability and decrease apoptosis level of Pacific white shrimp under cold stress. Soybean phospholipid (2 mg/L) could enhance the immune ability of hepatopancreas, and Clostridium butyricum (10 mg/L) could significantly increase the expression of stress-related genes in shrimp intestine. Overall, these findings suggested that adenosine triphosphate and soybean phospholipid have the potential to be used as cold-resistant additives in Pacific white shrimp culture. This study provided valuable insights into addressing the problem of cold stress in shrimp culture.
Collapse
Affiliation(s)
- Lanfen Fan
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; Research Center for Green Development of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Guowei Liao
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenlu Wang
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China; Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Haolin Liu
- College of Marine Sciences, University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, South China Agricultural University, Guangzhou, 510642, China
| | - Kaimin Cheng
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang, 524017, China
| | - Jun Hu
- Guangdong Yuehai Feeds Group Co., Ltd, Zhanjiang, 524017, China
| | - Yalin Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhigang Zhou
- Sino-Norway Joint Lab on Fish Gut Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
14
|
Kong L, Ma J, Zhou S, Lin H, Long Z, Qin H, Liu L, Lin Y, Huang Z, Li Z. Effects of dietary Clostridium butyricum on the growth performance, digestion, and intestinal health of spotted sea bass ( Lateolabrax maculatus). Front Immunol 2023; 14:1181471. [PMID: 37520524 PMCID: PMC10380941 DOI: 10.3389/fimmu.2023.1181471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Clostridium butyricum (CB) is known to promote growth, enhance immunity, promote digestion, and improve intestinal health. In this study, we investigated the effects of CB in the feed on growth performance, digestion, and intestinal health of juvenile spotted sea bass. To provide a theoretical basis for the development and application of CB in the feed of spotted sea bass, a total of 450 spotted sea bass with an initial body weight of (9.58 ± 0.05) g were randomly divided into six groups. Gradient levels with 0, 0.1%, 0.2%, 0.3%, 0.4%, and 0.5% of CB (1×109 cfu/g) were supplemented into diets, designated as CC, CB1, CB2, CB3, CB4, and CB5, respectively. Each group was fed for 54 days. Our results suggest that dietary 0.2% and 0.3% of CB can significantly increase the weight gain (WG) and specific growth rate (SGR) of spotted sea bass. The addition of CB significantly increased intestinal amylase activity, intestinal villus length, intestinal villus width, and intestinal muscle thickness. Similarly, CB supplementation increased the expression of tumor necrosis factor-α (TNF-α) and interleukin-8 (IL-8). Sequence analysis of the bacterial 16S rDNA region showed that dietary CB altered the intestinal microbiota profile of juvenile spotted sea bass, increasing the dominant bacteria in the intestine and decreasing the harmful bacteria. Overall, dietary addition of CB can improve growth performance, enhance intestinal immunity, improve intestinal flora structure, and comprehensively improve the health of spotted sea bass.
Collapse
Affiliation(s)
- Lumin Kong
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Jianrong Ma
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Sishun Zhou
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Hao Lin
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongying Long
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Huihui Qin
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Longhui Liu
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Yi Lin
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhangfan Huang
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| | - Zhongbao Li
- Fisheries College, Jimei University, Xiamen, China
- Fisheries College of Jimei University, Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-environment, Xiamen, China
| |
Collapse
|
15
|
Pan L, Li W, Xie R, Liu H, Tan B, Dong X, Yang Q, Chi S, Zhang S. Effects of Clostridium butyricum on Growth Performance, Intestinal Health, and Disease Resistance of Hybrid Grouper ( Epinephelus fuscoguttatus♀ × E. lanceolatus♂) Fed with Cottonseed Protein Concentrate (CPC) Replacement of Fishmeal. AQUACULTURE NUTRITION 2023; 2023:1184252. [PMID: 37303606 PMCID: PMC10250103 DOI: 10.1155/2023/1184252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
An 8-week feeding trial was conducted to investigate the effects of C. butyricum on the growth performance, microbiota, immunity response, and disease resistance in hybrid grouper fed with cottonseed protein concentrate (CPC) replacement of fishmeal. Six groups of isonitrogenous and isolipid diets were formulated including a positive control group (50% fishmeal, PC), a negative control group (CPC replaced 50% of fishmeal protein, NC), and Clostridium butyricum supplemented with 0.05% (C1, 5 × 108 CFU/kg), 0.2% (C2, 2 × 109 CFU/kg), 0.8% (C3, 8 × 109 CFU/kg), and 3.2% (C4, 3.2 × 1010 CFU/kg), respectively, to the NC group. The results showed that weight gain rate and specific growth rate were significantly higher in the C4 group than that in the NC group (P < 0.05). After supplementation with C. butyricum, the amylase, lipase, and trypsin activities were significantly higher than the NC group (P < 0.05; except group C1), and the same results were obtained for intestinal morphometry. The intestinal proinflammatory factors were significantly downregulated, and the anti-inflammatory factors were significantly upregulated in the C3 and C4 groups compared with the NC group after supplementation with 0.8%-3.2% C. butyricum (P < 0.05). At the phylum level, the PC, NC, and C4 groups were dominated by the Firmicutes and the Proteobacteria. At the genus level, the relative abundance of Bacillus in the NC group was lower than that in the PC and C4 groups. After supplementation with C. butyricum, grouper in the C4 group showed significantly higher resistance to V. harveyi than the NC group (P < 0.05). Above all, taking into account the effects of immunity and disease resistance, it was recommended to supplement 3.2% C. butyricum in the diet of grouper fed the replacement of 50% fishmeal protein by CPC.
Collapse
Affiliation(s)
- Ling Pan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Weikang Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
- Guangdong Evergreen Feed Industry Co. Ltd., Zhanjiang 524088, China
| | - Ruitao Xie
- Guangdong Evergreen Feed Industry Co. Ltd., Zhanjiang 524088, China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang 524088, China
- Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|
16
|
Mejia ME, Robertson CM, Patras KA. Interspecies Interactions within the Host: the Social Network of Group B Streptococcus. Infect Immun 2023; 91:e0044022. [PMID: 36975791 PMCID: PMC10112235 DOI: 10.1128/iai.00440-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Group B Streptococcus (GBS) is a pervasive neonatal pathogen accounting for a combined half a million deaths and stillbirths annually. The most common source of fetal or neonatal GBS exposure is the maternal microbiota. GBS asymptomatically colonizes the gastrointestinal and vaginal mucosa of 1 in 5 individuals globally, although its precise role in these niches is not well understood. To prevent vertical transmission, broad-spectrum antibiotics are administered to GBS-positive mothers during labor in many countries. Although antibiotics have significantly reduced GBS early-onset neonatal disease, there are several unintended consequences, including an altered neonatal microbiota and increased risk for other microbial infections. Additionally, the incidence of late-onset GBS neonatal disease remains unaffected and has sparked an emerging hypothesis that GBS-microbe interactions in developing neonatal gut microbiota may be directly involved in this disease process. This review summarizes our current understanding of GBS interactions with other resident microbes at the mucosal surface from multiple angles, including clinical association studies, agriculture and aquaculture observations, and experimental animal model systems. We also include a comprehensive review of in vitro findings of GBS interactions with other bacterial and fungal microbes, both commensal and pathogenic, along with newly established animal models of GBS vaginal colonization and in utero or neonatal infection. Finally, we provide a perspective on emerging areas of research and current strategies to design microbe-targeting prebiotic or probiotic therapeutic intervention strategies to prevent GBS disease in vulnerable populations.
Collapse
Affiliation(s)
- Marlyd E. Mejia
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Clare M. Robertson
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Kathryn A. Patras
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
17
|
Su H, Li Y, Ma D, Fan J, Zhong Z, Zhu H. Metabolism responses in the intestine of Oreochromis mossambicus exposed to salinity, alkalinity and salt-alkalinity stress using LC-MS/MS-based metabolomics. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2023; 45:101044. [PMID: 36495832 DOI: 10.1016/j.cbd.2022.101044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/15/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022]
Abstract
Multiple abiotic stresses are imposed on fish as a result of unprecedented changes in temperature and precipitation patterns in recent decades. It is unclear how teleosts respond to severe ambient salinity, alkalinity, and saline-alkalinity in terms of their metabolic and molecular osmoregulation processes. The metabolic reactions in the intestine of Oreochromis mossambicus under salinity (25 g/L, S_C), alkalinity (4 g/L, A_C), and saline-alkalinity (salinity: 25 g/L & alkalinity: 4 g/L, SA_C) stresses were examined in this research utilizing LC-MS/MS-based metabolomics. The findings demonstrated that the three osmotic-stressed groups' metabolic profiles were considerably different from those of the control group. Osmolytes, energy sources, free amino acids, and several intermediate metabolites were all synthetically adjusted as part of the osmoregulation associated with the salinity, alkalinity, and saline-alkalinity stress. Following osmotic stress, osmoregulation-related pathways, including the mTOR signaling pathway, TCA cycle, glycolysis/gluconeogenesis, etc., were also discovered in the intestine of O. mossambicus. Overall, our findings can assist in better comprehending the molecular regulatory mechanism in euryhaline fish under various osmotic pressures and can offer a preliminary profile of osmotic regulation.
Collapse
Affiliation(s)
- Huanhuan Su
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Yaya Li
- Shanghai Ocean University, College of Fisheries and Life Science, Shanghai 201306, China; Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Dongmei Ma
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Jiajia Fan
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Zaixuan Zhong
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China
| | - Huaping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou 510380, China.
| |
Collapse
|
18
|
Vargas RA, Soto-Aguilera S, Parra M, Herrera S, Santibañez A, Kossack C, Saavedra CP, Mora O, Pineda M, Gonzalez O, Gonzalez A, Maisey K, Torres-Maravilla E, Bermúdez-Humarán LG, Suárez-Villota EY, Tello M. Analysis of microbiota-host communication mediated by butyrate in Atlantic Salmon. Comput Struct Biotechnol J 2023; 21:2558-2578. [PMID: 37122632 PMCID: PMC10130356 DOI: 10.1016/j.csbj.2023.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Butyrate is a microbiota-produced metabolite, sensed by host short-chain fatty acid receptors FFAR2 (Gpr43), FFAR3 (Gpr41), HCAR2 (Gpr109A), and Histone deacetylase (HDAC) that promotes microbiota-host crosstalk. Butyrate influences energy uptake, developmental and immune response in mammals. This microbial metabolite is produced by around 79 anaerobic genera present in the mammalian gut, yet little is known about the role of butyrate in the host-microbiota interaction in salmonid fish. To further our knowledge of this interaction, we analyzed the intestinal microbiota and genome of Atlantic salmon (Salmo salar), searching for butyrate-producing genera and host butyrate receptors. We identified Firmicutes, Proteobacteria, and Actinobacteria as the main butyrate-producing bacteria in the salmon gut microbiota. In the Atlantic salmon genome, we identified an expansion of genes orthologous to FFAR2 and HCAR2 receptors, and class I and IIa HDACs that are sensitive to butyrate. In addition, we determined the expression levels of orthologous of HCAR2 in the gut, spleen, and head-kidney, and FFAR2 in RTgutGC cells. The effect of butyrate on the Atlantic salmon immune response was evaluated by analyzing the pro and anti-inflammatory cytokines response in vitro in SHK-1 cells by RT-qPCR. Butyrate decreased the expression of the pro-inflammatory cytokine IL-1β and increased anti-inflammatory IL-10 and TGF-β cytokines. Butyrate also reduced the expression of interferon-alpha, Mx, and PKR, and decreased the viral load at a higher concentration (4 mM) in cells treated with this molecule before the infection with Infectious Pancreatic Necrosis Virus (IPNV) by mechanisms independent of FFAR2, FFAR3 and HCAR2 expression that probably inhibit HDAC. Moreover, butyrate modified phosphorylation of cytoplasmic proteins in RTgutGC cells. Our data allow us to infer that Atlantic salmon have the ability to sense butyrate produced by their gut microbiota via different specific targets, through which butyrate modulates the immune response of pro and anti-inflammatory cytokines and the antiviral response.
Collapse
|
19
|
Luo M, Feng G, Ke H. Role of Clostridium butyricum, Bacillus subtilis, and algae-sourced β-1,3 glucan on health in grass turtle. FISH & SHELLFISH IMMUNOLOGY 2022; 131:244-256. [PMID: 36182025 DOI: 10.1016/j.fsi.2022.09.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/25/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of two probiotics namely Clostridium butyricum and Bacillus subtilis, and one prebiotic known as algae-sourced β-1,3 glucan, on the overall performances of grass turtles (Chinemys reevesii) juveniles. Growth performance, immune responses, enzymatic antioxidant activities, intestinal histomorphology, and disease resistance against the challenge with Aeromonas veronii were assessed. Two hundred and sixteen (216) juvenile turtles with an average initial weight of 106.35 ± 0.03 g were divided into four groups, each containing three replicates with 18 turtles per each replicate, which were fed a basic diet (control group, GD) and a basal diet supplemented with C. butyricum 1.0 × 108 CFU per kg (GA group), or with B. subtilis 1.0 × 108 CFU per kg (GB group) and with algal-sourced β-1,3-glucan 50 mg per kg (GC group), respectively. After the turtles had been fed for 60 d, 90 d, and 120 d of the experimental period, the growth performance and survival rate (SR), intestinal digestive enzyme, hepatic and intestinal antioxidant capacity, serum biochemical indexes, and immune performance were measured. The results showed that the weight gain rate and SR were significantly enhanced (P < 0.05) after fed probiotics and algae-sourced β-1,3-glucan in all test times;The pepsin, amylase, acid phosphatase, total antioxidant capacity, triglyceride, alkaline phosphatase, urea nitrogen, cholesterol, total protein, IgA, IgG, IgM at 120 d were significantly enhanced (P<0.05) after fed C. butyricum. The intestinal villi heights, widths, and the thickness of the muscle layer were significantly higher in groups GA, GB, and GC than those reared within the GD control group (P < 0.05). After injecting the challenge by A. veronii the survival rate of grass turtles in the GA group (75%) was significantly higher than the other three groups (P<0.05), while there was no significant difference between the GB and GC groups compared with the control GD group, respectively (P>0.05). Overall, these results indicated that dietary supplementation with probiotics or algae-sourced β-1,3 glucan, exhibited positive effects on C. reevesii. In particular, C. butyricum, showed the greatest improvements relating to growth, immune response, antioxidant activity, intestinal health, and disease resistance.
Collapse
Affiliation(s)
- Meng Luo
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; College of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Guoqing Feng
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China
| | - Hao Ke
- Aquatic Disease Research Laboratory, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, 510000, China; Guangdong Scientific Observation Experimental Station of Veterinary Drugs and Diagnostic Technology, Ministry of Agriculture and Rural Affairs, Guangzhou, 510000, China; Key Laboratory of Animal and Poultry Disease Control Research, Guangdong Province, Guangzhou, 510000, China.
| |
Collapse
|
20
|
Li Z, He H, Ni M, Wang Z, Guo C, Niu Y, Xing S, Song M, Wang Y, Jiang Y, Yu L, Li M, Xu H. Microbiome-Metabolome Analysis of the Immune Microenvironment of the Cecal Contents, Soft Feces, and Hard Feces of Hyplus Rabbits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5725442. [PMID: 36466090 PMCID: PMC9713467 DOI: 10.1155/2022/5725442] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/16/2022] [Indexed: 01/14/2024]
Abstract
The intestinal microbiota and its metabolites play vital roles in host growth, development, and immune regulation. This study analyzed the microbial community distribution and the cytokine and short-chain fatty acid (SCFA) content of cecal contents (Con group), soft feces (SF group), and hard feces (HF group) of 60-day-old Hyplus rabbits and verified the effect of soft feces on the cecal immune microenvironment by coprophagy prevention (CP). The results showed that there were significant differences in the levels of phylum and genus composition, cytokines, and SCFAs among the Con group, SF group, and HF group. The correlation analysis of cytokines and SCFAs with differential microbial communities showed that Muribaculaceae, Ruminococcaceae_UCG-014, Ruminococcaceae_NK4A214_group, and Christensenellaceae_R-7_Group are closely related to cytokines and SCFAs. After CP treatment, the contents of propionic acid, butyric acid, IL-4, and IL-10 in cecum decreased significantly, whereas TNF-α and IL-1β increased significantly. Moreover, the inhibition of coprophagy led to the downregulation of the expression levels of tight junction proteins (Claudin-1, Occludin, and ZO-1) related to intestinal inflammation and intestinal barrier function, and the ring-like structure of ZO-1 was disrupted. In conclusion, coprophagy can not only help rabbits obtain more probiotics and SCFAs but also play an essential role in improving the immune microenvironment of cecum.
Collapse
Affiliation(s)
- Zhichao Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengke Ni
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhouyan Wang
- Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chaohui Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Shanshan Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mingkun Song
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaling Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yixuan Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Lei Yu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
21
|
Zhang M, Liang G, Zhang X, Lu X, Li S, Wang X, Yang W, Yuan Y, Jiao P. The gas production, ruminal fermentation parameters, and microbiota in response to Clostridium butyricum supplementation on in vitro varying with media pH levels. Front Microbiol 2022; 13:960623. [PMID: 36212861 PMCID: PMC9532509 DOI: 10.3389/fmicb.2022.960623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/24/2022] [Indexed: 12/04/2022] Open
Abstract
The aim of this study was to investigate the gas production (GP), dry matter disappearance (DMD), fermentation parameters, and rumen microbiota in response to Clostridium butyricum (CB) supplementation in batch culture using a high forage substrate. The doses of CB were supplemented at 0 (Control), 0.5 × 106, 1 × 106, and 2 × 106 CFU/bottle, respectively, at either media pH 6.0 or pH 6.6. The 16S rRNA gene sequencing was used to detect the microbiota of fermentation culture in control and 1 × 106 CFU/bottle after 24 h of incubation. The results showed that the GP (p < 0.001), DMD (p = 0.008), total volatile fatty acid (VFA) concentration (p < 0.001), acetate to propionate ratio (p < 0.001), and NH3-N concentration (p < 0.001) were greater at media pH 6.6 than pH 6.0. Furthermore, the linearly increased DMD (pH 6.0, p = 0.002; pH 6.6, p < 0.001) and quadratically increased butyrate proportion (pH 6.0, p = 0.076; pH 6.6, p < 0.053) and NH3-N concentration (pH 6.0, p = 0.003; pH 6.6, p = 0.014) were observed with increasing doses of CB. The Alpha diversity indexes of OTU number and Chao1 were higher (p = 0.045) at media pH 6.6 than pH 6.0, but they were not affected by CB supplementation. The PCoA analysis (unweighted uniFrac) demonstrated that the clustering of the bacterial microbiota of control and CB were distinctly separated from each other at media pH 6.0. At the phylum level, the abundance of Bacteroidota (p < 0.001) decreased, whereas that of Firmicutes (p = 0.026) increased when the media pH was elevated from 6.0 to 6.6. Supplementation of CB increased relative abundances of Rikenellaceae_RC9_gut_group (p = 0.002), Christensenellaceae_R-7_group (p < 0.001), and NK4A214_group (p = 0.002) at genus level. Interactions between media pH and CB addition were observed for bacteria at both phylum and genus levels. These results indicated that increasing the media pH level and CB supplementation increased in vitro rumen digestibility, and altered the ruminal fermentation pattern (by media pH) and microbiota.
Collapse
Affiliation(s)
- Meimei Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Gege Liang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xinlong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xiaotan Lu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Siyao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Xu Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenzhu Yang
- Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Yuan Yuan
- School of Nursing and School of Public Health, Yangzhou University, Yangzhou, China
- Yuan Yuan,
| | - Peixin Jiao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Peixin Jiao,
| |
Collapse
|
22
|
Li W, Pan L, Liu H, Tan B, Dong X, Yang Q, Chi S, Zhang S, Xie R. Effects of the Clostridium butyricum on growth performance, antioxidant capacity, immunity and disease resistance of Litopenaeus Vannamei fed with cottonseed protein concentrate (CPC) replacement of fishmeal in diet. FISH & SHELLFISH IMMUNOLOGY 2022; 126:283-291. [PMID: 35618172 DOI: 10.1016/j.fsi.2022.05.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/07/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Clostridium butyricum (CB) is a gram-positive bacterium that secretes short-chain fatty acids such as butyric acid and so on. An 8-week feeding trial was conducted to investigate the effects of CB on the growth performance, antioxidant capacity, immunity and resistance to Vibrio parahaemolyticus in Litopenaeus Vannamei fed with cottonseed protein concentrate (CPC) replacement of fishmeal. Six iso-nitrogenous (40%) and iso-lipidic (6%) diets were formulated including a positive control group (PC, 25% fishmeal), a negative control group (NC, CPC replaced 30% of fishmeal protein), and 0.03% (C1, 3 × 108 CFU/kg), 0.12% (C2, 1.2 × 109 CFU/kg), 0.48% (C3, 4.8 × 109 CFU/kg) and 1.92% (C4, 1.92 × 1010 CFU/kg) CB were supplemented on the negative control group (NC). After the feeding trial, the remaining shrimp in each treatment group were subjected to a challenge experiment with Vibrio parahaemolyticus. The results indicated that weight gain rate (WGR), specific growth rate (SGR) in C4 group were significantly lower than those in PC and C2 groups (P < 0.05); the feed conversion ratio (FCR) was significantly higher than that of PC and C2 groups (P < 0.05). There was no significant difference in survival rate (SR) among all groups (P > 0.05). Compared to the PC and NC groups, the total superoxide capacity, superoxide dismutase and lysozyme were significantly higher in the C4 group (P < 0.05); the glutathione peroxidase, acid phosphatase and alkaline phosphatase were significantly higher in the C3 group (P < 0.05); and the malondialdehyde was significantly lower in the C4 group (P < 0.05). The relative mRNA expressions of Toll receptor (TLR), innate immune deficiency gene (IMD), penaiedin3a (Pen3) were significantly down-regulated in the NC group than those in the PC group (P < 0.05). In addition, the relative mRNA expressions of TLR, IMD and Pen3 were significantly up-regulated in all groups supplemented with CB than those in the NC group (P < 0.05). Moreover, the cumulative mortality rate in the NC group was not significantly different from the PC group (P > 0.05) and was significantly higher than those in the C3 and C4 groups (P < 0.05). In conclusion, the CB supplementation on the basis of CPC replacement of 30% fishmeal protein enhanced significantly the antioxidant capacity, immunity and disease resistance of shrimp and improved its growth performance. Therefore, considering the factors of the growth, immunity and disease resistance, the CB supplementation of 0.12%-0.48% (1.2 × 109 CFU/kg-4.8 × 109 CFU/kg) was recommended in the diet of L. vannamei based on the results of this experiment.
Collapse
Affiliation(s)
- Weikang Li
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China; Guangdong Evergreen Feed Industry Co.Ltd, Zhanjiang, 524088, PR China
| | - Ling Pan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Hongyu Liu
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China.
| | - Beiping Tan
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Xiaohui Dong
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Qihui Yang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Shuyan Chi
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Shuang Zhang
- Laboratory of Aquatic Animal Nutrition and Feed, Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China; Key Laboratory of Aquatic, Livestock and Poultry Feed Science and Technology in South China, Ministry of Agriculture and Rural Affairs, Zhanjiang, 524088, PR China; Aquatic Animals Precision Nutrition and High Efficiency Feed Engineering Research Center of Guangdong Province, Zhanjiang, 524088, PR China
| | - Ruitao Xie
- Guangdong Evergreen Feed Industry Co.Ltd, Zhanjiang, 524088, PR China
| |
Collapse
|
23
|
Sumon MAA, Sumon TA, Hussain MA, Lee SJ, Jang WJ, Sharifuzzaman SM, Brown CL, Lee EW, Hasan MT. Single and Multi-Strain Probiotics Supplementation in Commercially Prominent Finfish Aquaculture: Review of the Current Knowledge. J Microbiol Biotechnol 2022; 32:681-698. [PMID: 35722672 PMCID: PMC9628892 DOI: 10.4014/jmb.2202.02032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022]
Abstract
The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.
Collapse
Affiliation(s)
- Md Afsar Ahmed Sumon
- Department of Marine Biology, King Abdulaziz University, Jeddah-21589, Saudi Arabia
| | - Tofael Ahmed Sumon
- Department of Fish Health Management, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Md. Ashraf Hussain
- Department of Fisheries Technology and Quality Control, Sylhet Agricultural University, Sylhet-3100, Bangladesh
| | - Su-Jeong Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea
| | - Won Je Jang
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - S. M. Sharifuzzaman
- Institute of Marine Sciences, University of Chittagong, Chittagong 4331, Bangladesh
| | - Christopher L. Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan 48513, Republic of Korea
| | - Eun-Woo Lee
- Biopharmaceutical Engineering Major, Division of Applied Bioengineering, Dong-Eui University, Busan 47340, Republic of Korea,Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea
| | - Md. Tawheed Hasan
- Core-Facility Center for Tissue Regeneration, Dong-Eui University, Busan 47340, Republic of Korea,Department of Aquaculture, Sylhet Agricultural University, Sylhet-3100, Bangladesh,Corresponding author Phone: +880-821-761952 Fax: + 880-821-761980 E-mail:
| |
Collapse
|
24
|
Description of Flavobacterium cyclinae sp. nov. and Flavobacterium channae sp. nov., isolated from the intestines of Cyclina sinensis (Corb shell) and Channa argus (Northern snakehead). J Microbiol 2022; 60:890-898. [DOI: 10.1007/s12275-022-2075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/13/2022] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
|
25
|
Wang M, Lv C, Chen Y, Bi X, Yang D, Zhao J. Effects of the potential probiotic Bacillus subtilis D1-2 on growth, digestion, immunity and intestinal flora in juvenile sea cucumber, Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:12-20. [PMID: 35367627 DOI: 10.1016/j.fsi.2022.03.043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
In the present study, a potential probiotic Bacillus subtilis D1-2 with antibacterial activity was isolated from the gut of Apostichopus japonicus. The purpose of this experiment was to assess the effect of B. subtilis D1-2 at different concentrations (C: 0 CFU/g, BL: 105 CFU/g, BM: 107 CFU/g and BH: 109 CFU/g) on the growth performance, digestive enzyme activity, immune ability and intestinal flora of A. japonicus. After the 56-day feeding trial, the final body weight and weight gain rate of juvenile sea cucumber A. japonicus fed B. subtilis D1-2 were significantly increased, especially in the BM group. Additionally, the lipase activity of the intestine was significantly increased in the BM and BH groups. Enhanced immunity was also found in sea cucumbers supplemented with B. subtilis D1-2. Alpha diversity indices showed that the B. subtilis D1-2-supplemented groups had higher intestinal microbial richness and diversity than the control group. The beta diversity analysis indicated that the bacterial communities in the B. subtilis D1-2-supplemented groups were quite similar but different from the bacterial communities in the control group. Dietary supplementation with B. subtilis D1-2 increased the relative abundance of some potential probiotic-related genera, including Lactobacillus, Clostridium, Lactococcus, Bifidobacterium and Streptococcus. In conclusion, dietary addition of B. subtilis D1-2 could effectively promote the growth of A. japonicus, improve its digestion and immunity capacity to a certain extent, and actively regulate the intestinal microflora of A. japonicus.
Collapse
Affiliation(s)
- Mengmei Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, PR China
| | - Chengjie Lv
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Yuying Chen
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Xiujuan Bi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China
| | - Dinglong Yang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China.
| | - Jianmin Zhao
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, PR China; Center for Ocean Mega-science, Chinese Academy of Sciences, Qingdao Shandong, 266071, PR China
| |
Collapse
|
26
|
Bavia L, Santiesteban-Lores LE, Carneiro MC, Prodocimo MM. Advances in the complement system of a teleost fish, Oreochromisniloticus. FISH & SHELLFISH IMMUNOLOGY 2022; 123:61-74. [PMID: 35227880 DOI: 10.1016/j.fsi.2022.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
As the earliest known vertebrate possessing a complete immune system, teleost fish played an important role in the evolution of this system. The complement system is an ancient defense mechanism present in invertebrates and vertebrates. In teleost fish the complement system is formed by more than 35 circulating proteins, or found at the cell surface. This system is activated by three pathways: alternative, classical and lectin, generating functions such as the opsonization, lysis and modulation of the innate and adaptive immune responses. The complement system is an important immunological indicator that can be used to study and monitor the effects of environmental, nutritional, and infectious processes. The Nile tilapia (Oreochromis niloticus) is a teleost fish of great economic interest due to its characteristics of easy cultivation, high growth rates, and tolerance to adverse environmental conditions. In addition, Nile tilapia is an excellent model for ecotoxicological studies, however, there are very few studies reporting the performance of the complement system in this species after exposure to environmental pollutants. The aim of this review is to gather recent studies with to address the molecular and functional characterizations of the complement system in Nile tilapia and provide new insights about this defense mechanism. Looking to the future, we believe that the complement system analysis in Tilapia can be used as a biomarker of water quality and the general health status of fish.
Collapse
Affiliation(s)
- Lorena Bavia
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil
| | - Lazara Elena Santiesteban-Lores
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Milena Carvalho Carneiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, CEP 05508-000, São Paulo, SP, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal Do Paraná, Caixa Postal 19031, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
27
|
Li Y, Wang Y, Liu Y, Li X, Feng L, Li K. Optimization of an economical medium composition for the coculture of Clostridium butyricum and Bacillus coagulans. AMB Express 2022; 12:19. [PMID: 35166947 PMCID: PMC8847521 DOI: 10.1186/s13568-022-01354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/26/2022] [Indexed: 11/10/2022] Open
Abstract
Clostridium butyricum is a spore-forming probiotic which can promote the enhancement of beneficial bacteria and maintain intestinal microecological balance. However, it is difficult to improve the production level of C. butyricum by conventional fermentation process. In this study, a co-fermentation process of C. butyricum DL-1 and Bacillus coagulans ZC2-1 was established to improve the viable counts and spore yield of C. butyricum, and the formula of coculture medium was optimized by flask fermentation. The results showed that the optimum medium composition is 10 g/L bran, 15 g/L corn steep powder, 15 g/L peptone, 1 g/L K2HPO4 and 0.5 g/L MnSO4.Cultured stationarily in the optimal medium for 36 h, the number of viable bacteria of C. butyricum DL-1 reached 1.5 × 108 cfu/mL, Which was 375 times higher than that incubated in the initial medium. The sporulation rate reach 92.6%. The results revealed an economical and effective medium composition for the coculture of C. butyricum and B. coagulans, which achieved a 64.6% cost reduction. The co-fermentation process established in this study provides a new fermentation mode for the industrial production of other absolute anerobic bacteria.
Collapse
|
28
|
Li Y, Wang Y, Lv J, Dou X, Zhang Y. Effects of Dietary Supplementation With Clostridium butyricum on the Amelioration of Growth Performance, Rumen Fermentation, and Rumen Microbiota of Holstein Heifers. Front Nutr 2021; 8:763700. [PMID: 34859032 PMCID: PMC8631910 DOI: 10.3389/fnut.2021.763700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
In China, the use of antibiotics growth promoters as feed additives has been banned. The goal of raising dairy heifers is to gain a relatively high body weight on a high-fiber diet at first mating or calving, thus increasing economic benefits. The objective of this experiment was to explore the effects of supplemental Clostridium butyricum (C. butyricum) on growth performance, rumen fermentation and microbiota, and blood parameters in Holstein heifers. Twenty Holstein heifers [mean ± standard deviation (SD); age = 182 ± 4.20 d, body weight = 197.53 ± 5.94 kg, dry matter intake (DMI) = 6.10 ± 0.38 kg] were randomly assigned to one of two diets group for a 42-day feeding period: (1) basal diet (an untreated control group, i.e., the CON group) or (2) basal diet plus daily 2 × 108 (colony-forming unit, CFU) of C. butyricum per kg of DMI per heifer (the CB group). The results demonstrated that C. butyricum supplementation increased the average daily gain from d 21 to 42 and DMI compared to the control group. Supplementation with C. butyricum significantly decreased the molar proportion of acetate and the acetate to propionate ratio but increased the molar proportion of butyrate and propionate. Compared with the control group, the relative abundance of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminobacter amylophilus, Ruminococcus flavefaciens, and Streptococcus bovis increased during the trial period in the CB group. However, C. butyricum had no significant effect on the blood parameters in Holstein heifers. In conclusion, these results show that feeding C. butyricum can improve growth performance and rumen fermentation without any negative impact on blood parameters in Holstein heifers.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yiqiang Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jingyi Lv
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Xiujing Dou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| |
Collapse
|
29
|
Dietary Administration of Novel Multistrain Probiotics from Healthy Grouper Intestines Promotes the Intestinal Immune Response against NNV Infection. Life (Basel) 2021; 11:life11101053. [PMID: 34685424 PMCID: PMC8539657 DOI: 10.3390/life11101053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Epinephelus lanceolatus (giant grouper) is a high-value cultured species in the Asia-Pacific region. However, nervous necrosis virus (NNV) is an infectious viral disease that affects over 120 species of marine cultured species and causes high mortality, ranging from 90-100% in the grouper industry. Probiotics isolated from the intestines of healthy individuals have provided insight into novel approaches involved in the defense against viral pathogens. In this study, we isolated three strains of bacteria as candidate probiotics from healthy grouper intestines and a 28-day feeding trial was performed. At day 21, the nervous necrosis virus (NNV) challenge test was conducted for 7 days to evaluate the antiviral effect of candidate probiotics. The results showed that candidate probiotics could improve growth conditions, such as weight gain (WG) and specific growth rate (SGR), and increase the utilization of feed. Furthermore, the candidate probiotic mixture had the ability to protect against NNV, which could decrease the mortality rate by 100% in giant grouper after NNV challenge. Subsequently, we analyzed the mechanism of the candidate probiotic mixture's defense against NNV. A volcano plot revealed 203 (control vs. NNV), 126 (NNV vs. probiotics - NNV), and 5 (control vs. probiotics - NNV) differentially expressed transcripts in intestinal tissue. Moreover, principal components analysis (PCA) and cluster analysis heatmap showed large differences among the three groups. Functional pathway analysis showed that the candidate probiotic mixture could induce the innate and adaptive immunity of the host to defend against virus pathogens. Therefore, we hope that potential candidate probiotics could be successfully applied to the industry to achieve sustainable aquaculture.
Collapse
|
30
|
Maulu S, Hasimuna OJ, Mphande J, Munang'andu HM. Prevention and Control of Streptococcosis in Tilapia Culture: A Systematic Review. JOURNAL OF AQUATIC ANIMAL HEALTH 2021; 33:162-177. [PMID: 34121243 DOI: 10.1002/aah.10132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Tilapia culture is a very promising industry within the aquaculture sector. However, disease outbreaks have continued to threaten the industry, causing serious economic losses among the producers. Streptococcosis has become the major bacterial disease affecting tilapia production in most regions of the world. To combat the disease and minimize its economic impact on fish producers, numerous preventive and control measures have been developed and reported over the years. This paper aims to systematically review the measures that could be used to manage the disease outbreaks and maintain fish health based on previously published scientific studies. Although numerous measures currently available have been highlighted, it is far better for the producers to maximize the preventive measures for management to be economically feasible. Among the currently available preventive measures, the use of vaccines has been shown to have the most promise, while the use of herbs has been demonstrated to be a more sustainable and economically affordable control measure. However, there are still a number of important gaps in existing literature that require further investigation. Overall, significant progress has been made in preventing and controlling streptococcosis in tilapia although, no single effective measure has been identified. Therefore, a combination of these measures may provide a more effective result.
Collapse
Affiliation(s)
- Sahya Maulu
- Centre for Innovative Approach Zambia, Lusaka Central Business Area, Post Office Box 30135, Lusaka, Zambia
| | - Oliver J Hasimuna
- Ministry of Fisheries and Livestock, National Aquaculture Research and Development Centre, Post Office Box 22797, Mwekera, Kitwe, Zambia
- Department of Zoology and Aquatic Sciences, Copperbelt University, Post Office Box 21692, Kitwe, Zambia
| | - Joseph Mphande
- Ministry of Fisheries and Livestock, Department of Fisheries, Post Office Box 70416, Ndola, Zambia
| | - Hetron M Munang'andu
- Section of Aquatic Medicine and Nutrition, Faculty of Veterinary Medicine and Biosciences, Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Adamstuen Campus, Post Office Box 369, Oslo, 0102, Norway
| |
Collapse
|
31
|
Ma M, Zhao Z, Liang Q, Shen H, Zhao Z, Chen Z, He R, Feng S, Cao D, Gan G, Ye H, Qiu W, Deng J, Ming F, Jia J, Sun C, Li J, Zhang L. Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway. Appl Microbiol Biotechnol 2021; 105:5973-5991. [PMID: 34396488 DOI: 10.1007/s00253-021-11472-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 12/25/2022]
Abstract
Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.
Collapse
Affiliation(s)
- Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zitong Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Zhiyang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Rongxiao He
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Saixiang Feng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Ding Cao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Guanhua Gan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Hejia Ye
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Weihong Qiu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Chongjun Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
32
|
Hyun DW, Jeong YS, Lee JY, Sung H, Lee SY, Choi JW, Kim HS, Kim PS, Bae JW. Description of Nocardioides piscis sp. nov., Sphingomonas piscis sp. nov. and Sphingomonas sinipercae sp. nov., isolated from the intestine of fish species Odontobutis interrupta (Korean spotted sleeper) and Siniperca scherzeri (leopard mandarin fish). J Microbiol 2021; 59:552-562. [PMID: 33877575 DOI: 10.1007/s12275-021-1036-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/17/2022]
Abstract
A polyphasic taxonomic approach was used to characterize three novel bacterial strains, designated as HDW12AT, HDW-15BT, and HDW15CT, isolated from the intestine of fish species Odontobutis interrupta or Siniperca scherzeri. All isolates were obligate aerobic, non-motile bacteria, and grew optimally at 30°C. Phylogenetic analysis based on 16S rRNA sequences revealed that strain HDW12AT was a member of the genus Nocardioides, and closely related to Nocardioides allogilvus CFH 30205T (98.9% sequence identities). Furthermore, strains HDW15BT and HDW15CT were members of the genus Sphingomonas, and closely related to Sphingomonas lutea JS5T and Sphingomonas sediminicola Dae 20T (97.1% and 97.9% sequence identities), respectively. Strain HDW12AT contained MK-8 (H4), and strains HDW15BT and HDW15CT contained Q-10 as the respiratory quinone. Major polar lipid components of strain HDW12AT were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylinositol, and those of strains HDW15BT and HDW15CT were sphingoglycolipid, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and phosphatidylcholine. The G + C content of strains HDW12AT, HDW15BT, and HDW15CT were 69.7, 63.3, and 65.5%, respectively. The results of phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses suggest that strain HDW12AT represents a novel species within the genus Nocardioides, and strains HDW15BT and HDW15CT represent two novel species within the genus Sphingomonas. We propose the names Nocardioides piscis for strain HDW12AT (= KACC 21336T = KCTC 49321T = JCM 33670T), Sphingomonas piscis for strain HDW15BT (= KACC 21341T = KCTC 72588T = JCM 33738T), and Sphingomonas sinipercae for strain HDW15CT (= KACC 21342T = KCTC 72589T = JCM 33739T).
Collapse
Affiliation(s)
- Dong-Wook Hyun
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yun-Seok Jeong
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jae-Yun Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hojun Sung
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - So-Yeon Lee
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jee-Won Choi
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
33
|
Feher M, Fauszt P, Tolnai E, Fidler G, Pesti-Asboth G, Stagel A, Szucs I, Biro S, Remenyik J, Paholcsek M, Stundl L. Effects of phytonutrient-supplemented diets on the intestinal microbiota of Cyprinus carpio. PLoS One 2021; 16:e0248537. [PMID: 33886562 PMCID: PMC8062051 DOI: 10.1371/journal.pone.0248537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 02/27/2021] [Indexed: 01/04/2023] Open
Abstract
In the aquaculture sector, a strategy for the more efficient use of resources and proper disease control is needed to overcome the challenges of meat production worldwide. Modulation of the gastrointestinal tract microbiota is a promising approach for promoting animal health and preventing infection. This feeding experiment was conducted to discover the phytonutrient-induced changes in the gastrointestinal tract microbiota of common carp (Cyprinus carpio). Acclimatized animals aged 7 months (30 weeks) were divided randomly into five experimental groups to investigate the effects of the applied feed additives. The dietary supplements were manufactured from anthocyanin-containing processing wastes from the food industry, specifically the production of Hungarian sour cherry extract, synbiotics from fermented corn, and fermentable oligosaccharides from Hungarian sweet red pepper seeds and carotenoids from Hungarian sweet red pepper pulps, applied at a dose of 1%. The gut contents of the animals were collected at four time points throughout the 6-week study period. To track the compositional and diversity changes in the microbiota of the carp intestinal tract, V3-V4 16S rRNA gene-based metagenomic sequencing was performed. The growth performance of common carp juveniles was not significantly affected by supplementation of the basal diet with plant extracts. Phytonutrients improve the community diversity, increase the Clostridium and Lactobacillus abundances and decrease the abundances of potentially pathogenic and spoilage bacteria, such as Shewanella, Pseudomonas, Acinetobacter and Aeromonas. The phyla Proteobacteria, Tenericutes and Chlamydiae were positively correlated with the body weight, whereas Spirochaetes and Firmicutes exhibited negatively correlations with the body weight. We hypothesize that the application of phytonutrients in aquaculture settings might be a reasonable green approach for easing the usage of antibiotics.
Collapse
Affiliation(s)
- Milan Feher
- Institute of Animal Husbandry, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Peter Fauszt
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Emese Tolnai
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gabor Fidler
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Georgina Pesti-Asboth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Aniko Stagel
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Istvan Szucs
- Institute of Applied Economics, Faculty of Economics and Business, University of Debrecen, Debrecen, Hungary
| | - Sandor Biro
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Melinda Paholcsek
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- * E-mail: (MP); (LS)
| | - Laszlo Stundl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary
- * E-mail: (MP); (LS)
| |
Collapse
|
34
|
Domínguez-Maqueda M, Cerezo IM, Tapia-Paniagua ST, De La Banda IG, Moreno-Ventas X, Moriñigo MÁ, Balebona MC. A Tentative Study of the Effects of Heat-Inactivation of the Probiotic Strain Shewanella putrefaciens Ppd11 on Senegalese Sole ( Solea senegalensis) Intestinal Microbiota and Immune Response. Microorganisms 2021; 9:microorganisms9040808. [PMID: 33921253 PMCID: PMC8070671 DOI: 10.3390/microorganisms9040808] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/02/2022] Open
Abstract
Concerns about safety, applicability and functionality associated with live probiotic cells have led to consideration of the use of non-viable microorganisms, known as paraprobiotics. The present study evaluated the effects of dietary administration of heat-inactivated cells of the probiotic strain Shewanella putrefaciens Ppd11 on the intestinal microbiota and immune gene transcription in Solea senegalensis. Results obtained were evaluated and compared to those described after feeding with viable Pdp11 cells. S. senegalensis specimens were fed with basal (control) diet or supplemented with live or heat inactivated (60 °C, 1 h) probiotics diets for 45 days. Growth improvement was observed in the group receiving live probiotics compared to the control group, but not after feeding with a probiotic heat-inactivated diet. Regarding immune gene transcription, no changes were observed for tnfα, il-6, lys-c1, c7, hsp70, and hsp90aa in the intestinal samples based on the diet. On the contrary, hsp90ab, gp96, cd4, cd8, il-1β, and c3 transcription were modulated after probiotic supplementation, though no differences between viable and heat-inactivated probiotic supplemented diets were observed. Modulation of intestinal microbiota showed remarkable differences based on the viability of the probiotics. Thus, higher diversity in fish fed with live probiotic cells, jointly with increased Mycoplasmataceae and Spirochaetaceae to the detriment of Brevinemataceae, was detected. However, microbiota of fish receiving heat-inactivated probiotic cells showed decreased Mycoplasmataceae and increased Brevinemataceae and Vibrio genus abundance. In short, the results obtained indicate that the viable state of Pdp11 probiotic cells affects growth performance and modulation of S. senegalensis intestinal microbiota. On the contrary, minor changes were detected in the intestinal immune response, being similar for fish receiving both, viable and inactivated probiotic cell supplemented diets, when compared to the control diet.
Collapse
Affiliation(s)
- Marta Domínguez-Maqueda
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
- Correspondence:
| | - Isabel M. Cerezo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Silvana Teresa Tapia-Paniagua
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Inés García De La Banda
- Spanish Institute of Oceanography, Oceanographic Center of Santander, 39080 Santander, Spain;
| | - Xabier Moreno-Ventas
- Ecological Area of Water and Environmental Sciences and Technics, University of Cantabria, 39005 Santander, Spain;
| | - Miguel Ángel Moriñigo
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| | - Maria Carmen Balebona
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos s/n, Universidad de Málaga, 29071 Málaga, Spain; (I.M.C.); (S.T.T.-P.); (M.Á.M.); (M.C.B.)
| |
Collapse
|
35
|
Liang J, Kou S, Chen C, Raza SHA, Wang S, Ma X, Zhang WJ, Nie C. Effects of Clostridium butyricum on growth performance, metabonomics and intestinal microbial differences of weaned piglets. BMC Microbiol 2021; 21:85. [PMID: 33752593 PMCID: PMC7983215 DOI: 10.1186/s12866-021-02143-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Weaning stress of piglets causes a huge economic loss to the pig industry. Balance and stability of the intestinal microenvironment is an effective way to reduce the occurance of stress during the weaning process. Clostridium butyricum, as a new microecological preparation, is resistant to high temperature, acid, bile salts and some antibiotics. The aim of present study is to investigate the effects of C. butyricum on the intestinal microbiota and their metabolites in weaned piglets. Results There was no statistical significance in the growth performance and the incidence of diarrhoea among the weaned piglets treated with C. butyricum during 0–21 days experimental period. Analysis of 16S rRNA gene sequencing results showed that the operational taxonomic units (OTUs), abundance-based coverage estimator (ACE) and Chao index of the CB group were found to be significantly increased compared with the NC group (P < 0.05). Bacteroidetes, Firmicutes and Tenericutes were the predominant bacterial phyla in the weaned piglets. A marked increase in the relative abundance of Megasphaera, Ruminococcaceae_NK4A214_group and Prevotellaceae_UCG-003, along with a decreased relative abundance of Ruminococcaceae_UCG-005 was observed in the CB group, when compared with the NC group (P < 0.05). With the addition of C. butyricum, a total of twenty-two significantly altered metabolites were obtained in the feces of piglets. The integrated pathway analysis by MetaboAnalyst indicated that arginine and proline metabolism; valine, leucine and isoleucine biosynthesis; and phenylalanine metabolism were the main three altered pathways, based on the topology. Furthermore, Spearman’s analysis revealed some altered gut microbiota genus such as Oscillospira, Ruminococcaceae_NK4A214_group, Megasphaera, Ruminococcaceae_UCG-005, Prevotella_2, Ruminococcaceae_UCG-002, Rikenellaceae_RC9_gut_group and Prevotellaceae_UCG-003 were associated with the alterations in the fecal metabolites (P < 0.05), indicating that C. butyricum presented a potential protective impact through gut microbiota. The intestinal metabolites changed by C. butyricum mainly involved the variation of citrulline, dicarboxylic acids, branched-chain amino acid and tryptophan metabolic pathways. Conclusions Overall, this study strengthens the idea that the dietary C. butyricum treatment can significantly alter the intestinal microbiota and metabolite profiles of the weaned piglets, and C. butyricum can offer potential benefits for the gut health.
Collapse
Affiliation(s)
- Jing Liang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Shasha Kou
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Cheng Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Sihu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wen-Ju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang, 832003, People's Republic of China.
| |
Collapse
|
36
|
Effect of Clostridium butyricum on Plasma Immune Function, Antioxidant Activity and Metabolomics of Weaned Piglets. Livest Sci 2020. [DOI: 10.1016/j.livsci.2020.104267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|