1
|
Schmidt ENC, Evert BO, Pregler BEF, Melhem A, Hsieh MC, Raspe M, Strobel H, Roos J, Pietsch T, Schuss P, Fischer-Posovszky P, Westhoff MA, Hölzel M, Herrlinger U, Vatter H, Waha A, Schneider M, Potthoff AL. Tonabersat enhances temozolomide-mediated cytotoxicity in glioblastoma by disrupting intercellular connectivity through connexin 43 inhibition. Mol Oncol 2024. [PMID: 39680504 DOI: 10.1002/1878-0261.13786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/24/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma cells rely on connexin 43 (Cx43)-based gap junctions (GJs) for intercellular communication, enabling them to integrate into a widely branched malignant network. Although there are promising prospects for new targeted therapies, the lack of clinically feasible GJ inhibitors has impeded their adoption in clinical practice. In the present study, we investigated tonabersat (TO), a blood-brain-barrier-penetrating drug with GJ-inhibitory properties, in regard to its potential to disassemble intercellular connectivity in glioblastoma networks. Fluorescence-guided measurements of calcein cell-to-cell transfer were used to study functional intercellular connectivity. Specific DNA fragmentation rates of propidium iodide-stained nuclei were measured as a surrogate readout for cell death using flow cytometry. CRISPR/Cas9-mediated gene editing of Cx43 served as a validation tool of cellular effects related to Cx43 GJ inhibition. 3' mRNA sequencing was performed for molecular downstream analysis. We found that TO reduced intercellular GJ-mediated cytosolic traffic and yielded a significant reduction of tumor microtube (TM) length. TO-mediated inhibition of cellular tumor networks was accompanied by a synergistic effect for temozolomide-induced cell death. CRISPR/Cas9 Cx43-knockout revealed similar results, indicating that TO-mediated inhibitory effects rely on the inhibition of Cx43-based GJs. Gene set enrichment analyses found that GJ-mediated synergistic cytotoxic effects were linked to a significant upregulation of cell death signaling pathways. In conclusion, TO disrupts TM-based network connectivity via GJ inhibition and renders glioblastoma cells more susceptible to cytotoxic therapy. Given its previous use in clinical trials for migraine therapy, TO might harbor the potential of bridging the idea of a GJ-targeted therapeutic approach from bench to bedside.
Collapse
Affiliation(s)
- Elena N C Schmidt
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Bernd O Evert
- Department of Neurology, University Hospital Bonn, Germany
| | - Barbara E F Pregler
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Ahmad Melhem
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Meng-Chun Hsieh
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Markus Raspe
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Hannah Strobel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Julian Roos
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University Hospital Bonn, Germany
| | - Patrick Schuss
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Ulm, Germany
| | - Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Michael Hölzel
- Institute of Experimental Oncology, University Hospital Bonn, Germany
| | - Ulrich Herrlinger
- Department of Neurooncology, Center for Neurology and Center of Integrated Oncology ABCD, University Hospital Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Andreas Waha
- Department of Neuropathology, University Hospital Bonn, Germany
| | - Matthias Schneider
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
| | - Anna-Laura Potthoff
- Department of Neurosurgery, University Hospital Bonn, Germany
- Brain Tumor Translational Research Group, University Hospital Bonn, Germany
- Department of Neuropathology, University Hospital Bonn, Germany
| |
Collapse
|
2
|
Bhujbal S, Rupenthal ID, Agarwal P. Development and validation of a stability-indicating HPLC method for assay of tonabersat in pharmaceutical formulations. Methods 2024; 231:178-185. [PMID: 39368764 DOI: 10.1016/j.ymeth.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024] Open
Abstract
A stability-indicating reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed to assay tonabersat and assess its stability in pharmaceutical formulations. Chromatographic separation was achieved using a Kinetex® C18 column (2.6 µm, 150 x 3 mm, 100 Å) at 50 °C, with a 20 µL injection volume. A linear gradient of acetonitrile in water (5 - 33.5 %) was applied for 1 min, followed by a gradual increase to 100 % over 26 min at a flow rate of 0.5 mL/min. Tonabersat and its degradation products were detected at 275 nm and 210 nm, respectively. The optimized method was used to evaluate the stability of tonabersat in lipid-based pharmaceutical formulations at 5 ± 3 °C, 25 ± 2°C/60 ± 5 % RH, and 40 ± 2 °C/75 ± 5 % RH over 3 months. The method was validated as per ICH guidelines and demonstrated linearity in the range of 5 - 200 µg/mL (R2 = 0.99994) with good accuracy (98.25 - 101.58 % recovery) and precision (% RSD < 2.5 %). The limits of detection and quantitation were 0.8 µg/mL and 5 µg/mL, respectively. Forced degradation studies showed significant degradation on exposure to alkaline (90.33 ± 0.80 %), acidic (70.60 ± 1.57 %), and oxidative stress (33.95 ± 0.69 %) at 70 °C, but no degradation was observed on exposure to thermal or photolytic stress. No chemical degradation was observed in either formulation on storage. Thus, the method was sensitive, specific, and suitable for stability testing of tonabersat in pharmaceutical formulations.
Collapse
Affiliation(s)
- Santosh Bhujbal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Ilva D Rupenthal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand
| | - Priyanka Agarwal
- Buchanan Ocular Therapeutics Unit, Department of Ophthalmology, Aotearoa-New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland 1142, New Zealand.
| |
Collapse
|
3
|
Zoteva V, De Meulenaere V, Vanhove C, Leybaert L, Raedt R, Pieters L, Vral A, Boterberg T, Deblaere K. Integrating and optimizing tonabersat in standard glioblastoma therapy: A preclinical study. PLoS One 2024; 19:e0300552. [PMID: 38489314 PMCID: PMC10942024 DOI: 10.1371/journal.pone.0300552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Glioblastoma (GB), a highly aggressive primary brain tumor, presents a poor prognosis despite the current standard therapy, including radiotherapy and temozolomide (TMZ) chemotherapy. Tumor microtubes involving connexin 43 (Cx43) contribute to glioma progression and therapy resistance, suggesting Cx43 inhibition as a potential treatment strategy. This research aims to explore the adjuvant potential of tonabersat, a Cx43 gap junction modulator and blood-brain barrier-penetrating compound, in combination with the standard of care for GB. In addition, different administration schedules and timings to optimize tonabersat's therapeutic window are investigated. The F98 Fischer rat model will be utilized to investigate tonabersat's impact in a clinically relevant setting, by incorporating fractionated radiotherapy (three fractions of 9 Gy) and TMZ chemotherapy (29 mg/kg). This study will evaluate tonabersat's impact on tumor growth, survival, and treatment response through advanced imaging (CE T1-w MRI) and histological analysis. Results show extended survival in rats receiving tonabersat with standard care, highlighting its adjuvant potential. Daily tonabersat administration, both preceding and following radiotherapy, emerges as a promising approach for maximizing survival outcomes. The study suggests tonabersat's potential to reduce tumor invasiveness, providing a new avenue for GB treatment. In conclusion, this preclinical investigation highlights tonabersat's potential as an effective adjuvant treatment for GB, and its established safety profile from clinical trials in migraine treatment presents a promising foundation for further exploration.
Collapse
Affiliation(s)
| | | | | | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Zoteva V, De Meulenaere V, De Boeck M, Vanhove C, Leybaert L, Raedt R, Pieters L, Vral A, Boterberg T, Deblaere K. An improved F98 glioblastoma rat model to evaluate novel treatment strategies incorporating the standard of care. PLoS One 2024; 19:e0296360. [PMID: 38165944 PMCID: PMC10760731 DOI: 10.1371/journal.pone.0296360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 01/04/2024] Open
Abstract
Glioblastoma (GB) is the most common and malignant primary brain tumor in adults with a median survival of 12-15 months. The F98 Fischer rat model is one of the most frequently used animal models for GB studies. However, suboptimal inoculation leads to extra-axial and extracranial tumor formations, affecting its translational value. We aim to improve the F98 rat model by incorporating MRI-guided (hypo)fractionated radiotherapy (3 x 9 Gy) and concomitant temozolomide chemotherapy, mimicking the current standard of care. To minimize undesired tumor growth, we reduced the number of inoculated cells (starting from 20 000 to 500 F98 cells), slowed the withdrawal of the syringe post-inoculation, and irradiated the inoculation track separately. Our results reveal that reducing the number of F98 GB cells correlates with a diminished risk of extra-axial and extracranial tumor growth. However, this introduces higher variability in days until GB confirmation and uniformity in GB growth. To strike a balance, the model inoculated with 5000 F98 cells displayed the best results and was chosen as the most favorable. In conclusion, our improved model offers enhanced translational potential, paving the way for more accurate and reliable assessments of novel adjuvant therapeutic approaches for GB.
Collapse
Affiliation(s)
| | | | | | | | - Luc Leybaert
- Physiology Group, Department of Basic and Applied Medical Sciences, Ghent University, Ghent, Belgium
| | - Robrecht Raedt
- Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Tom Boterberg
- Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Karel Deblaere
- Department of Radiology, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Lan Y, Zou S, Wang W, Chen Q, Zhu Y. Progress in cancer neuroscience. MedComm (Beijing) 2023; 4:e431. [PMID: 38020711 PMCID: PMC10665600 DOI: 10.1002/mco2.431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/02/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Cancer of the central nervous system (CNS) can crosstalk systemically and locally in the tumor microenvironment and has become a topic of attention for tumor initiation and advancement. Recently studied neuronal and cancer interaction fundamentally altered the knowledge about glioma and metastases, indicating how cancers invade complex neuronal networks. This review systematically discussed the interactions between neurons and cancers and elucidates new therapeutic avenues. We have overviewed the current understanding of direct or indirect communications of neuronal cells with cancer and the mechanisms associated with cancer invasion. Besides, tumor-associated neuronal dysfunction and the influence of cancer therapies on the CNS are highlighted. Furthermore, interactions between peripheral nervous system and various cancers have also been discussed separately. Intriguingly and importantly, it cannot be ignored that exosomes could mediate the "wireless communications" between nervous system and cancer. Finally, promising future strategies targeting neuronal-brain tumor interactions were reviewed. A great deal of work remains to be done to elucidate the neuroscience of cancer, and future more research should be directed toward clarifying the precise mechanisms of cancer neuroscience, which hold enormous promise to improve outcomes for a wide range of malignancies.
Collapse
Affiliation(s)
- Yu‐Long Lan
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Shuang Zou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Wen Wang
- Department of NeurosurgeryBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical ScienceZhejiang Chinese Medical UniversityHangzhouChina
| | - Yongjian Zhu
- Department of NeurosurgerySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina
- Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
6
|
Anastasaki C, Gao Y, Gutmann DH. Neurons as stromal drivers of nervous system cancer formation and progression. Dev Cell 2023; 58:81-93. [PMID: 36693322 PMCID: PMC9883043 DOI: 10.1016/j.devcel.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 12/27/2022] [Indexed: 01/24/2023]
Abstract
Similar to their pivotal roles in nervous system development, neurons have emerged as critical regulators of cancer initiation, maintenance, and progression. Focusing on nervous system tumors, we describe the normal relationships between neurons and other cell types relevant to normal nerve function, and discuss how disruptions of these interactions promote tumor evolution, focusing on electrical (gap junctions) and chemical (synaptic) coupling, as well as the establishment of new paracrine relationships. We also review how neuron-tumor communication contributes to some of the complications of cancer, including neuropathy, chemobrain, seizures, and pain. Finally, we consider the implications of cancer neuroscience in establishing risk for tumor penetrance and in the design of future anti-tumoral treatments.
Collapse
Affiliation(s)
- Corina Anastasaki
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yunqing Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
7
|
The Role of Hyperexcitability in Gliomagenesis. Int J Mol Sci 2023; 24:ijms24010749. [PMID: 36614191 PMCID: PMC9820922 DOI: 10.3390/ijms24010749] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor. Recent studies have demonstrated that excitatory or activity-dependent signaling-both synaptic and non-synaptic-contribute to the progression of glioblastoma. Glutamatergic receptors may be stimulated via neuron-tumor synapses or release of glutamate by the tumor itself. Ion currents generated by these receptors directly alter the structure of membrane adhesion molecules and cytoskeletal proteins to promote migratory behavior. Additionally, the hyperexcitable milieu surrounding glioma increases the rate at which tumor cells proliferate and drive recurrent disease. Inhibition of excitatory signaling has shown to effectively reduce its pro-migratory and -proliferative effects.
Collapse
|
8
|
Oliveira MC, Verswyvel H, Smits E, Cordeiro RM, Bogaerts A, Lin A. The pro- and anti-tumoral properties of gap junctions in cancer and their role in therapeutic strategies. Redox Biol 2022; 57:102503. [PMID: 36228438 PMCID: PMC9557036 DOI: 10.1016/j.redox.2022.102503] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Gap junctions (GJs), essential structures for cell-cell communication, are made of two hemichannels (commonly called connexons), one on each adjacent cell. Found in almost all cells, GJs play a pivotal role in many physiological and cellular processes, and have even been linked to the progression of diseases, such as cancer. Modulation of GJs is under investigation as a therapeutic strategy to kill tumor cells. Furthermore, GJs have also been studied for their key role in activating anti-cancer immunity and propagating radiation- and oxidative stress-induced cell death to neighboring cells, a process known as the bystander effect. While, gap junction (GJ)-based therapeutic strategies are being developed, one major challenge has been the paradoxical role of GJs in both tumor progression and suppression, based on GJ composition, cancer factors, and tumoral context. Therefore, understanding the mechanisms of action, regulation, and the dual characteristics of GJs in cancer is critical for developing effective therapeutics. In this review, we provide an overview of the current understanding of GJs structure, function, and paradoxical pro- and anti-tumoral role in cancer. We also discuss the treatment strategies to target these GJs properties for anti-cancer responses, via modulation of GJ function.
Collapse
Affiliation(s)
- Maria C Oliveira
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil.
| | - Hanne Verswyvel
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| | - Rodrigo M Cordeiro
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados 5001, CEP 09210-580, Santo André, SP, Brazil
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium
| | - Abraham Lin
- Plasma Lab for Applications in Sustainability and Medicine-Antwerp (PLASMANT), Department of Chemistry, University of Antwerp, Universiteitsplein 1, B-2610 Antwerp, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610, Antwerp, Belgium
| |
Collapse
|
9
|
Venkataramani V, Tanev DI, Kuner T, Wick W, Winkler F. Synaptic input to brain tumors: clinical implications. Neuro Oncol 2021; 23:23-33. [PMID: 32623467 DOI: 10.1093/neuonc/noaa158] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The recent discovery of synaptic connections between neurons and brain tumor cells fundamentally challenges our understanding of gliomas and brain metastases and shows how these tumors can integrate into complex neuronal circuits. Here, we provide an overview of glutamatergic neuron-to-brain tumor synaptic communication (NBTSC) and explore novel therapeutic avenues. First, we summarize current concepts of direct synaptic interactions between presynaptic neurons and postsynaptic glioma cells, and indirect perisynaptic input to metastatic breast cancer cells. We explain how these novel structures drive brain tumor growth and invasion. Second, a vicious cycle of enhanced neuronal activity, including tumor-related epilepsy, and glioma progression is described. Finally, we discuss which future avenues to target NBTSC appear most promising. All in all, further characterization of NBTSC and the exploration of NBTSC-inhibiting therapies have the potential to reveal critical vulnerabilities of yet incurable brain tumors.
Collapse
Affiliation(s)
- Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Dimitar Ivanov Tanev
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuro-Oncology, German Cancer Consortium, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
10
|
Squires PE, Price GW, Mouritzen U, Potter JA, Williams BM, Hills CE. Danegaptide Prevents TGFβ1-Induced Damage in Human Proximal Tubule Epithelial Cells of the Kidney. Int J Mol Sci 2021; 22:2809. [PMID: 33802083 PMCID: PMC7999212 DOI: 10.3390/ijms22062809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) is a global health problem associated with a number of comorbidities. Recent evidence implicates increased hemichannel-mediated release of adenosine triphosphate (ATP) in the progression of tubulointerstitial fibrosis, the main underlying pathology of CKD. Here, we evaluate the effect of danegaptide on blocking hemichannel-mediated changes in the expression and function of proteins associated with disease progression in tubular epithelial kidney cells. Primary human proximal tubule epithelial cells (hPTECs) were treated with the beta1 isoform of the pro-fibrotic cytokine transforming growth factor (TGFβ1) ± danegaptide. qRT-PCR and immunoblotting confirmed mRNA and protein expression, whilst a cytokine antibody array assessed the expression/secretion of proinflammatory and profibrotic cytokines. Carboxyfluorescein dye uptake and ATP biosensing measured hemichannel activity and ATP release, whilst transepithelial electrical resistance was used to assess paracellular permeability. Danegaptide negated carboxyfluorescein dye uptake and ATP release and protected against protein changes associated with tubular injury. Blocking Cx43-mediated ATP release was paralleled by partial restoration of the expression of cell cycle inhibitors, adherens and tight junction proteins and decreased paracellular permeability. Furthermore, danegaptide inhibited TGFβ1-induced changes in the expression and secretion of key adipokines, cytokines, chemokines, growth factors and interleukins. The data suggest that as a gap junction modulator and hemichannel blocker, danegaptide has potential in the future treatment of CKD.
Collapse
Affiliation(s)
- Paul E. Squires
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Gareth W. Price
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Ulrik Mouritzen
- Ciana Therapeutics, Ved Hegnet 2, 2960 Rungsted Kyst, Copenhagen, Denmark;
| | - Joe A. Potter
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Bethany M. Williams
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| | - Claire E. Hills
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7DL, UK; (P.E.S.); (G.W.P.); (J.A.P.); (B.M.W.)
| |
Collapse
|
11
|
Acosta ML, Mat Nor MN, Guo CX, Mugisho OO, Coutinho FP, Rupenthal ID, Green CR. Connexin therapeutics: blocking connexin hemichannel pores is distinct from blocking pannexin channels or gap junctions. Neural Regen Res 2021; 16:482-488. [PMID: 32985469 PMCID: PMC7996017 DOI: 10.4103/1673-5374.290097] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Compounds that block the function of connexin and pannexin protein channels have been suggested to be valuable therapeutics for a range of diseases. Some of these compounds are now in clinical trials, but for many of them, the literature is inconclusive about the molecular effect on the tissue, despite evidence of functional recovery. Blocking the different channel types has distinct physiological and pathological implications and this review describes current knowledge of connexin and pannexin protein channels, their function as channels and possible mechanisms of the channel block effect for the latest therapeutic compounds. We summarize the evidence implicating pannexins and connexins in disease, considering their homeostatic versus pathological roles, their contribution to excesive ATP release linked to disease onset and progression.
Collapse
Affiliation(s)
- Monica L Acosta
- School of Optometry and Vision Science; New Zealand National Eye Centre, University of Auckland; Centre for Brain Research, Faculty of Medical and Health Sciences, The University of Auckland; Brain Research New Zealand-Rangahau Roro Aotearoa, Auckland, New Zealand
| | - Mohd N Mat Nor
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Faculty of Medicine, Universiti Sultan Zainal Abidin, Terengganu, Malaysia
| | - Cindy X Guo
- School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand
| | - Odunayo O Mugisho
- Department of Ophthalmology, University of Auckland; Buchanan Ocular Therapeutics Unit, Department of Ophthalmology; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Frazer P Coutinho
- Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - Ilva D Rupenthal
- Department of Ophthalmology, University of Auckland; Buchanan Ocular Therapeutics Unit, Department of Ophthalmology; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| | - Colin R Green
- Department of Ophthalmology; New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Lange F, Hartung J, Liebelt C, Boisserée J, Resch T, Porath K, Hörnschemeyer MF, Reichart G, Sellmann T, Neubert V, Kriesen S, Hildebrandt G, Schültke E, Köhling R, Kirschstein T. Perampanel Add-on to Standard Radiochemotherapy in vivo Promotes Neuroprotection in a Rodent F98 Glioma Model. Front Neurosci 2020; 14:598266. [PMID: 33328869 PMCID: PMC7734300 DOI: 10.3389/fnins.2020.598266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 01/02/2023] Open
Abstract
An abnormal glutamate signaling of glioblastoma may contribute to both tumor progression and the generation of glioma-associated epileptic seizures. We hypothesized that the AMPA receptor antagonist perampanel (PER) could attenuate tumor growth and epileptic events. F98 glioma cells, grown orthotopically in Fischer rats, were employed as a model of glioma to investigate the therapeutic efficiency of PER (15 mg/kg) as adjuvant to standard radiochemotherapy (RCT). The epileptiform phenotype was investigated by video-EEG analysis and field potential recordings. Effects on glioma progression were estimated by tumor size quantification, survival analysis and immunohistological staining. Our data revealed that orthotopically-growing F98 glioma promote an epileptiform phenotype in rats. RCT reduced the tumor size and prolonged the survival of the animals. The adjuvant administration of PER had no effect on tumor progression. The tumor-associated epileptic events were abolished by PER application or RCT respectively, to initial baseline levels. Remarkably, PER preserved the glutamatergic network activity on healthy peritumoral tissue in RCT-treated animals. F98 tumors are not only a robust model to investigate glioma progression, but also a viable model to simulate a glioma-associated epileptiform phenotype. Furthermore, our data indicate that PER acts as a potent anticonvulsant and may protect the tumor-surrounding tissue as adjuvant to RCT, but failed to attenuate tumor growth or promote animal survival.
Collapse
Affiliation(s)
- Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Jens Hartung
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Clara Liebelt
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Julius Boisserée
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Tobias Resch
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Katrin Porath
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | | | - Gesine Reichart
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Tina Sellmann
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Valentin Neubert
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Stephan Kriesen
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Rostock, Germany
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Rostock, Germany
| | - Elisabeth Schültke
- Department of Radiotherapy and Radiation Oncology, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| | - Timo Kirschstein
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University of Rostock, Rostock, Germany
| |
Collapse
|
13
|
Jung E, Alfonso J, Monyer H, Wick W, Winkler F. Neuronal signatures in cancer. Int J Cancer 2020; 147:3281-3291. [PMID: 32510582 DOI: 10.1002/ijc.33138] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/26/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022]
Abstract
Despite advances in the treatment of solid tumors, the prognosis of patients with many cancers remains poor, particularly of those with primary and metastatic brain tumors. In the last years, "Cancer Neuroscience" emerged as novel field of research at the crossroads of oncology and classical neuroscience. In primary brain tumors, including glioblastoma (GB), communicating networks that render tumor cells resistant against cytotoxic therapies were identified. To build these networks, GB cells extend neurite-like protrusions called tumor microtubes (TMs). Synapses on TMs allow tumor cells to retrieve neuronal input that fosters growth. Single cell sequencing further revealed that primary brain tumors recapitulate many steps of neurodevelopment. Interestingly, neuronal characteristics, including the ability to extend neurite-like protrusions, neuronal gene expression signatures and interactions with neurons, have now been found not only in brain and neuroendocrine tumors but also in some cancers of epithelial origin. In this review, we will provide an overview about neurite-like protrusions as well as neurodevelopmental origins, hierarchies and gene expression signatures in cancer. We will also discuss how "Cancer Neuroscience" might provide a framework for the development of novel therapies.
Collapse
Affiliation(s)
- Erik Jung
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Julieta Alfonso
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hannah Monyer
- Department of Clinical Neurobiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Clinical Neurobiology, Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany.,Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
14
|
Sánchez OF, Rodríguez AV, Velasco-España JM, Murillo LC, Sutachan JJ, Albarracin SL. Role of Connexins 30, 36, and 43 in Brain Tumors, Neurodegenerative Diseases, and Neuroprotection. Cells 2020; 9:E846. [PMID: 32244528 PMCID: PMC7226843 DOI: 10.3390/cells9040846] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/15/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Gap junction (GJ) channels and their connexins (Cxs) are complex proteins that have essential functions in cell communication processes in the central nervous system (CNS). Neurons, astrocytes, oligodendrocytes, and microglial cells express an extraordinary repertory of Cxs that are important for cell to cell communication and diffusion of metabolites, ions, neurotransmitters, and gliotransmitters. GJs and Cxs not only contribute to the normal function of the CNS but also the pathological progress of several diseases, such as cancer and neurodegenerative diseases. Besides, they have important roles in mediating neuroprotection by internal or external molecules. However, regulation of Cx expression by epigenetic mechanisms has not been fully elucidated. In this review, we provide an overview of the known mechanisms that regulate the expression of the most abundant Cxs in the central nervous system, Cx30, Cx36, and Cx43, and their role in brain cancer, CNS disorders, and neuroprotection. Initially, we focus on describing the Cx gene structure and how this is regulated by epigenetic mechanisms. Then, the posttranslational modifications that mediate the activity and stability of Cxs are reviewed. Finally, the role of GJs and Cxs in glioblastoma, Alzheimer's, Parkinson's, and Huntington's diseases, and neuroprotection are analyzed with the aim of shedding light in the possibility of using Cx regulators as potential therapeutic molecules.
Collapse
Affiliation(s)
- Oscar F. Sánchez
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| | | | | | | | | | - Sonia-Luz Albarracin
- Department of Nutrition and Biochemistry, Pontificia Universidad Javeriana, 110911 Bogota, Colombia; (A.V.R.); (J.M.V.-E.); (L.C.M.); (J.-J.S.)
| |
Collapse
|
15
|
Bashraheel SS, Domling A, Goda SK. Update on targeted cancer therapies, single or in combination, and their fine tuning for precision medicine. Biomed Pharmacother 2020; 125:110009. [PMID: 32106381 DOI: 10.1016/j.biopha.2020.110009] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/04/2020] [Accepted: 02/12/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Until recently, patients who have the same type and stage of cancer all receive the same treatment. It has been established, however, that individuals with the same disease respond differently to the same therapy. Further, each tumor undergoes genetic changes that cause cancer to grow and metastasize. The changes that occur in one person's cancer may not occur in others with the same cancer type. These differences also lead to different responses to treatment. Precision medicine, also known as personalized medicine, is a strategy that allows the selection of a treatment based on the patient's genetic makeup. In the case of cancer, the treatment is tailored to take into account the genetic changes that may occur in an individual's tumor. Precision medicine, therefore, could be defined in terms of the targets involved in targeted therapy. METHODS A literature search in electronic data bases using keywords "cancer targeted therapy, personalized medicine and cancer combination therapies" was conducted to include papers from 2010 to June 2019. RESULTS Recent developments in strategies of targeted cancer therapy were reported. Specifically, on the two types of targeted therapy; first, immune-based therapy such as the use of immune checkpoint inhibitors (ICIs), immune cytokines, tumor-targeted superantigens (TTS) and ligand targeted therapeutics (LTTs). The second strategy deals with enzyme/small molecules-based therapies, such as the use of a proteolysis targeting chimera (PROTAC), antibody-drug conjugates (ADC) and antibody-directed enzyme prodrug therapy (ADEPT). The precise targeting of the drug to the gene or protein under attack was also investigated, in other words, how precision medicine can be used to tailor treatments. CONCLUSION The conventional therapeutic paradigm for cancer and other diseases has focused on a single type of intervention for all patients. However, a large literature in oncology supports the therapeutic benefits of a precision medicine approach to therapy as well as combination therapies.
Collapse
Affiliation(s)
- Sara S Bashraheel
- Protein Engineering Unit, Life and Science Research Department, Anti-Doping Lab-Qatar (ADLQ), Doha, Qatar; Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Alexander Domling
- Drug Design Group, Department of Pharmacy, University of Groningen, Groningen, Netherlands
| | - Sayed K Goda
- Cairo University, Faculty of Science, Chemistry Department, Giza, Egypt.
| |
Collapse
|