1
|
Florencio-Santiago OI, Blas-Valdivia V, Serrano-Contreras JI, Rojas-Franco P, Escalona-Cardoso GN, Paniagua-Castro N, Franco-Colin M, Cano-Europa E. C-Phycoerythrin Prevents Chronic Kidney Disease-Induced Systemic Arterial Hypertension, Avoiding Oxidative Stress and Vascular Dysfunction in Remanent Functional Kidney. Mar Drugs 2024; 22:337. [PMID: 39195453 DOI: 10.3390/md22080337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/12/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024] Open
Abstract
Chronic kidney disease (CKD) is a burden in low- and middle-income countries, and a late diagnosis with systemic arterial hypertension (SAH) is the major complication of CKD. C-phycoerythrin (CPE) is a bioactive compound derived from Phormidium persicinum that presents anti-inflammatory and antioxidant effects in vitro and nephroprotective effects in vivo. In the current study, we determine the antihypertensive effect of CPE in a 5/6 nephrectomy-induced CKD model using twenty normotensives male Wistar rats, grouped into four groups (n = 5): sham; sham + CPE; 5/6 nephrectomy (NFx); and NFx + CPE. Treatment started a week post-surgery and continued for five weeks, with weekly hemodynamic evaluations. Following treatment, renal function, oxidative stress, and the expression of vascular dysfunction markers were assessed. The renal function analysis revealed CKD hyperfiltration, and the hemodynamic evaluation showed that SAH developed at the third week. AT1R upregulation and AT2R downregulation together with Mas1/p-Akt/p-eNOS axis were also observed. CPE treatment mitigated renal damage, preserved renal function, and prevented SAH with the modulation of the vasodilative AT1R, AT2R, and Mas1/pAKT/peNOS axis. This result reveals that CPE prevented CKD progression to SAH by avoiding oxidative stress and vascular dysfunction in the kidneys.
Collapse
Affiliation(s)
- Oscar Iván Florencio-Santiago
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Vanesa Blas-Valdivia
- Laboratorio de Neurobiología, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - José Iván Serrano-Contreras
- Department of Metabolism, Digestion and Reproduction, Division of Digestive Diseases, Section of Nutrition, Faculty of Medicine, Hammersmith Campus, Imperial College London, London W12 0NN, UK
| | - Placido Rojas-Franco
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Gerardo Norberto Escalona-Cardoso
- Laboratorio de Farmacología del Desarrollo, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Norma Paniagua-Castro
- Laboratorio de Farmacología del Desarrollo, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Margarita Franco-Colin
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Edgar Cano-Europa
- Laboratorio de Metabolismo I, Departamento de Fisiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| |
Collapse
|
2
|
Ávila-Martínez DV, Mixtega-Ruiz WK, Hurtado-Capetillo JM, Lopez-Franco O, Flores-Muñoz M. Counter-regulatory RAS peptides: new therapy targets for inflammation and fibrotic diseases? Front Pharmacol 2024; 15:1377113. [PMID: 38666016 PMCID: PMC11044688 DOI: 10.3389/fphar.2024.1377113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The renin-angiotensin system (RAS) is an important cascade of enzymes and peptides that regulates blood pressure, volume, and electrolytes. Within this complex system of reactions, its counter-regulatory axis has attracted attention, which has been associated with the pathophysiology of inflammatory and fibrotic diseases. This review article analyzes the impact of different components of the counter-regulatory axis of the RAS on different pathologies. Of these peptides, Angiotensin-(1-7), angiotensin-(1-9) and alamandine have been evaluated in a wide variety of in vitro and in vivo studies, where not only they counteract the actions of the classical axis, but also exhibit independent anti-inflammatory and fibrotic actions when binding to specific receptors, mainly in heart, kidney, and lung. Other functional peptides are also addressed, which despite no reports associated with inflammation and fibrosis to date were found, they could represent a potential target of study. Furthermore, the association of agonists of the counter-regulatory axis is analyzed, highlighting their contribution to the modulation of the inflammatory response counteracting the development of fibrotic events. This article shows an overview of the importance of the RAS in the resolution of inflammatory and fibrotic diseases, offering an understanding of the individual components as potential treatments.
Collapse
Affiliation(s)
- Diana V Ávila-Martínez
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Wendy K Mixtega-Ruiz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Oscar Lopez-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
3
|
Young ON, Bourke JE, Widdop RE. Catch your breath: The protective role of the angiotensin AT 2 receptor for the treatment of idiopathic pulmonary fibrosis. Biochem Pharmacol 2023; 217:115839. [PMID: 37778444 DOI: 10.1016/j.bcp.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive interstitial lung disease whereby excessive deposition of extracellular matrix proteins (ECM) ultimately leads to respiratory failure. While there have been advances in pharmacotherapies for pulmonary fibrosis, IPF remains an incurable and irreversible disease. There remains an unmet clinical need for treatments that reverse fibrosis, or at the very least have a more tolerable side effect profile than currently available treatments. Transforming growth factor β1(TGFβ1) is considered the main driver of fibrosis in IPF. However, as our understanding of the role of the pulmonary renin-angiotensin system (PRAS) in the pathogenesis of IPF increases, it is becoming clear that targeting angiotensin receptors represents a potential novel treatment strategy for IPF - in particular, via activation of the anti-fibrotic angiotensin type 2 receptor (AT2R). This review describes the current understanding of the pathophysiology of IPF and the mediators implicated in its pathogenesis; focusing on TGFβ1, angiotensin II and related peptides in the PRAS and their contribution to fibrotic processes in the lung. Preclinical and clinical assessment of currently available AT2R agonists and the development of novel, highly selective ligands for this receptor will also be described, with a focus on compound 21, currently in clinical trials for IPF. Collectively, this review provides evidence of the potential of AT2R as a novel therapeutic target for IPF.
Collapse
Affiliation(s)
- Olivia N Young
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jane E Bourke
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Robert E Widdop
- Department of Pharmacology and Cardiovascular Disease Program, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
4
|
Chen J, Zhu Q, Mo Y, Ling H, Wang Y, Xie H, Li L. Exploring the action mechanism of Jinxin oral liquid on asthma by network pharmacology, molecular docking, and microRNA recognition. Medicine (Baltimore) 2023; 102:e35438. [PMID: 37904411 PMCID: PMC10615469 DOI: 10.1097/md.0000000000035438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/08/2023] [Indexed: 11/01/2023] Open
Abstract
Using network pharmacology, molecular docking, and microRNA recognition, we have elucidated the mechanisms underlying the treatment of asthma by Jinxin oral liquid (JXOL). We began by identifying and normalizing the active compounds in JXOL through searches in the traditional Chinese medicine systems pharmacology database, SwissADME database, encyclopedia of traditional Chinese medicine database, HERB database, and PubChem. Subsequently, we gathered and standardized the targets of these active compounds from sources including the encyclopedia of traditional Chinese medicine database, similarity ensemble approach dataset, UniProt, and other databases. Disease targets were extracted from GeneCards, PharmGKB, OMIM, comparative toxicogenomics database, and DisGeNET. The intersection of targets between JXOL and asthma was determined using a Venn diagram. We visualized a Formula-Herb-Compound-Target-Disease network and a protein-protein interaction network using Cytoscape 3.9.0. Molecular docking studies were performed using Schrodinger software. To identify pathways related to asthma, we conducted gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis using Metascape. MicroRNAs regulating the hub genes were obtained from the miRTarBase database, and a network linking these targets and miRNAs was constructed. Finally, we found 88 bioactive components in JXOL and 218 common targets with asthma. Molecular docking showed JXOL key compounds strongly bind to HUB targets. According to gene ontology biological process analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis, the PI3K-Akt signaling pathway, the MAPK signaling pathway, or the cAMP signaling pathway play a key role in treating of asthma by JXOL. The HUB target-miRNA network showed that 6 miRNAs were recognized. In our study, we have revealed for the first time the unique components, multiple targets, and diverse pathways in JXOL that underlie its mechanism of action in treating asthma through miRNAs.
Collapse
Affiliation(s)
- Jing Chen
- Shanghai municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Qiaozhen Zhu
- Clinical Medical School, Henan University, Kaifeng, People’s Republic of China
| | - Yanling Mo
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Hao Ling
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Yan Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Huihui Xie
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Lan Li
- Department of Pediatrics, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| |
Collapse
|
5
|
Gan PXL, Liao W, Linke KM, Mei D, Wu XD, Wong WSF. Targeting the renin angiotensin system for respiratory diseases. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 98:111-144. [PMID: 37524485 DOI: 10.1016/bs.apha.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Renin-angiotensin system (RAS) plays an indispensable role in regulating blood pressure through its effects on fluid and electrolyte balance. As an aside, cumulative evidence from experimental to clinical studies supports the notion that dysregulation of RAS contributes to the pro-inflammatory, pro-oxidative, and pro-fibrotic processes that occur in pulmonary diseases like asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute lung injury (ALI). Pharmacological intervention of the various RAS components can be a novel therapeutic strategy for the treatment of these respiratory diseases. In this chapter, we first give a recent update on the RAS, and then compile, review, and analyse recent reports on targeting RAS components as treatments for respiratory diseases. Inhibition of the pro-inflammatory renin, angiotensin-converting enzyme (ACE), angiotensin (Ang) II, and Ang II type 1 receptor (AT1R) axis, and activation of the protective ACE2, AT2R, Ang (1-7), and Mas receptor axis have demonstrated varying degrees of efficacies in experimental respiratory disease models or in human trials. The newly identified alamandine/Mas-related G-protein-coupled receptor member D pathway has shown some therapeutic promise as well. However, our understanding of the RAS ligand-and-receptor interactions is still inconclusive, and the modes of action and signaling cascade mediating the newly identified RAS receptors remain to be better characterized. Clinical data are obviously lacking behind the promising pre-clinical findings of certain well-established molecules targeting at different pathways of the RAS in respiratory diseases. Translational human studies should be the focus for RAS drug development in lung diseases in the next decade.
Collapse
Affiliation(s)
- Phyllis X L Gan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore
| | - W Liao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore
| | - Kira M Linke
- Department of Pharmacology, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - D Mei
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - X D Wu
- Department of Respiratory and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - W S Fred Wong
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University Health System, Singapore, Singapore; Singapore-HUJ Alliance for Research Enterprise, National University of Singapore, Singapore, Singapore; Drug Discovery and Optimization Platform, National University Health System, Singapore, Singapore.
| |
Collapse
|
6
|
Deng Z, Zhang X, Wen J, Yang X, Xue L, Ou C, Ma J, Zhan H, Cen X, Cai X, Zhang Y, Chen R, Zhang Q. Lonicerin attenuates house dust mite-induced eosinophilic asthma through targeting Src/EGFR signaling. Front Pharmacol 2022; 13:1051344. [PMID: 36618942 PMCID: PMC9817108 DOI: 10.3389/fphar.2022.1051344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eosinophilic asthma is the predominant phenotype of asthma, and although these patients are sensitive to glucocorticoid therapy, they also experience many side effects. Lonicerin is a kind of bioflavonoid isolated from the Chinese herb Lonicera japonica Thunb, which has anti-inflammatory and immunomodulatory effects. The aim of this study was to elucidate the effects of lonicerin on eosinophilic asthma and its potential mechanisms. Here, we established a house dust mite (house dust mite)-induced eosinophilic asthma model in BALB/c mouse, and evaluated the effects of lonicerin on it. Our results showed that lonicerin significantly reduced airway hyperresponsiveness the number of inflammatory cells (especially eosinophils) and the elevation of interleukin (IL)-4, IL-5, IL-13 and eotaxin in bronchoalveolar lavage fluid (BALF) supernatants of mice. Additionally, lonicerin also eminently blunted inflammatory infiltration and mucus secretion, as well as mRNA levels of Mucin 5AC (MUC5AC) in lung tissue. Furthermore, results of network pharmacology and molecular docking revealed that Src kinase and epidermal growth factor receptor may be the potential targets responsible for the effects of lonicerin. Finally, in vivo experiments confirmed that lonicerin inhibited activation of the Src/EGFR pathway by decreasing their phosphorylation. Taken together, the present study demonstrated that lonicerin could suppress HDM-induced eosinophilic asthma in mice through inhibiting the activation of Src/EGFR pathway, which also provides a basis for further research as a new potentially therapeutic agent for eosinophilic asthma and its underlying mechanisms in the future.
Collapse
Affiliation(s)
- Zhenan Deng
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefei Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Yang
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingna Xue
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changxing Ou
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianjuan Ma
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaomin Cen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuliang Cai
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| | - Riken Chen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| | - Qingling Zhang
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| |
Collapse
|
7
|
Molecular Mechanism of YuPingFeng in the Treatment of Asthma Based on Network Pharmacology and Molecular Docking Technology. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7364126. [PMID: 36105239 PMCID: PMC9467798 DOI: 10.1155/2022/7364126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022]
Abstract
Objective To explore the molecular targets and mechanism of YuPingFeng (YPF) for the treatment of asthma by using network pharmacology and molecular docking. Methods The potential active ingredients and relevant targets of YPF were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Asthma-related gene targets were retrieved from GeneCards, OMIM, DrugBank, PharmGKB, and TTD databases. The protein-protein (PPI) network between YPF and asthma common targets was constructed by SRING online database and Cytoscape software. GO and KEGG analyses were performed to explore the complicated molecular biological processes and potential pathways. Finally, a molecular docking approach was carried out to verify the results. Results We obtained 100 potential targets of the 35 active ingredients in YPF and 1610 asthma-related targets. 60 YPF-asthma common targets were selected to perform PPI analysis. Seven core genes were screened based on two topological calculation methods. GO and KEGG results showed that the main pathways of YPF in treating asthma include TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking results indicated that the key ingredients of YPF had a good affinity with the relevant core genes. Conclusion This study reflects the multicomponent, multitarget, and multipathway characteristics of YPF in treating asthma, providing a theoretical and scientific basis for the intervention of asthma by traditional Chinese medicine YPF.
Collapse
|
8
|
FENG J, CHEN O, WANG Y. Anti-inflammatory mechanism of rhein in treating asthma based on network pharmacology. J TRADIT CHIN MED 2022; 42:296-303. [PMID: 35473352 PMCID: PMC9924654 DOI: 10.19852/j.cnki.jtcm.20220225.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
OBJECTIVE To predict the anti-inflammatory targets and related pathways of rhein in the treatment of asthma by using network pharmacology, and to further explore its potential mechanism in asthma. METHODS The corresponding targets of rhein were obtained from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), and the rhein-target network was constructed with Cytoscape 3.7.1 software. The Genbank and Drugbank databases were used to collect and screen asthma targets, and the rhein-target-disease interaction network was constructed. A target protein-protein interaction (PPI) network was constructed using the STRING database to screen key targets. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to identify biological processes and signaling pathways. The anti-asthmatic effects of rhein were tested in vitro, and the expression levels of proteins in the mitogen-activated protein kinase/nuclear factor kappa-B (MAPK/ NF-κB) signaling pathway were assessed by western blot analysis. RESULTS Altogether, 83 targets of rhein were screened in the relevant databases, 989 targets of asthma were obtained in the National Center for Biotechnology Information (NCBI) GENE Database. PPI network analysis and KEGG pathway enrichment analysis predicted that rhein could regulate the epidermal active growth factor receptor (EGFR), mitogen-activated protein kinase 14 (MAPK14), tumour necrosis factor receptor superfamily member 1A (TNFRSF1A), receptor tyrosine-protein kinase erbB-2 (ERBB2), and other signaling pathways. Furthermore, we selected the MAPK signaling pathway to determine the anti-inflammatory effects of rhein. Consistently, further experiments demonstrated that rhein was shown to inhibit HBE cells inflammation. CONCLUSION The anti-inflammatory mechanism of rhein in the treatment of asthma may be related to EGFR, MAPK14, TNFRSF1A and ERBB2 as well as their signaling pathways. To prevent the exacerbation of asthma, instead of targeting a single pathway or a single target, all these targets and their signaling pathways should be controlled holistically. Rhein may alleviate the inflammation of asthma by inhibiting the MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Junfang FENG
- 1 Department of Pediatrics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
| | - Ou CHEN
- 2 School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
- Prof. CHEN Ou, School of Nursing, Cheeloo College of Medicine, Shandong University, Jinan 250012, China. , Telephone: +8653185875005; +86-531-82942003
| | - Yibiao WANG
- 1 Department of Pediatrics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China
- Prof. WANG Yibiao, Department of Pediatrics, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, China.
| |
Collapse
|
9
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
10
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
11
|
Gregório JF, Rodrigues-Machado MDG, Santos RAS, Carvalho Ribeiro IA, Nunes OM, Aguiar Oliveira IF, Vasconcelos AV, Campagnole-Santos MJ, Magalhães GS. ASTHMA: ROLE OF THE ANGIOTENSIN-(1-7)/MAS PATHWAY IN PATHOPHYSIOLOGY AND THERAPY. Br J Pharmacol 2021; 178:4428-4439. [PMID: 34235725 DOI: 10.1111/bph.15619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/06/2021] [Accepted: 06/30/2021] [Indexed: 11/29/2022] Open
Abstract
The incidence of asthma is a global health problem, requiring studies aimed at developing new treatments to improve clinical management, thereby reducing personal and economic burdens on the health system. Therefore, the discovery of mediators that promote anti-inflammatory and pro-resolutive events are highly desirable to improve lung function and quality of life in asthmatic patients. In that regard, experimental studies have shown that the Angiotensin-(1-7)/Mas receptor of the renin-angiotensin system (RAS) is a potential candidate for the treatment of asthma. Therefore, we reviewed findings related to the function of the Angiotensin-(1-7)/Mas pathway in regulating the processes associated with inflammation and exacerbations in asthma, including leukocyte influx, fibrogenesis, pulmonary dysfunction and resolution of inflammation. Thus, knowledge of the role of the Angiotensin-(1-7)/Mas can help pave the way for the development of new treatments for this disease with high morbidity and mortality through new experimental and clinical trials.
Collapse
Affiliation(s)
- Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Robson A S Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | | | - Olivia Mendonça Nunes
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Ana Victoria Vasconcelos
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Maria José Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais
| | - Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology - INCT-Nanobiopharmaceutical, Biological Sciences Institute, Federal University of Minas Gerais.,Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| |
Collapse
|
12
|
Ma JX, Xiao X, Zhou KF, Huang G, Ao B, Zhang Y, Gao WJ, Lei T, Yang L, Fan XC, Li WH. Herb pair of Ephedrae Herba-Armeniacae Semen Amarum alleviates airway injury in asthmatic rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 269:113745. [PMID: 33359859 DOI: 10.1016/j.jep.2020.113745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ephedrae Herba (EH, Ephedra sinica Stapf.) and Armeniacae Semen Amarum (ASA, Prunus armeniaca L. var. ansu Maxim.) have been used to treat asthma, cold, fever, and cough in China for thousands of years. AIM OF THE STUDY In this study, we aimed to investigate the optimal ratio of EH and ASA compatibility (EAC) to reduce airway injury in asthmatic rats and its possible mechanism. METHODS Rats were sensitized with a mixture of acetylcholine chloride and histamine bisphosphate 1 h before sensitization by intragastric administration of EAC or dexamethasone or saline for 7 days. Subsequently, the ultrastructure of rat airway epithelial tissue changes, apoptosis of the airway epithelial cells, and the expression of mRNA and protein of EGRF and Bcl-2 were detected. RESULTS Transmission electron microscope: EAC (groups C and E) had the most prominent effect on repairing airway epithelial cells' ultrastructural changes in asthmatic rats. TUNEL: dexamethasone and EAC (groups B、C、E and F) inhibited the apoptosis of airway epithelial cells in asthmatic rats (P < 0.05). In situ hybridization: EAC (group E) inhibited the overexpression of EGFR and Bcl-2 mRNA (P < 0.05).Western Blotting: EAC (groups A、B、C、E and F) inhibited the upregulation of airway epithelial EGFR and Bcl-2 protein expression (P < 0.01). CONCLUSIONS Our findings indicate that EAC can inhibit abnormal changes in airway epithelial structure and apoptosis of airway epithelial cells, thereby alleviating airway injury. In this study, the best combination of EH and ASA to alleviate airway epithelial injury in asthmatic rats was group E (EH: ASA = 8: 4.5).
Collapse
Affiliation(s)
- Jia-Xin Ma
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xiong Xiao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Kai-Fang Zhou
- School of Pharmacy, Sanquan Medical College, Xinxiang, Henan, 453003, China
| | - Gang Huang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, Fujian, 362010, China
| | - Bo Ao
- Department of Pharmacy, CITIC Huizhou Hospital, Huizhou, Guangdong, 516006, China
| | - Ying Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Wen-Jun Gao
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ting Lei
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Li Yang
- Department of Pharmacy, The Ninth Hospital of Nanchang, Nanchang, Jiangxi, 330002, China
| | - Xue-Cheng Fan
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Wen-Hong Li
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
13
|
Hong L, Wang Q, Chen M, Shi J, Guo Y, Liu S, Pan R, Yuan X, Jiang S. Mas receptor activation attenuates allergic airway inflammation via inhibiting JNK/CCL2-induced macrophage recruitment. Biomed Pharmacother 2021; 137:111365. [PMID: 33588264 DOI: 10.1016/j.biopha.2021.111365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Defective absorption of acute allergic airway inflammation is involved in the initiation and development of chronic asthma. After allergen exposure, there is a rapid recruitment of macrophages around the airways, which promote acute inflammatory responses. The Ang-(1-7)/Mas receptor axis reportedly plays protective roles in various tissue inflammation and remodeling processes in vivo. However, the exact role of Mas receptor and their underlying mechanisms during the pathology of acute allergic airway inflammation remains unclear. OBJECTIVE We investigated the role of Mas receptor in acute allergic asthma and explored its underlying mechanisms in vitro, aiming to find critical molecules and signal pathways. METHODS Mas receptor expression was assessed in ovalbumin (OVA)-induced acute asthmatic murine model. Then we estimated the anti-inflammatory role of Mas receptor in vivo and explored expressions of several known inflammatory cytokines as well as phosphorylation levels of MAPK pathways. Mas receptor functions and underlying mechanisms were studied further in the human bronchial epithelial cell line (16HBE). RESULTS Mas receptor expression decreased in acute allergic airway inflammation. Multiplex immunofluorescence co-localized Mas receptor and EpCAM, indicated that Mas receptor may function in the bronchial epithelium. Activating Mas receptor through AVE0991 significantly alleviated macrophage infiltration in airway inflammation, accompanied with down-regulation of CCL2 and phosphorylation levels of MAPK pathways. Further studies in 16HBE showed that AVE0991 pre-treatment inhibited LPS-induced or anisomycin-induced CCL2 increase and THP-1 macrophages migration via JNK pathways. CONCLUSION Our findings suggested that Mas receptor activation significantly attenuated CCL2 dependent macrophage recruitments in acute allergic airway inflammation through JNK pathways, which indicated that Mas receptor, CCL2 and phospho-JNK could be potential targets against allergic airway inflammation.
Collapse
Affiliation(s)
- Luna Hong
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiujie Wang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Chen
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianting Shi
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yimin Guo
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shanying Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ruijian Pan
- Departments of Electric Power Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| | - Shanping Jiang
- Department of Pulmonary and Critical Care Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Institute of Pulmonary Diseases, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Network Pharmacology Strategy to Investigate the Pharmacological Mechanism of HuangQiXiXin Decoction on Cough Variant Asthma and Evidence-Based Medicine Approach Validation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3829092. [PMID: 33178315 PMCID: PMC7647767 DOI: 10.1155/2020/3829092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 12/04/2022]
Abstract
Objective To investigate the pharmacological mechanism of HuangQiXiXin decoction (HQXXD) on cough variant asthma (CVA) and validate the clinical curative effect. Methods The active compounds and target genes of HQXXD were searched using TCMSP. CVA-related target genes were obtained using the GeneCards database. The active target genes of HQXXD were compared with the CVA-related target genes to identify candidate target genes of HQXXD acting on CVA. A medicine-compound-target network was constructed using Cytoscape 3.6.0 software, and a protein-protein interaction (PPI) network was constructed using the STRING database. Gene ontology (GO) function enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were performed using RGUI3.6.1 and Cytoscape 3.6.0. We searched the main database for randomized controlled trials of HQXXD for CVA. We assessed the quality of the included studies using the Cochrane Reviewers' Handbook. A meta-analysis of the clinical curative effect of HQXXD for CVA was conducted using the Cochrane Collaboration's RevMan 5.3 software. Results We screened out 48 active compounds and 217 active target genes of HQXXD from TCMSP. The 217 active target genes of HQXXD were compared with the 1481 CVA-related target genes, and 132 candidate target genes for HQXXD acting on CVA were identified. The medicine-compound-target network and PPI network were constructed, and the key compounds and key targets were selected. GO function enrichment and KEGG pathway enrichment analysis were performed. Meta-analysis showed that the total effective rate of the clinical curative effect was significantly higher in the experimental group than the control group. Conclusion The pharmacological mechanism of HQXXD acting on CVA has been further determined, and the clinical curative effect of HQXXD on CVA is remarkable.
Collapse
|
15
|
El-Hashim AZ, Khajah MA, Orabi KY, Balakrishnan S, Sary HG, Abdelali AA. Onion Bulb Extract Downregulates EGFR/ERK1/2/AKT Signaling Pathway and Synergizes With Steroids to Inhibit Allergic Inflammation. Front Pharmacol 2020; 11:551683. [PMID: 33123005 PMCID: PMC7567342 DOI: 10.3389/fphar.2020.551683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The treatment of allergic diseases, such as asthma, with both conventional and novel therapies presents a challenge both in terms of optimal effect and cost. On the other hand, traditional therapies utilizing natural products such as onion have been in use for centuries with demonstrated efficacy and safety but without much knowledge of their mechanims of action. In this study, we investigated if the anti-inflammatory effects of onion bulb extract (OBE) are mediated via the modulation of the EGFR/ERK1/2/AKT signaling pathway, and whether OBE can synergise with steroids to produce greater anti-inflammatory actions. Treatment with OBE inhibited the house dust mite (HDM)-induced increased phosphorylation of EGFR, ERK1/2 and AKT which resulted in the inhibition of HDM-induced increase in airway cellular influx, perivascular and peribronchial inflammation, goblet cell hyper/metaplasia, and also inhibited ex vivo eosinophil chemotaxis. Moreover, treatment with a combination of a low dose OBE and low dose dexamethasone resulted in a significant inhibition of the HDM-induced cellular influx, perivascular and peribronchial inflammation, goblet cell hyper/metaplasia, and increased the pERK1/2 levels, whereas neither treatment, when given alone, had any discernible effects. This study therefore shows that inhibition of the EGFR/ERK1/2/AKT-dependent signaling pathway is one of the key mechanisms by which OBE can mediate its anti-inflammatory effects in diseases such as asthma. Importantly, this study also demonstrates that combining OBE with steroids results in significantly enhanced anti-inflammatory effects. This action may have important potential implications for future asthma therapy.
Collapse
Affiliation(s)
- Ahmed Z El-Hashim
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Maitham A Khajah
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Sowmya Balakrishnan
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Hanan G Sary
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| | - Ala A Abdelali
- Department of Pharmacology & Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
16
|
A network pharmacology strategy to investigate the anti-inflammatory mechanism of luteolin combined with in vitro transcriptomics and proteomics. Int Immunopharmacol 2020; 86:106727. [DOI: 10.1016/j.intimp.2020.106727] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/16/2022]
|
17
|
Magalhães GS, Gregório JF, Ramos KE, Cançado-Ribeiro ATP, Baroni IF, Barcelos LS, Pinho V, Teixeira MM, Santos RAS, Rodrigues-Machado MG, Campagnole-Santos MJ. Treatment with inhaled formulation of angiotensin-(1-7) reverses inflammation and pulmonary remodeling in a model of chronic asthma. Immunobiology 2020; 225:151957. [PMID: 32517880 DOI: 10.1016/j.imbio.2020.151957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/17/2020] [Accepted: 05/05/2020] [Indexed: 12/12/2022]
Abstract
Asthma is characterized by inflammation, pulmonary remodeling and bronchial hyperresponsiveness. We have previously shown that treatment with angiotensin-(1-7) [Ang-(1-7)] promotes resolution of eosinophilic inflammation and prevents chronic allergic lung inflammation. Here, we evaluated the effect of treatment with the inclusion compound of Ang-(1-7) in hydroxypropyl β-cyclodextrin (HPβCD) given by inhalation on pulmonary remodeling in an ovalbumin (OVA)-induced chronic allergic lung inflammation. Mice were sensitized to ovalbumin (OVA; 4 injections over 42 days, 14 days apart) and were challenged 3 times per week, for 4 weeks (days 21-46). After the 2nd week of challenge, mice were treated with Ang-(1-7) by inhalation (4.5 μg of Ang-(1-7) included in 6.9 μg of HPβCD for 14 days, i.e. days 35-48). Mice were killed 72 h after the last challenge and blood, bronchoalveolar lavage fluid (BALF) and lungs were collected. Histology and morphometric analysis were performed in the lung. Metalloproteinase (MMP)-9 and MMP-12 expression and activity, IL-5, CCL11 in the lung and plasma IgE were measured. After 2 weeks of OVA challenge there was an increase in plasma IgE and in inflammatory cells infiltration in the lung of asthmatic mice. Treatment with inhaled administration of Ang-(1-7)/HPβCD for 14 days reduced eosinophils, IL5, CCL11 in the lung and plasma IgE. Treatment of asthmatic mice with Ang-(1-7)/HPβCD by inhalation reversed pulmonary remodeling by reducing collagen deposition and MMP-9 and MMP-12 expression and activity. These results show for the first time that treatment by inhalation with Ang-(1-7) can reverse an installed asthma, inhibiting pulmonary inflammation and remodeling.
Collapse
Affiliation(s)
- Giselle Santos Magalhães
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil; Faculty of Medical Sciences of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - Juliana Fabiana Gregório
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Kezia Emanoeli Ramos
- Faculty of Medical Sciences of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | - Isis Felippe Baroni
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Lucíola Silva Barcelos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Vanessa Pinho
- Department of Morphology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Robson Augusto Souza Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | - Maria Jose Campagnole-Santos
- Department of Physiology and Biophysics, National Institute of Science and Technology in Nanobiopharmaceutics (INCT-Nanobiofar), Biological Sciences Institute, Federal University of Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|