1
|
Manna PR, Yang S, Manna C, Waters H, Md Ariful I, Reddy AP, Rawat P, Reddy PH. Steroidogenic acute regulatory protein mediated variations of gender-specific sex neurosteroids in Alzheimer's disease: Relevance to hormonal and neuronal imbalance. Neurosci Biobehav Rev 2024; 169:105969. [PMID: 39631487 DOI: 10.1016/j.neubiorev.2024.105969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/24/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
The steroidogenic acute regulatory (StAR) protein mediates the rate-liming step in neuro/steroid biosynthesis. Multifaceted and delicate changes during aging, disrupting hormonal and neuronal homeostasis, constitute human senescence, an inevitable phenomenon that attributes to increased morbidity and mortality. Aging, along with progressive decreases in bioactive neurosteroids, is the primary risk factor for Alzheimer's disease (AD), which preferentially impacts two-thirds of women and one-third of men. AD is neuropathologically characterized by the accumulation of extracellular amyloid-β and intracellular phosphorylated Tau containing neurofibrillary tangles, resulting in dementia. Postmortem brains pertaining to gender-specific AD patients exhibit varied suppression of StAR and sex neurosteroid levels compared with age-matched cognitively healthy subjects, in which the attenuation of StAR is inversely correlated with the AD pathological markers. Interestingly, retinoid signaling upregulates StAR-motivated neurosteroid biosynthesis and reinstates various neurodegenerative vulnerabilities that promote AD pathogenesis. This review summarizes current understanding of StAR-driven alterations of sex neurosteroids in gender-specific AD risks and provides biochemical and molecular insights into therapeutic interventions for preventing and/or alleviating dementia for healthy aging.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA 70808, USA
| | - Chayan Manna
- Baylor College of Medicine, Ben Taub Research Center, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Hope Waters
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Islam Md Ariful
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Priyanka Rawat
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
2
|
Chakraborty S, Vishwas S, Harish V, Gupta G, Paudel KR, Dhanasekaran M, Goh BH, Zacconi F, de Jesus Andreoli Pinto T, Kumbhar P, Disouza J, Dua K, Singh SK. Exploring nanoparticular platform in delivery of repurposed drug for Alzheimer's disease: current approaches and future perspectives. Expert Opin Drug Deliv 2024; 21:1771-1792. [PMID: 39397403 DOI: 10.1080/17425247.2024.2414768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) stands as significant challenge in realm of neurodegenerative disorder. It is characterized by gradual decline in cognitive function and memory loss. It has already expanded its prevalence to 55 million people worldwide and is expected to rise significantly. Unfortunately, there exists a limited therapeutic option that would mitigate its progression. Repurposing existing drugs and employing nanoparticle as delivery agent presents a potential solution to address the intricate pathology of AD. AREAS COVERED In this review, we delve into utilization of nanoparticular platforms to enhance the delivery of repurposed drugs for treatment of AD. Firstly, the review begins with the elucidation of intricate pathology underpinning AD, subsequently followed by rationale behind drug repurposing in AD. Covered are explorations of nanoparticle-based repurposing of drugs in AD, highlighting their clinical implication. Further, the associated challenges and probable future perspective are delineated. EXPERT OPINION The article has highlighted that extensive research has been carried out on the delivery of repurposed nanomedicines against AD. However, there is a need for advanced and long-term research including clinical trials required to shed light upon their safety and toxicity profile. Furthermore, their scalability in pharmaceutical set-up should also be validated.
Collapse
Affiliation(s)
- Snigdha Chakraborty
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Overseas R & D Centre, Overseas HealthCare Pvt. Ltd, Phillaur, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Vancha Harish
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| | - Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Punjab, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Muralikrishnan Dhanasekaran
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University Auburn, Alabama, USA
| | - Bey Hing Goh
- Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Darul Ehsan, Selangor, Malaysia
| | - Flavia Zacconi
- Facultad de Química y de Farmacia, Pontificia Universidad Cat´ olica de Chile, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Cat´olica de Chile, Santiago, Chile
| | | | - Popat Kumbhar
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - John Disouza
- Department of Pharmaceutics, Tatyasaheb Kore College of Pharmacy, Kolhapur, Maharashtra, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| |
Collapse
|
3
|
Parrilla GE, Vander Wall R, Chitranshi N, Basavarajappa D, Gupta V, Graham SL, You Y. RXR agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), reduces damage and protects from demyelination in transsynaptic degeneration model. Neuroscience 2024; 559:91-104. [PMID: 39173871 DOI: 10.1016/j.neuroscience.2024.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative and demyelinating disease, such as multiple sclerosis (MS) are at the forefront of medical research and the discovery of new drugs and therapeutics. One phenomenon of degeneration seen in these diseases is transsynaptic degeneration (TSD), where damage from one axon spreads to the other axons that are connected to it synaptically. It has previously been found that demyelination occurs prior to neuronal loss in an experimental form of induced TSD. Retinoid-x receptor (RXR) agonists have been shown to promote remyelination. Therefore, this study aimed to reveal the effects of a novel endogenous RXR-γ agonist, 9-cis-13,14-dihydroretinoic acid (9CDHRA), on preventing or restoring the effects of TSD. 9CDHRA was administered to mice following optic nerve crush (ONC) procedures, and electrophysiology (visual evoked potential, VEP) and histological (immunofluorescent) assessments were performed. It was found that 9CDHRA treatment effectively delayed glial activation and reduced the presence of apoptosis at the site of injury and further anterogradely in the visual system, including the lateral geniculate nucleus (LGN) and primary visual cortex (V1). Most notably, 9CDHRA was able to maintain myelin levels following ONC, and effectively protected from demyelination. This was corroborated by VEP recordings with improved P1 latency. The promising findings regarding the injury attenuating and myelin protecting properties of 9CDHRA necessitates further investigations into the potential therapeutic uses of this compound.
Collapse
Affiliation(s)
- Gabriella E Parrilla
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia.
| | - Roshana Vander Wall
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Nitin Chitranshi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Devaraj Basavarajappa
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia
| | - Stuart L Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie University, Wallumattagal Campus, 75 Talavera Road, Macquarie Park, NSW 2109, Australia; Save Sight Institute, University of Sydney, 8 Macquarie St, Sydney, NSW 2000, Australia
| |
Collapse
|
4
|
Preethy H A, Rajendran K, Sukumar AJ, Krishnan UM. Emerging paradigms in Alzheimer's therapy. Eur J Pharmacol 2024; 981:176872. [PMID: 39117266 DOI: 10.1016/j.ejphar.2024.176872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/13/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder that affects elderly, and its incidence is continuously increasing across the globe. Unfortunately, despite decades of research, a complete cure for Alzheimer's disease continues to elude us. The current medications are mainly symptomatic and slow the disease progression but do not result in reversal of all disease pathologies. The growing body of knowledge on the factors responsible for the onset and progression of the disease has resulted in the identification of new targets that could be targeted for treatment of Alzheimer's disease. This has opened new vistas for treatment of Alzheimer's disease that have moved away from chemotherapeutic agents modulating a single target to biologics and combinations that acted on multiple targets thereby offering better therapeutic outcomes. This review discusses the emerging directions in therapeutic interventions against Alzheimer's disease highlighting their merits that promise to change the treatment paradigm and challenges that limit their clinical translation.
Collapse
Affiliation(s)
- Agnes Preethy H
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Kayalvizhi Rajendran
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Anitha Josephine Sukumar
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India
| | - Uma Maheswari Krishnan
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, India; Centre for Nanotechnology & Advanced Biomaterials, SASTRA Deemed University, Thanjavur, India; School of Arts, Sciences, Humanities & Education, SASTRA Deemed University, Thanjavur, India.
| |
Collapse
|
5
|
Saibro-Girardi C, Scheibel IM, Santos L, Bittencourt RR, Fröhlich NT, Dos Reis Possa L, Moreira JCF, Gelain DP. Bexarotene drives the self-renewing proliferation of adult neural stem cells, promotes neuron-glial fate shift, and regulates late neuronal differentiation. J Neurochem 2024; 168:1527-1545. [PMID: 37984072 DOI: 10.1111/jnc.15998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.
Collapse
Affiliation(s)
- Carolina Saibro-Girardi
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Ingrid Matsubara Scheibel
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Lucas Santos
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Reykla Ramon Bittencourt
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Nicole Taís Fröhlich
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - Luana Dos Reis Possa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
| | - José Claudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde-Universidade Federal do Rio Grande do Sul (ICBS-UFRGS), Porto Alegre, RS, Brazil
- Programa de Pós-graduação em Biologia Celular e Molecular, Centro de Biotecnologia-Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
6
|
Loeffler DA. Enhancing of cerebral Abeta clearance by modulation of ABC transporter expression: a review of experimental approaches. Front Aging Neurosci 2024; 16:1368200. [PMID: 38872626 PMCID: PMC11170721 DOI: 10.3389/fnagi.2024.1368200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/01/2024] [Indexed: 06/15/2024] Open
Abstract
Clearance of amyloid-beta (Aβ) from the brain is impaired in both early-onset and late-onset Alzheimer's disease (AD). Mechanisms for clearing cerebral Aβ include proteolytic degradation, antibody-mediated clearance, blood brain barrier and blood cerebrospinal fluid barrier efflux, glymphatic drainage, and perivascular drainage. ATP-binding cassette (ABC) transporters are membrane efflux pumps driven by ATP hydrolysis. Their functions include maintenance of brain homeostasis by removing toxic peptides and compounds, and transport of bioactive molecules including cholesterol. Some ABC transporters contribute to lowering of cerebral Aβ. Mechanisms suggested for ABC transporter-mediated lowering of brain Aβ, in addition to exporting of Aβ across the blood brain and blood cerebrospinal fluid barriers, include apolipoprotein E lipidation, microglial activation, decreased amyloidogenic processing of amyloid precursor protein, and restricting the entrance of Aβ into the brain. The ABC transporter superfamily in humans includes 49 proteins, eight of which have been suggested to reduce cerebral Aβ levels. This review discusses experimental approaches for increasing the expression of these ABC transporters, clinical applications of these approaches, changes in the expression and/or activity of these transporters in AD and transgenic mouse models of AD, and findings in the few clinical trials which have examined the effects of these approaches in patients with AD or mild cognitive impairment. The possibility that therapeutic upregulation of ABC transporters which promote clearance of cerebral Aβ may slow the clinical progression of AD merits further consideration.
Collapse
Affiliation(s)
- David A. Loeffler
- Department of Neurology, Beaumont Research Institute, Corewell Health, Royal Oak, MI, United States
| |
Collapse
|
7
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
8
|
Majeed J, Sabbagh MN, Kang MH, Lawrence JJ, Pruitt K, Bacus S, Reyna E, Brown M, Decourt B. Cancer drugs with high repositioning potential for Alzheimer's disease. Expert Opin Emerg Drugs 2023; 28:311-332. [PMID: 38100555 PMCID: PMC10877737 DOI: 10.1080/14728214.2023.2296079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/13/2023] [Indexed: 12/17/2023]
Abstract
INTRODUCTION Despite the recent full FDA approval of lecanemab, there is currently no disease modifying therapy (DMT) that can efficiently slow down the progression of Alzheimer's disease (AD) in the general population. This statement emphasizes the need to identify novel DMTs in the shortest time possible to prevent a global epidemic of AD cases as the world population experiences an increase in lifespan. AREAS COVERED Here, we review several classes of anti-cancer drugs that have been or are being investigated in Phase II/III clinical trials for AD, including immunomodulatory drugs, RXR agonists, sex hormone therapies, tyrosine kinase inhibitors, and monoclonal antibodies. EXPERT OPINION Given the overall course of brain pathologies during the progression of AD, we express a great enthusiasm for the repositioning of anti-cancer drugs as possible AD DMTs. We anticipate an increasing number of combinatorial therapy strategies to tackle AD symptoms and their underlying pathologies. However, we strongly encourage improvements in clinical trial study designs to better assess target engagement and possible efficacy over sufficient periods of drug exposure.
Collapse
Affiliation(s)
- Jad Majeed
- University of Arizona Honors College, Tucson, Arizona, USA
| | - Marwan N. Sabbagh
- Alzheimer’s and Memory Disorders Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Min H. Kang
- Department of Pediatrics, Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Kevin Pruitt
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | - Ellie Reyna
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Maddy Brown
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
- Roseman University of Health Sciences, Las Vegas, Nevada, USA
| |
Collapse
|
9
|
Liu Y, Wang P, Jin G, Shi P, Zhao Y, Guo J, Yin Y, Shao Q, Li P, Yang P. The novel function of bexarotene for neurological diseases. Ageing Res Rev 2023; 90:102021. [PMID: 37495118 DOI: 10.1016/j.arr.2023.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Bexarotene, a retinoid X receptor (RXR) agonist, is approved by FDA to treat cutaneous T-cell lymphoma. However, it has also demonstrated promising therapeutic potential for neurological diseases such as stroke, traumatic brain injury, Parkinson's disease, and particularly Alzheimer's disease(AD). In AD, bexarotene inhibits the production and aggregation of amyloid β (Aβ), activates Liver X Receptor/RXR heterodimers to increase lipidated apolipoprotein E to remove Aβ, mitigates the negative impact of Aβ, regulates neuroinflammation, and ultimately improves cognitive function. For other neurological diseases, its mechanisms of action include inhibiting inflammatory responses, up-regulating microglial phagocytosis, and reducing misfolded protein aggregation, all of which aid in alleviating neurological damage. Here, we briefly discuss the characteristics, applications, and adverse effects of bexarotene, summarize its pharmacological mechanisms and therapeutic results in various neurological diseases, and elaborate on the problems encountered in preclinical research, with the aim of providing help for the further application of bexarotene in central nervous system diseases.
Collapse
Affiliation(s)
- Yangtao Liu
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; College of Third Clinical, Xinxiang Medical University, Xinxiang, China
| | - Pengwei Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Weihui, China
| | - Guofang Jin
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Peijie Shi
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China; Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yonghui Zhao
- Xinxiang First People's Hospital, The Affiliated People's Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiayi Guo
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China
| | - Yaling Yin
- School of Basic Medical Sciences, Department of Physiology and Pathophysiology, Sino-UK Joint Laboratory of Brain Function and Injury and Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qianhang Shao
- Department of Pharmacy, People's Hospital of Peking University, Beijing, China.
| | - Peng Li
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| | - Pengfei Yang
- College of Pharamacy, Xinxiang Medical University, Xinxiang, China; Xinxiang Key Laboratory of Vascular Remodeling Intervention and Molecular Targeted Therapy Drug Development, Henan International Joint Laboratory of Cardiovascular Remodeling and Drug Intervention, Xinxiang, China.
| |
Collapse
|
10
|
Manna PR, Kshirsagar S, Pradeepkiran JA, Rawat P, Kumar S, Reddy AP, Reddy PH. Protective function of StAR in amyloid-β accumulated hippocampal neurotoxicity and neurosteroidogenesis: Mechanistic insights into Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166738. [PMID: 37142132 DOI: 10.1016/j.bbadis.2023.166738] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023]
Abstract
The steroidogenic acute regulatory (StAR) protein principally mediates steroid hormone biosynthesis by governing the transport of intramitochondrial cholesterol. Neurosteroids progressively decrease during aging, the key risk factor for Alzheimer's disease (AD), which is triggered by brain-region specific accumulation of amyloid beta (Aβ) precursor protein (APP), a key pathological factor. We demonstrate that hippocampal neuronal cells overexpressing wild-type (WtAPP) and mutant APP (mAPP) plasmids, conditions mimetic to AD, resulted in decreases in StAR mRNA, free cholesterol, and pregnenolone levels. The magnitude of suppression of the steroidogenic response was more pronounced with mAPP than that of WtAPP. While mAPP-waned assorted anomalies correlate to AD pathology, deterioration of APP/Aβ laden StAR expression and neurosteroid biosynthesis was enhanced by retinoid signaling. An abundance of mitochondrially targeted StAR expression partially restored APP/Aβ accumulated diverse neurodegenerative vulnerabilities. Immunofluorescence analyses revealed that overexpression of StAR diminishes mAPP provoked Aβ aggregation. Co-expression of StAR and mAPP in hippocampal neurons substantially reversed the declines in mAPP mediated cell survival, mitochondrial oxygen consumption rate, and ATP production. Concurrently, induction of mAPP induced Aβ loading showed an increase in cholesterol esters, but decrease in free cholesterol, concomitant with pregnenolone biosynthesis, events that were inversely regulated by StAR. Moreover, retinoid signaling was found to augment cholesterol content for facilitating neurosteroid biosynthesis in an AD mimetic condition. These findings provide novel insights into the molecular events by which StAR acts to protect mAPP-induced hippocampal neurotoxicity, mitochondrial dysfunction, and neurosteroidogenesis, and these measures are fundamental for ameliorating and/or delaying dementia in individuals with AD.
Collapse
Affiliation(s)
- Pulak R Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Priyanka Rawat
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Subodh Kumar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
11
|
Qiu W, Liu H, Liu Y, Lu X, Wang L, Hu Y, Feng F, Li Q, Sun H. Regulation of beta-amyloid for the treatment of Alzheimer's disease: Research progress of therapeutic strategies and bioactive compounds. Med Res Rev 2023. [PMID: 36945751 DOI: 10.1002/med.21947] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/09/2023] [Accepted: 02/26/2023] [Indexed: 03/23/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease that is difficult to treat. Extracellular amyloid is the principal pathological criterion for the diagnosis of AD. Amyloid β (Aβ) interacts with various receptor molecules on the plasma membrane and mediates a series of signaling pathways that play a vital role in the occurrence and development of AD. Research on receptors that interact with Aβ is currently ongoing. Overall, there are no effective medications to treat AD. In this review, we first discuss the importance of Aβ in the pathogenesis of AD, then summarize the latest progress of Aβ-related targets and compounds. Finally, we put forward the challenges and opportunities in the development of effective AD therapies.
Collapse
Affiliation(s)
- Weimin Qiu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yijun Liu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin Lu
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lei Wang
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
- Department of Natural Medicinal Chemistry, Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, Jiangsu, Huaian, China
| | - Qi Li
- Department of Pharmacology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Haopeng Sun
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
12
|
Rodríguez-Giraldo M, González-Reyes RE, Ramírez-Guerrero S, Bonilla-Trilleras CE, Guardo-Maya S, Nava-Mesa MO. Astrocytes as a Therapeutic Target in Alzheimer's Disease-Comprehensive Review and Recent Developments. Int J Mol Sci 2022; 23:13630. [PMID: 36362415 PMCID: PMC9654484 DOI: 10.3390/ijms232113630] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/20/2023] Open
Abstract
Alzheimer's disease (AD) is a frequent and disabling neurodegenerative disorder, in which astrocytes participate in several pathophysiological processes including neuroinflammation, excitotoxicity, oxidative stress and lipid metabolism (along with a critical role in apolipoprotein E function). Current evidence shows that astrocytes have both neuroprotective and neurotoxic effects depending on the disease stage and microenvironmental factors. Furthermore, astrocytes appear to be affected by the presence of amyloid-beta (Aβ), with alterations in calcium levels, gliotransmission and proinflammatory activity via RAGE-NF-κB pathway. In addition, astrocytes play an important role in the metabolism of tau and clearance of Aβ through the glymphatic system. In this review, we will discuss novel pharmacological and non-pharmacological treatments focused on astrocytes as therapeutic targets for AD. These interventions include effects on anti-inflammatory/antioxidant systems, glutamate activity, lipid metabolism, neurovascular coupling and glymphatic system, calcium dysregulation, and in the release of peptides which affects glial and neuronal function. According to the AD stage, these therapies may be of benefit in either preventing or delaying the progression of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauricio O. Nava-Mesa
- Grupo de Investigación en Neurociencias (NeURos), Centro de Neurociencias Neurovitae-UR, Instituto de Medicina Traslacional (IMT), Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 111711, Colombia
| |
Collapse
|
13
|
Ji J, Yi X, Zhu Y, Yu H, Huang S, Liu Z, Zhang X, Xia G, Shen X. Tilapia Head Protein Hydrolysate Attenuates Scopolamine-Induced Cognitive Impairment through the Gut-Brain Axis in Mice. Foods 2021; 10:foods10123129. [PMID: 34945680 PMCID: PMC8701847 DOI: 10.3390/foods10123129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 01/09/2023] Open
Abstract
The destruction of the homeostasis in the gut-brain axis can lead to cognitive impairment and memory decline. Dietary intervention with bioactive peptides from aquatic products is an innovative strategy to prevent cognitive deficits. The present study aimed to determine the neuroprotective effect of tilapia head protein hydrolysate (THPH) on scopolamine-induced cognitive impairment in mice, and to further explore its mechanism through the microbiota–gut-brain axis. The results showed that THPH administration significantly improved the cognitive behavior of mice, and normalized the cholinergic system and oxidative stress system of the mice brain. The histopathological observation showed that THPH administration significantly reduced the pathological damage of hippocampal neurons, increased the number of mature neurons marked by NeuN and delayed the activation of astrocytes in the hippocampus of mice. In addition, THPH administration maintained the stability of cholinergic system, alleviated oxidative stress and further improved the cognitive impairment by reshaping the gut microbiota structure of scopolamine-induced mice and alleviating the disorder of lipid metabolism and amino acid metabolism in serum. In conclusion, our research shows that THPH supplementation is a nutritional strategy to alleviate cognitive impairment through the gut-brain axis.
Collapse
Affiliation(s)
- Jun Ji
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Xiangzhou Yi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Yujie Zhu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Hui Yu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Shuqi Huang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Haikou 570228, China; (J.J.); (X.Y.); (Y.Z.); (H.Y.); (S.H.); (Z.L.); (X.Z.); (G.X.)
- College of Food Science and Technology, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116000, China
- Correspondence: ; Tel./Fax: +86-0898-66193581
| |
Collapse
|
14
|
Lu H, Liu L, Han S, Wang B, Qin J, Bu K, Zhang Y, Li Z, Ma L, Tian J, Zhang K, Li T, Cui H, Liu X. Expression of tiRNA and tRF in APP/PS1 transgenic mice and the change of related proteins expression. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1457. [PMID: 34734009 PMCID: PMC8506760 DOI: 10.21037/atm-21-4318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Background Transcriptomics, such as that of non-coding RNA (ncRNA), which include microRNA (miRNA), circular RNA, and the transfer RNA (tRNA)-derived fragments (tiRNA and tRF) in Alzheimer's disease (AD) have attracted much attention recently. The tiRNA and tRFs are produced when the tRNA splits at specific sites. The expression change and related function of tiRNA and tRFs in AD has not been fully investigated. Methods In our study, APP/PS1 transgenic mice (AD mice model) and healthy control mice were used to discover the differentially expressed tiRNA and tRFs with high-throughput sequencing. Among the differentially expressed tiRNA and tRFs, we chose two tRFs (tRF-Thr-CGT-003 and tRF-Leu-CAA-004) and predicted the target messenger RNAs (mRNAs) with miRanda and Target Scan. The target mRNAs of tRF-related function and pathways were analyzed, then we performed quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot to validate the related target mRNAs and pathways. Results A total of 27 significantly different tiRNA and tRFs were detected between wild type (WT) and APP/PS1 groups, including 14 up-regulated and 13 down-regulated. Through analyzing the target mRNAs of all differentially expressed tiRNA and tRFs with GO enrichment, we found the target mRNAs could take part in the learning and memory biological process, synapse organization, cognition biological process, synaptic transmission, amyloid-β (Aβ) metabolic process, and so on. We then chose three differentially expressed tRFs for further qPCR validation and passed two tRFs: tRF-Thr-CGT-003 and tRF-Leu-CAA-004, that were found to regulate the calcium regulation-related proteins (the voltage-gated calcium channel γ2 subunit and the RYR1 endoplasmic reticulum calcium released protein) and the retinol metabolism-related proteins (retinoic acid metabolic enzymes CYP2S1, CYP2C68, CYP2S1). Conclusions The APP expression and presenilin mutation in APP/PS1 mice could cause tiRNA and tRFs expression change. Among the differentially expressed tiRNA and tRFs, we found some tRFs took part in the voltage-gated calcium channel γ2 subunit expression and regulation, influencing the neuron calcium homeostasis. Moreover, we also found the tRFs may participate in the regulation of retinol metabolism. Our findings suggest that the dysregulated tiRNA and tRFs may be beneficially exploited as potential diagnostic biomarkers and/or therapeutic targets of AD.
Collapse
Affiliation(s)
- Honglin Lu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shu Han
- Department of Electrocardiogram, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Binbin Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jin Qin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kailin Bu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingzhen Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhongzhong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jing Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kun Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tong Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huixian Cui
- Department of Anatomy, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyun Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
15
|
Biyong EF, Tremblay C, Leclerc M, Caron V, Alfos S, Helbling JC, Rodriguez L, Pernet V, Bennett DA, Pallet V, Calon F. Role of Retinoid X Receptors (RXRs) and dietary vitamin A in Alzheimer's disease: Evidence from clinicopathological and preclinical studies. Neurobiol Dis 2021; 161:105542. [PMID: 34737043 DOI: 10.1016/j.nbd.2021.105542] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 10/27/2021] [Accepted: 10/31/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Vitamin A (VitA), via its active metabolite retinoic acid (RA), is critical for the maintenance of memory function with advancing age. Although its role in Alzheimer's disease (AD) is not well understood, data suggest that impaired brain VitA signaling is associated with the accumulation of β-amyloid peptides (Aβ), and could thus contribute to the onset of AD. METHODS We evaluated the protective action of a six-month-long dietary VitA-supplementation (20 IU/g), starting at 8 months of age, on the memory and the neuropathology of the 3xTg-AD mouse model of AD (n = 11-14/group; including 4-6 females and 7-8 males). We also measured protein levels of Retinoic Acid Receptor β (RARβ) and Retinoid X Receptor γ (RXRγ) in homogenates from the inferior parietal cortex of 60 participants of the Religious Orders study (ROS) divided in three groups: no cognitive impairment (NCI) (n = 20), mild cognitive impairment (MCI) (n = 20) and AD (n = 20). RESULTS The VitA-enriched diet preserved spatial memory of 3xTg-AD mice in the Y maze. VitA-supplementation affected hippocampal RXR expression in an opposite way according to sex by tending to increase in males and decrease in females their mRNA expression. VitA-enriched diet also reduced the amount of hippocampal Aβ40 and Aβ42, as well as the phosphorylation of tau protein at sites Ser396/Ser404 (PHF-1) in males. VitA-supplementation had no effect on tau phosphorylation in females but worsened their hippocampal Aβ load. However, the expression of Rxr-β in the hippocampus was negatively correlated with the amount of both soluble and insoluble Aβ in both males and females. Western immunoblotting in the human cortical samples of the ROS study did not reveal differences in RARβ levels. However, it evidenced a switch from a 60-kDa-RXRγ to a 55-kDa-RXRγ in AD, correlating with ante mortem cognitive decline and the accumulation of neuritic plaques in the brain cortex. CONCLUSION Our data suggest that (i) an altered expression of RXRs receptors is a contributor to β-amyloid pathology in both humans and 3xTg-AD mice, (ii) a chronic exposure of 3xTg-AD mice to a VitA-enriched diet may be protective in males, but not in females.
Collapse
Affiliation(s)
- Essi F Biyong
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Cyntia Tremblay
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Manon Leclerc
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Vicky Caron
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada
| | - Serge Alfos
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France
| | | | - Léa Rodriguez
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - Vincent Pernet
- CUO-Recherche, Centre de Recherche du CHU de Québec, Québec, QC, Canada; Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Véronique Pallet
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000 Bordeaux, France; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada
| | - Frédéric Calon
- Faculté de pharmacie, Université Laval, Québec, Québec, Canada; Centre de recherche du CHU de Québec-Université Laval (CHUL), Axe Neurosciences, 2705 Boulevard Laurier, Québec, Québec, Canada; Institut sur la Nutrition et les Aliments Fonctionnels (INAF), Québec, Québec, Canada; LIA OptiNutriBrain - Laboratoire International Associé (NutriNeuro France-INAF Canada), Canada.
| |
Collapse
|
16
|
Papazoglou A, Arshaad MI, Henseler C, Daubner J, Broich K, Haenisch B, Weiergräber M. The Janus-like Association between Proton Pump Inhibitors and Dementia. Curr Alzheimer Res 2021; 18:453-469. [PMID: 34587884 PMCID: PMC8778640 DOI: 10.2174/1567205018666210929144740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 11/30/2022]
Abstract
Early pharmacoepidemiological studies suggested that Proton Pump Inhibitors (PPIs) might increase the risk of Alzheimer’s Disease (AD) and non-AD related dementias. These findings were supported by preclinical studies, specifically stressing the proamyloidogenic and indirect anticholinergic effects of PPIs. However, further large-scale pharmacoepidemiological studies showed inconsistent results on the association between PPIs and dementia. Pharmacodynamically, these findings might be related to the LXR/RXR-mediated amyloid clearance effect and anti-inflammatory action of PPIs. Further aspects that influence PPI effects on AD are related to patient-specific pharmacokinetic and pharmacogenomic characteristics. In conclusion, a personalized (individualized) medicinal approach is necessary to model and predict the potential harmful or beneficial effects of PPIs in AD and non-AD-related dementias in the future.
Collapse
Affiliation(s)
- Anna Papazoglou
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Muhammad I Arshaad
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Christina Henseler
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Johanna Daubner
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Karl Broich
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM) 53127, Kurt-Georg- Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Britta Haenisch
- Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM) 53127, Kurt-Georg- Kiesinger-Allee 3, 53175 Bonn, Germany
| | - Marco Weiergräber
- Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices (Bundesinstitut für Arzneimittel und Medizinprodukte, BfArM), Kurt-Georg-Kiesinger-Allee 3, 53175 Bonn, Germany
| |
Collapse
|
17
|
Miziak B, Błaszczyk B, Czuczwar SJ. Some Candidate Drugs for Pharmacotherapy of Alzheimer's Disease. PHARMACEUTICALS (BASEL, SWITZERLAND) 2021; 14:ph14050458. [PMID: 34068096 PMCID: PMC8152728 DOI: 10.3390/ph14050458] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer’s disease (AD; progressive neurodegenerative disorder) is associated with cognitive and functional impairment with accompanying neuropsychiatric symptoms. The available pharmacological treatment is of a symptomatic nature and, as such, it does not modify the cause of AD. The currently used drugs to enhance cognition include an N-methyl-d-aspartate receptor antagonist (memantine) and cholinesterase inhibitors. The PUBMED, Medical Subject Heading and Clinical Trials databases were used for searching relevant data. Novel treatments are focused on already approved drugs for other conditions and also searching for innovative drugs encompassing investigational compounds. Among the approved drugs, we investigated, are intranasal insulin (and other antidiabetic drugs: liraglitude, pioglitazone and metformin), bexarotene (an anti-cancer drug and a retinoid X receptor agonist) or antidepressant drugs (citalopram, escitalopram, sertraline, mirtazapine). The latter, especially when combined with antipsychotics (for instance quetiapine or risperidone), were shown to reduce neuropsychiatric symptoms in AD patients. The former enhanced cognition. Procognitive effects may be also expected with dietary antioxidative and anti-inflammatory supplements—curcumin, myricetin, and resveratrol. Considering a close relationship between brain ischemia and AD, they may also reduce post-brain ischemia neurodegeneration. An investigational compound, CN-105 (a lipoprotein E agonist), has a very good profile in AD preclinical studies, and its clinical trial for postoperative dementia is starting soon.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Barbara Błaszczyk
- Faculty of Health Sciences, High School of Economics, Law and Medical Sciences, 25-734 Kielce, Poland;
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence: ; Tel.: +48-81-448-65-00; Fax: +48-81-65-00-01
| |
Collapse
|
18
|
Ancidoni A, Bacigalupo I, Remoli G, Lacorte E, Piscopo P, Sarti G, Corbo M, Vanacore N, Canevelli M. Anticancer drugs repurposed for Alzheimer's disease: a systematic review. ALZHEIMERS RESEARCH & THERAPY 2021; 13:96. [PMID: 33952306 PMCID: PMC8101105 DOI: 10.1186/s13195-021-00831-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022]
Abstract
Background The relationship between cancer and dementia is triggering growing research interest. Several preclinical studies have provided the biological rationale for the repurposing of specific anticancer agents in Alzheimer’s disease (AD), and a growing number of research protocols are testing their efficacy and safety/tolerability in patients with AD. Methods The aim of the present systematic review was to provide an overview on the repurposing of approved anticancer drugs in clinical trials for AD by considering both ongoing and completed research protocols in all phases. In parallel, a systematic literature review was conducted on PubMed, ISI Web, and the Cochrane Library to identify published clinical studies on repurposed anticancer agents in AD. Results Based on a structured search on the ClinicalTrials.gov and the EudraCT databases, we identified 13 clinical trials testing 11 different approved anticancer agents (five tyrosine kinase inhibitors, two retinoid X receptor agonists, two immunomodulatory agents, one histone deacetylase inhibitor, and one monoclonal antibody) in the AD continuum. The systematic literature search led to the identification of five published studies (one phase I, three phase II, and one phase IIb/III) reporting the effects of antitumoral treatments in patients with mild cognitive impairment or AD dementia. The clinical findings and the methodological characteristics of these studies are described and discussed. Conclusion Anticancer agents are triggering growing interest in the context of repurposed therapies in AD. Several clinical trials are underway, and data are expected to be available in the near future. To date, data emerging from published clinical studies are controversial. The promising results emerging from preclinical studies and identified research protocols should be confirmed and extended by larger, adequately designed, and high-quality clinical trials.
Collapse
Affiliation(s)
- Antonio Ancidoni
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.
| | - Ilaria Bacigalupo
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Giulia Remoli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Eleonora Lacorte
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Paola Piscopo
- Department of Neuroscience, Italian National Institute of Health, Viale Regina Elena, 299, 00161, Rome, Italy
| | - Giulia Sarti
- Department of Human Neuroscience, Sapienza University, Rome, Italy
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, Via Dezza 48, 20144, Milan, Italy
| | - Nicola Vanacore
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy
| | - Marco Canevelli
- National Center for Disease Prevention and Health Promotion, Italian National Institute of Health, Via Giano della Bella 34, 00162, Rome, Italy.,Department of Human Neuroscience, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Vidal V, Puente A, García-Cerro S, García Unzueta MT, Rueda N, Riancho J, Martínez-Cué C. Bexarotene Impairs Cognition and Produces Hypothyroidism in a Mouse Model of Down Syndrome and Alzheimer's Disease. Front Pharmacol 2021; 12:613211. [PMID: 33935706 PMCID: PMC8082148 DOI: 10.3389/fphar.2021.613211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/15/2021] [Indexed: 12/26/2022] Open
Abstract
All individuals with Down syndrome (DS) eventually develop Alzheimer's disease (AD) neuropathology, including neurodegeneration, increases in β-amyloid (Aβ) expression, and aggregation and neurofibrillary tangles, between the third and fourth decade of their lives. There is currently no effective treatment to prevent AD neuropathology and the associated cognitive degeneration in DS patients. Due to evidence that the accumulation of Aβ aggregates in the brain produces the neurodegenerative cascade characteristic of AD, many strategies which promote the clearance of Aβ peptides have been assessed as potential therapeutics for this disease. Bexarotene, a member of a subclass of retinoids that selectively activates retinoid receptors, modulates several pathways essential for cognitive performance and Aβ clearance. Consequently, bexarotene might be a good candidate to treat AD-associated neuropathology. However, the effects of bexarotene treatment in AD remain controversial. In the present study, we aimed to elucidate whether chronic bexarotene treatment administered to the most commonly used murine model of DS, the Ts65Dn (TS) mouse could reduce Aβ expression in their brains and improve their cognitive abilities. Chronic administration of bexarotene to aged TS mice and their CO littermates for 9 weeks diminished the reference, working, and spatial learning and memory of TS mice, and the spatial memory of CO mice in the Morris water maze. This treatment also produced marked hypoactivity in the plus maze, open field, and hole board tests in TS mice, and in the open field and hole board tests in CO mice. Administration of bexarotene reduced the expression of Aβ1-40, but not of Aβ1-42, in the hippocampi of TS mice. Finally, bexarotene increased Thyroid-stimulating hormone levels in TS mice and reduced Thyroid-stimulating hormone levels in CO mice, while animals of both karyotypes displayed reduced thyroxine levels after bexarotene administration. The bexarotene-induced hypothyroidism could be responsible for the hypoactivity of TS and CO mice and their diminished performance in the Morris water maze. Together, these results do not provide support for the use of bexarotene as a potential treatment of AD neuropathology in the DS population.
Collapse
Affiliation(s)
- Verónica Vidal
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Alba Puente
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Susana García-Cerro
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain.,CIBERSAM, Madrid, Spain
| | | | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| | - Javier Riancho
- Neurology Service, Hospital Sierrallana-IDIVAL, Torrelavega, Spain.,Department of Medicine and Psychiatry, University of Cantabria, Santander, Spain.,CIBERNED, Madrid, Spain
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, Santander, Spain
| |
Collapse
|
20
|
Leal AS, Reich LA, Moerland JA, Zhang D, Liby KT. Potential therapeutic uses of rexinoids. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 91:141-183. [PMID: 34099107 DOI: 10.1016/bs.apha.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The discovery of nuclear receptors, particularly retinoid X receptors (RXR), and their involvement in numerous pathways related to development sparked interest in their immunomodulatory properties. Genetic models using deletion or overexpression of RXR and the subsequent development of several small molecules that are agonists or antagonists of this receptor support a promising therapeutic role for these receptors in immunology. Bexarotene was approved in 1999 for the treatment of cutaneous T cell lymphoma. Several other small molecule RXR agonists have since been synthesized with limited preclinical development, but none have yet achieved FDA approval. Cancer treatment has recently been revolutionized with the introduction of immune checkpoint inhibitors, but their success has been restricted to a minority of patients. This review showcases the emerging immunomodulatory effects of RXR and the potential of small molecules that target this receptor as therapies for cancer and other diseases. Here we describe the essential roles that RXR and partner receptors play in T cells, dendritic cells, macrophages and epithelial cells, especially within the tumor microenvironment. Most of these effects are site and cancer type dependent but skew immune cells toward an anti-inflammatory and anti-tumor effect. This beneficial effect on immune cells supports the promise of combining rexinoids with approved checkpoint blockade therapies in order to enhance efficacy of the latter and to delay or potentially eliminate drug resistance. The data compiled in this review strongly suggest that targeting RXR nuclear receptors is a promising new avenue in immunomodulation for cancer and other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ana S Leal
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Lyndsey A Reich
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Jessica A Moerland
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Di Zhang
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | - Karen T Liby
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States.
| |
Collapse
|
21
|
Santos-Gil DF, Arboleda G, Sandoval-Hernández AG. Retinoid X receptor activation promotes re-myelination in a very old triple transgenic mouse model of Alzheimer's disease. Neurosci Lett 2021; 750:135764. [PMID: 33621639 DOI: 10.1016/j.neulet.2021.135764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/04/2021] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
Alzheimer's disease (AD) is the main cause of dementia in the world. Studies of human AD brains show abnormalities in the white matter and reduction of myelin and oligodendrocyte markers. It has been proposed that oligodendrocyte progenitor cells (OPCs) present in the adult brain are a potential source for re-myelination, through proliferation and differentiation into mature oligodendrocytes. Bexarotene, a Retinoid X Receptor agonist, has been demonstrated to reverse behavioral deficits and to improved synaptic transmission and plasticity in murine models of AD, which was associated with the reduction of soluble Aβ peptides. In the present study, we analyzed changes in the expression of oligodendrocyte lineage markers following oral administration of Bexarotene in a very old (24-month-old) triple transgenic mouse model of AD (3xTg-AD), for which early demyelination changes have been previously described. Bexarotene increased the expression of OPCs and intermediate oligodendrocyte progenitors (Olig2+ and O4+), and increased the number of mitotic (O4+) and myelinating mature (MBP+) oligodendrocytes. We clearly show that Bexarotene promotes re-myelination which might be important for the previously observed cognitive improvement of 3xTg-AD mice treated with this drug.
Collapse
Affiliation(s)
- Daniel F Santos-Gil
- Grupo de Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Colombia
| | - Gonzalo Arboleda
- Grupo de Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Colombia
| | - Adrián G Sandoval-Hernández
- Grupo de Muerte Celular, Instituto de Genética, Universidad Nacional de Colombia, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Colombia.
| |
Collapse
|
22
|
Serrano-Pozo A, Das S, Hyman BT. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches. Lancet Neurol 2021; 20:68-80. [PMID: 33340485 PMCID: PMC8096522 DOI: 10.1016/s1474-4422(20)30412-9] [Citation(s) in RCA: 470] [Impact Index Per Article: 117.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/02/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
The APOE ε4 allele remains the strongest genetic risk factor for sporadic Alzheimer's disease and the APOE ε2 allele the strongest genetic protective factor after multiple large scale genome-wide association studies and genome-wide association meta-analyses. However, no therapies directed at APOE are currently available. Although initial studies causally linked APOE with amyloid-β peptide aggregation and clearance, over the past 5 years our understanding of APOE pathogenesis has expanded beyond amyloid-β peptide-centric mechanisms to tau neurofibrillary degeneration, microglia and astrocyte responses, and blood-brain barrier disruption. Because all these pathological processes can potentially contribute to cognitive impairment, it is important to use this new knowledge to develop therapies directed at APOE. Several therapeutic approaches have been successful in mouse models expressing human APOE alleles, including increasing or reducing APOE levels, enhancing its lipidation, blocking the interactions between APOE and amyloid-β peptide, and genetically switching APOE4 to APOE3 or APOE2 isoforms, but translation to human clinical trials has proven challenging.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA; Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
23
|
Acute Effects of Two Different Species of Amyloid- β on Oscillatory Activity and Synaptic Plasticity in the Commissural CA3-CA1 Circuit of the Hippocampus. Neural Plast 2021; 2020:8869526. [PMID: 33381164 PMCID: PMC7765721 DOI: 10.1155/2020/8869526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 11/29/2022] Open
Abstract
Recent evidence indicates that soluble amyloid-β (Aβ) species induce imbalances in excitatory and inhibitory transmission, resulting in neural network functional impairment and cognitive deficits during early stages of Alzheimer's disease (AD). To evaluate the in vivo effects of two soluble Aβ species (Aβ25-35 and Aβ1-40) on commissural CA3-to-CA1 (cCA3-to-CA1) synaptic transmission and plasticity, and CA1 oscillatory activity, we used acute intrahippocampal microinjections in adult anaesthetized male Wistar rats. Soluble Aβ microinjection increased cCA3-to-CA1 synaptic variability without significant changes in synaptic efficiency. High-frequency CA3 stimulation was rendered inefficient by soluble Aβ intrahippocampal injection to induce long-term potentiation and to enhance synaptic variability in CA1, contrasting with what was observed in vehicle-injected subjects. Although soluble Aβ microinjection significantly increased the relative power of γ-band and ripple oscillations and significantly shifted the average vector of θ-to-γ phase-amplitude coupling (PAC) in CA1, it prevented θ-to-γ PAC shift induced by high-frequency CA3 stimulation, opposite to what was observed in vehicle-injected animals. These results provide further evidence that soluble Aβ species induce synaptic dysfunction causing abnormal synaptic variability, impaired long-term plasticity, and deviant oscillatory activity, leading to network activity derailment in the hippocampus.
Collapse
|
24
|
Jonathan MC, Adrián SH, Gonzalo A. Type II nuclear receptors with potential role in Alzheimer disease. Mol Aspects Med 2021; 78:100940. [PMID: 33397589 DOI: 10.1016/j.mam.2020.100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors that can modulated cellular processes involved in the development, homeostasis, cell proliferation, metabolism, and reproduction through the control of the specific genetic and molecular program. In the central nervous system, they are key regulators of neural stem cell fate decisions and can modulate the physiology of different brain cells. Over the past decades, a large body of evidence has supported that nuclear receptors are potential therapeutic targets for the treatment of neurodegenerative disorders such as Alzheimer's disease, the most common dementia worldwide, and the main cause of disability in later life. This disease is characterized by the progressive accumulation of amyloid-beta peptides and hyperphosphorylated tau protein that can explain alterations in synaptic transmission and plasticity; loss of dendritic spines; increased in reactive microglia and inflammation; reduction of neuronal stem cells number; myelin and vascular alterations that finally leads to increased neuronal death. Here, we present a review of type II no steroidal nuclear receptors that form obligatory heterodimers with the Retinoid X Receptor (RXR) and its potential in the therapeutic of AD. Activation of type II nuclear receptor by synthetic agonist leads to transcriptional regulation of specific genes that acts counteracting against the detrimental effects of amyloid-beta peptides and hyperphosphorylated tau in neuronal cells recovering the functionality of the synapses. But also, activation of type II nuclear receptor leads to modifications in APP metabolism, repression of inflammatory cascade and inductors of the generation of neuronal stem cells and progenitor cells supporting its potential therapeutics role for Alzheimer's disease.
Collapse
Affiliation(s)
- Muñoz-Cabrera Jonathan
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandoval-Hernández Adrián
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Arboleda Gonzalo
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
25
|
Ryczko D, Hanini‐Daoud M, Condamine S, Bréant BJB, Fougère M, Araya R, Kolta A. S100β‐mediated astroglial control of firing and input processing in layer 5 pyramidal neurons of the mouse visual cortex. J Physiol 2020; 599:677-707. [DOI: 10.1113/jp280501] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/23/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
- Dimitri Ryczko
- Département de Neurosciences Université de Montréal Montréal QC Canada
- Département de Pharmacologie‐Physiologie Université de Sherbrooke Sherbrooke QC Canada
- Centre de recherche du CHUS Sherbrooke QC Canada
- Institut de Pharmacologie de Sherbrooke Sherbrooke QC Canada
- Centre d'excellence en neurosciences de l'Université de Sherbrooke Sherbrooke QC Canada
| | | | - Steven Condamine
- Département de Neurosciences Université de Montréal Montréal QC Canada
| | | | - Maxime Fougère
- Département de Pharmacologie‐Physiologie Université de Sherbrooke Sherbrooke QC Canada
| | - Roberto Araya
- Département de Neurosciences Université de Montréal Montréal QC Canada
| | - Arlette Kolta
- Département de Neurosciences Université de Montréal Montréal QC Canada
- Faculté de Médecine Dentaire Université de Montréal Montréal QC Canada
| |
Collapse
|
26
|
Li Z, Shue F, Zhao N, Shinohara M, Bu G. APOE2: protective mechanism and therapeutic implications for Alzheimer's disease. Mol Neurodegener 2020; 15:63. [PMID: 33148290 PMCID: PMC7640652 DOI: 10.1186/s13024-020-00413-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/17/2020] [Indexed: 02/06/2023] Open
Abstract
Investigations of apolipoprotein E (APOE) gene, the major genetic risk modifier for Alzheimer's disease (AD), have yielded significant insights into the pathogenic mechanism. Among the three common coding variants, APOE*ε4 increases, whereas APOE*ε2 decreases the risk of late-onset AD compared with APOE*ε3. Despite increased understanding of the detrimental effect of APOE*ε4, it remains unclear how APOE*ε2 confers protection against AD. Accumulating evidence suggests that APOE*ε2 protects against AD through both amyloid-β (Aβ)-dependent and independent mechanisms. In addition, APOE*ε2 has been identified as a longevity gene, suggesting a systemic effect of APOE*ε2 on the aging process. However, APOE*ε2 is not entirely benign; APOE*ε2 carriers exhibit increased risk of certain cerebrovascular diseases and neurological disorders. Here, we review evidence from both human and animal studies demonstrating the protective effect of APOE*ε2 against AD and propose a working model depicting potential underlying mechanisms. Finally, we discuss potential therapeutic strategies designed to leverage the protective effect of APOE2 to treat AD.
Collapse
Affiliation(s)
- Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mitsuru Shinohara
- Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, 7-430 Morioka, Obu, Aichi, 474-8511, Japan.
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
- Neuroscience Graduate Program, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
27
|
Dufort-Gervais J, Provost C, Charbonneau L, Norris CM, Calon F, Mongrain V, Brouillette J. Neuroligin-1 is altered in the hippocampus of Alzheimer's disease patients and mouse models, and modulates the toxicity of amyloid-beta oligomers. Sci Rep 2020; 10:6956. [PMID: 32332783 PMCID: PMC7181681 DOI: 10.1038/s41598-020-63255-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/27/2020] [Indexed: 12/19/2022] Open
Abstract
Synapse loss occurs early and correlates with cognitive decline in Alzheimer's disease (AD). Synaptotoxicity is driven, at least in part, by amyloid-beta oligomers (Aβo), but the exact synaptic components targeted by Aβo remain to be identified. We here tested the hypotheses that the post-synaptic protein Neuroligin-1 (NLGN1) is affected early in the process of neurodegeneration in the hippocampus, and specifically by Aβo, and that it can modulate Aβo toxicity. We found that hippocampal NLGN1 was decreased in patients with AD in comparison to patients with mild cognitive impairment and control subjects. Female 3xTg-AD mice also showed a decreased NLGN1 level in the hippocampus at an early age (i.e., 4 months). We observed that chronic hippocampal Aβo injections initially increased the expression of one specific Nlgn1 transcript, which was followed by a clear decrease. Lastly, the absence of NLGN1 decreased neuronal counts in the dentate gyrus, which was not the case in wild-type animals, and worsens impairment in spatial learning following chronic hippocampal Aβo injections. Our findings support that NLGN1 is impacted early during neurodegenerative processes, and that Aβo contributes to this effect. Moreover, our results suggest that the presence of NLGN1 favors the cognitive prognosis during Aβo-driven neurodegeneration.
Collapse
Affiliation(s)
- Julien Dufort-Gervais
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada
| | - Chloé Provost
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada
| | | | - Christopher M Norris
- Department of Molecular and Biomedical Pharmacology, Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Frédéric Calon
- Neuroscience Unit, Research Center - CHU de Québec, Québec, QC, Canada
- Faculty of Pharmacy, Université Laval, Québec, QC, Canada
| | - Valérie Mongrain
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada.
- Department of Neuroscience, Université de Montréal, Montréal, Québec, Canada.
| | - Jonathan Brouillette
- Department of Pharmacology and Physiology, Université de Montréal, Montréal, Québec, Canada.
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal (Recherche CIUSSS-NIM), Montréal, Québec, Canada.
| |
Collapse
|
28
|
Wei C, Fan J, Sun X, Yao J, Guo Y, Zhou B, Shang Y. Acetyl-11-keto-β-boswellic acid ameliorates cognitive deficits and reduces amyloid-β levels in APPswe/PS1dE9 mice through antioxidant and anti-inflammatory pathways. Free Radic Biol Med 2020; 150:96-108. [PMID: 32109514 DOI: 10.1016/j.freeradbiomed.2020.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/16/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a complex disease involved oxidative stress and inflammation in its pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active triterpenoid compound from extracts of Boswellia serrata, which has been widely used as an antioxidant and anti-inflammatory agent. The present study was to determine whether AKBA, a novel candidate, could protect against cognitive and neuropathological impairments in AD. We found that AKBA treatment resulted in a significant improvement of learning and memory deficits, a dramatic decrease in cerebral amyloid-β (Aβ) levels and plaque burden, a profound alleviation in oxidative stress and inflammation, and a marked reduction in activated glial cells and synaptic defects in the APPswe/PS1dE9 mice. Furthermore, amyloid precursor protein (APP) processing was remarkably suppressed with AKBA treatment by inhibiting beta-site APP cleaving enzyme 1 (BACE1) protein expression to produce Aβ in the APPswe/PS1dE9 mice brains. Mechanistically, AKBA modulated antioxidant and anti-inflammatory pathways via increasing nuclear erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) expression, and via declining phosphorylation of inhibitor of nuclear factor-kappa B alpha (IκBα) and p65. Collectively, our findings provide evidence that AKBA protects neurons against oxidative stress and inflammation in AD, and this neuroprotective effect involves the Nrf2/HO-1 and nuclear factor-kappa B (NF-κB) signaling pathways.
Collapse
Affiliation(s)
- Chao Wei
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Jiao Fan
- Institute of Geriatrics, National Clinical Research Center of Geriatrics Disease, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xuan Sun
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jiarui Yao
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yane Guo
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bo Zhou
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yanchang Shang
- Department of Neurology, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| |
Collapse
|