1
|
Abbasluo M, Bakhshi Ardakani M, Jafari N, Pazoki M. Evaluation of PPAR-α, PPAR-γ, TLR2, TLR4 Gene Expression In Patients with Coronary Artery Disease (CAD): An Experimental Study. Med J Islam Repub Iran 2024; 38:128. [PMID: 39968463 PMCID: PMC11835405 DOI: 10.47176/mjiri.38.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Indexed: 02/20/2025] Open
Abstract
Background Coronary artery disease (CAD) is one of the heart diseases that causes the death of many patients in the world. Many genes and molecular pathways are involved in the regulation of inflammation. However, some genes have a regulatory role and control immune responses. In recent studies, few studies have been done regarding the role of TLRs and PPARs in CAD. Hence, the present study aimed to determine and compare the mRNA expression of PPAR-α and PPAR-γ genes and genes of the innate immune system messenger pathway, including TLR2and TLR4, in CAD patients in comparison to normal individuals. Methods This study (case-control) was conducted on 12 patients with coronary arteries and 10 healthy individuals as healthy controls. RNA extraction was performed, cDNA was produced, and then the mRNA expression levels of TLR2, TLR4, PPAR-α, and PPAR-γ genes were examined using Syber green Real-Time PCR. The t-test sample and the related non-parametric tests were used to investigate the relationship between the quantitative variables. The significance level in all tests was considered as less than 0.05. Results The results of data analysis showed that the expression level of TLR2 and TLR4 genes was significantly increased in the patient group compared to the controls (P=0.001). However, although PPAR-α and PPAR-γ genes were up-regulated in patients' samples, the comparison of gene expression levels did not significantly differ between the case and control groups. Conclusion we found meaningful results to the significant role of 2 and TLR4 in the pathogenesis of CAD and emphasize the hypothesis that TLR2 and TLR4 can be considered therapeutic options.
Collapse
Affiliation(s)
- Mahbobe Abbasluo
- Department of Biology, Islamic Azad University, Ashkezar Branch, Ashkezar, Iran
| | | | - Negar Jafari
- Department of Cardiology, School of Medicine, Seyedoshohda Hospital, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahboubeh Pazoki
- Department of Cardiology, School of Medicine, Hazrat-e Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Dileepan KN, Raveendran VV, Sharma R, Abraham H, Barua R, Singh V, Sharma R, Sharma M. Mast cell-mediated immune regulation in health and disease. Front Med (Lausanne) 2023; 10:1213320. [PMID: 37663654 PMCID: PMC10470157 DOI: 10.3389/fmed.2023.1213320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/17/2023] [Indexed: 09/05/2023] Open
Abstract
Mast cells are important components of the immune system, and they perform pro-inflammatory as well as anti-inflammatory roles in the complex process of immune regulation in health and disease. Because of their strategic perivascular localization, sensitivity and adaptability to the microenvironment, and ability to release a variety of preformed and newly synthesized effector molecules, mast cells perform unique functions in almost all organs. Additionally, Mast cells express a wide range of surface and cytoplasmic receptors which enable them to respond to a variety of cytokines, chemicals, and pathogens. The mast cell's role as a cellular interface between external and internal environments as well as between vasculature and tissues is critical for protection and repair. Mast cell interactions with different immune and nonimmune cells through secreted inflammatory mediators may also turn in favor of disease promoting agents. First and forefront, mast cells are well recognized for their multifaceted functions in allergic diseases. Reciprocal communication between mast cells and endothelial cells in the presence of bacterial toxins in chronic/sub-clinical infections induce persistent vascular inflammation. We have shown that mast cell proteases and histamine induce endothelial inflammatory responses that are synergistically amplified by bacterial toxins. Mast cells have been shown to exacerbate vascular changes in normal states as well as in chronic or subclinical infections, particularly among cigarette smokers. Furthermore, a potential role of mast cells in SARS-CoV-2-induced dysfunction of the capillary-alveolar interface adds to the growing understanding of mast cells in viral infections. The interaction between mast cells and microglial cells in the brain further highlights their significance in neuroinflammation. This review highlights the significant role of mast cells as the interface that acts as sensor and early responder through interactions with cells in systemic organs and the nervous system.
Collapse
Affiliation(s)
- Kottarappat N. Dileepan
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Vineesh V. Raveendran
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rishi Sharma
- Department of Medicine, School of Medicine, University of Missouri, Kansas City, MO, United States
| | - Harita Abraham
- Division of Allergy, Clinical Immunology and Rheumatology, Department of Medicine, The University of Kansas Medical Center, Kansas City, KS, United States
| | - Rajat Barua
- Cardiology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Vikas Singh
- Neurology Section, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Ram Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
| | - Mukut Sharma
- Research and Development Service, Kansas City Veterans Affairs Medical Center, Kansas City, MO, United States
- Midwest Veterans’ Biomedical Research Foundation (MVBRF), Kansas City VA Medical Center, Kansas, MO, United States
| |
Collapse
|
3
|
Krychtiuk KA, Ahrens I, Drexel H, Halvorsen S, Hassager C, Huber K, Kurpas D, Niessner A, Schiele F, Semb AG, Sionis A, Claeys MJ, Barrabes J, Montero S, Sinnaeve P, Pedretti R, Catapano A. Acute LDL-C reduction post ACS: strike early and strike strong: from evidence to clinical practice. A clinical consensus statement of the Association for Acute CardioVascular Care (ACVC), in collaboration with the European Association of Preventive Cardiology (EAPC) and the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. EUROPEAN HEART JOURNAL. ACUTE CARDIOVASCULAR CARE 2022; 11:939-949. [PMID: 36574353 DOI: 10.1093/ehjacc/zuac123] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 12/28/2022]
Abstract
After experiencing an acute coronary syndrome (ACS), patients are at a high risk of suffering from recurrent ischaemic cardiovascular events, especially in the very early phase. Low density lipoprotein-cholesterol (LDL-C) is causally involved in atherosclerosis and a clear, monotonic relationship between pharmacologic LDL-C lowering and a reduction in cardiovascular events post-ACS has been shown, a concept termed 'the lower, the better'. Current ESC guidelines suggest an LDL-C guided, step-wise initiation and escalation of lipid-lowering therapy (LLT). Observational studies consistently show low rates of guideline-recommended LLT adaptions and concomitant low rates of LDL-C target goal achievement, leaving patients at residual risk, especially in the vulnerable post-ACS phase. In addition to the well-established 'the lower, the better' approach, a 'strike early and strike strong' approach in the early post-ACS phase with upfront initiation of a combined lipid-lowering approach using high-intensity statins and ezetimibe seems reasonable. We discuss the rationale, clinical trial evidence and experience for such an approach and highlight existing knowledge gaps. In addition, the concept of acute initiation of PCSK9 inhibition in the early phase is reviewed. Ultimately, we focus on hurdles and solutions to provide high-quality, evidence-based follow-up care in post-ACS patients.
Collapse
Affiliation(s)
- Konstantin A Krychtiuk
- Department of Internal Medicine II-Division of Cardiology, Medical University of Vienna, 1180 Vienna, Austria.,Duke Clinical Research Institute, Durham, NC 27701, USA
| | - Ingo Ahrens
- Department of Cardiology and Medical Intensive Care, Augustinerinnen Hospital Cologne, Academic Teaching Hospital University of Cologne, 50678 Cologne, Germany
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Carinagasse 47, AT-6800 Feldkirch, Austria.,Private University of the Principality of Liechtenstein, Dorfstrasse 24, FL-9495 Triesen, Liechtenstein.,Department of Medicine I, Academic Teaching Hospital Feldkirch, Carinagasse 47, AT-6800 Feldkirch, Austria
| | - Sigrun Halvorsen
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway.,Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
| | - Christian Hassager
- Department of Cardiology, Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kurt Huber
- 3rd Department of Internal Medicine, Cardiology and Intensive Care Unit, Wilhelminenhospital, 1160 Vienna, Austria.,Ludwig Boltzmann Institute for Cardiovascular Research, 1090 Vienna, Austria.,Medical School, Sigmund Freud University, 1020 Vienna, Austria
| | - Donata Kurpas
- Family Medicine Department, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Alexander Niessner
- Department of Internal Medicine II-Division of Cardiology, Medical University of Vienna, 1180 Vienna, Austria
| | - Francois Schiele
- Department of Cardiology, University Hospital Besancon, University of Franche-Comté, France and EA3920, Besancon, France
| | - Anne Grete Semb
- Preventive Cardio-Rheuma Clinic, Department of Rheumatology, Division of Innovation and Research, Center for Treatment of Rheumatic and Musculoskeletal Diseases (REMEDY), Diakonhjemmet Hospital, Oslo, Norway
| | - Alessandro Sionis
- Intensive Cardiac Care Unit, Cardiology Department, Hospital de Sant Pau, IIB-Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBER-CV, Centro de investigación Biomédica en Red de Enfermedades Cardiovasculares, 28029 Madrid, Spain
| | - Marc J Claeys
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - José Barrabes
- Acute Cardiac Care Unit, Cardiology Service, Vall d'Hebron Hospital Universitari, Universitat Autònoma de Barcelona, Barcelona, Spain.,CIBERC-V, Centro de investigación Biomédica en Red de Enfermedades Cardiovasculares, Madrid, Spain
| | - Santiago Montero
- Acute Cardiovascular Care Unit, Cardiology, Hospital Germans Trias i Pujol. Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Peter Sinnaeve
- Department of Cardiology, University Hospital Leuven, Leuven, Belgium
| | - Roberto Pedretti
- Director of Cardiovascular Department, Head of Cardiology Unit, IRCCS MultiMedica, Milan, Italy
| | - Alberico Catapano
- Professor of Pharmacology, Director Center of Epidemiology and Preventive Pharmacology, Director Laboratory of Lipoproteins, Immunity and Atherosclerosis Department of Pharmacological and Biomolecular Sciences Director Center for the Study of Atherosclerosis at Bassini Hospital University of Milan, Milan, Italy
| |
Collapse
|
4
|
Novoa C, Salazar P, Cisternas P, Gherardelli C, Vera-Salazar R, Zolezzi JM, Inestrosa NC. Inflammation context in Alzheimer's disease, a relationship intricate to define. Biol Res 2022; 55:39. [PMID: 36550479 PMCID: PMC9784299 DOI: 10.1186/s40659-022-00404-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is characterized by the accumulation of amyloid β (Aβ) and hyperphosphorylated tau protein aggregates. Importantly, Aβ and tau species are able to activate astrocytes and microglia, which release several proinflammatory cytokines, such as tumor necrosis factor α (TNF-α) and interleukin 1β (IL-1β), together with reactive oxygen (ROS) and nitrogen species (RNS), triggering neuroinflammation. However, this inflammatory response has a dual function: it can play a protective role by increasing Aβ degradation and clearance, but it can also contribute to Aβ and tau overproduction and induce neurodegeneration and synaptic loss. Due to the significant role of inflammation in the pathogenesis of AD, several inflammatory mediators have been proposed as AD markers, such as TNF-α, IL-1β, Iba-1, GFAP, NF-κB, TLR2, and MHCII. Importantly, the use of anti-inflammatory drugs such as NSAIDs has emerged as a potential treatment against AD. Moreover, diseases related to systemic or local inflammation, including infections, cerebrovascular accidents, and obesity, have been proposed as risk factors for the development of AD. In the following review, we focus on key inflammatory processes associated with AD pathogenesis.
Collapse
Affiliation(s)
- Catalina Novoa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Pedro Cisternas
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Camila Gherardelli
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile
| | - Roberto Vera-Salazar
- Facultad de Ciencias Médicas, Escuela de Kinesiología, Universidad de Santiago de Chile, Santiago, Chile
| | - Juan M Zolezzi
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda Bernardo O'Higgins 340, P.O. Box 114-D, Santiago, Chile.
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Escuela de Medicina, Universidad de Magallanes, Punta Arenas, Chile.
| |
Collapse
|
5
|
Wujcicka WI, Kacerovsky M, Krygier A, Krekora M, Kaczmarek P, Grzesiak M. Association of Single Nucleotide Polymorphisms from Angiogenesis-Related Genes, ANGPT2, TLR2 and TLR9, with Spontaneous Preterm Labor. Curr Issues Mol Biol 2022; 44:2939-2955. [PMID: 35877427 PMCID: PMC9322696 DOI: 10.3390/cimb44070203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we hypothesized that the changes localized at angiopoietin-2 (ANGPT2), granulocyte-macrophage colony-stimulating factor (CSF2), fms-related tyrosine kinase 1 (FLT1) and toll-like receptor (TLR) 2, TLR6 and TLR9 genes were associated with spontaneous preterm labor (PTL), as well as with possible genetic alterations on PTL-related coagulation. This case-control genetic association study aimed to identify single nucleotide polymorphisms (SNPs) for the aforementioned genes, which are correlated with genetic risk or protection against PTL in Polish women. The study was conducted in 320 patients treated between 2016 and 2020, including 160 women with PTL and 160 term controls in labor. We found that ANGPT2 rs3020221 AA homozygotes were significantly less common in PTL cases than in controls, especially after adjusting for activated partial thromboplastin time (APTT) and platelet (PLT) parameters. TC heterozygotes for TLR2 rs3804099 were associated with PTL after correcting for anemia, vaginal bleeding, and history of threatened miscarriage or PTL. TC and CC genotypes in TLR9 rs187084 were significantly less common in women with PTL, compared to the controls, after adjusting for bleeding and gestational diabetes. For the first time, it was shown that three polymorphisms-ANGPT2 rs3020221, TLR2 rs3804099 and TLR9 rs187084 -were significantly associated with PTL, adjusted by pregnancy development influencing factors.
Collapse
Affiliation(s)
- Wioletta Izabela Wujcicka
- Scientific Laboratory of the Center of Medical Laboratory Diagnostics and Screening, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
- Correspondence: or ; Tel.: +48-42-271-15-20; Fax: +48-42-271-15-10
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, 500 03 Hradec Kralove, Czech Republic;
- Biomedical Research Center, University Hospital Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Adrian Krygier
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Michał Krekora
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
- Department of Gynecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Piotr Kaczmarek
- Department of Gynecology, Reproduction and Fetal Therapy, and Diagnostics and Treatment of Infertility, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland;
| | - Mariusz Grzesiak
- Department of Gynecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
- Department of Perinatology, Obstetrics and Gynecology, Polish Mother’s Memorial Hospital-Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
6
|
Sagar RC, Ajjan RA, Naseem KM. Non-Traditional Pathways for Platelet Pathophysiology in Diabetes: Implications for Future Therapeutic Targets. Int J Mol Sci 2022; 23:ijms23094973. [PMID: 35563363 PMCID: PMC9104718 DOI: 10.3390/ijms23094973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular complications remain the leading cause of morbidity and mortality in individuals with diabetes, driven by interlinked metabolic, inflammatory, and thrombotic changes. Hyperglycaemia, insulin resistance/deficiency, dyslipidaemia, and associated oxidative stress have been linked to abnormal platelet function leading to hyperactivity, and thus increasing vascular thrombotic risk. However, emerging evidence suggests platelets also contribute to low-grade inflammation and additionally possess the ability to interact with circulating immune cells, further driving vascular thrombo-inflammatory pathways. This narrative review highlights the role of platelets in inflammatory and immune processes beyond typical thrombotic effects and the impact these mechanisms have on cardiovascular disease in diabetes. We discuss pathways for platelet-induced inflammation and how platelet reprogramming in diabetes contributes to the high cardiovascular risk that characterises this population. Fully understanding the mechanistic pathways for platelet-induced vascular pathology will allow for the development of more effective management strategies that deal with the causes rather than the consequences of platelet function abnormalities in diabetes.
Collapse
|
7
|
Shen M, Gong R, Li H, Yang Z, Wang Y, Li D. Identification of key molecular markers of acute coronary syndrome using peripheral blood transcriptome sequencing analysis and mRNA-lncRNA co-expression network construction. Bioengineered 2021; 12:12087-12106. [PMID: 34753383 PMCID: PMC8809957 DOI: 10.1080/21655979.2021.2003932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acute coronary syndrome (ACS) is a term used to describe major cardiovascular diseases, and treatment of in-stent restenosis in patients with ACS remains a major clinical challenge. Further investigation into molecular markers of ACS may aid early diagnosis, and the treatment of ACS and post-treatment recurrence. In the present study, total RNA was extracted from the peripheral blood samples of 3 patients with ACS, 3 patients with percutaneous coronary intervention (PCI)_non-restenosis, 3 patients with PCI_restenosis and 3 healthy controls. Subsequently, RNA library construction and high-throughput sequencing were performed. DESeq2 package in R was used to screen genes that were differentially expressed between the different samples. Moreover, the intersection of the differentially expressed mRNAs (DEmRNAs) and differentially expressed long noncoding RNAs (DElncRNAs) obtained. GeneCodis4.0 was used to perform function enrichment for DEmRNAs, and lncRNA-mRNA co-expression network was constructed. The GSE60993 dataset was utilized for diagnostic analysis, and the aforementioned investigations were verified using in vitro studies. Results of the present study revealed a large number of DEmRNAs and DElncRNAs in the different groups. We selected genes in the top 10 of differential expression and also involved in the co-expression of lncRNA-mRNA for diagnostic analysis in the GSE60993 dataset. The area under curve (AUC) of PDZK1IP1 (0.747), PROK2 (0.769) and LAMP3 (0.725) were all >0.7. These results indicated that the identified mRNAs and lncRNAs may act as potential clinical biomarkers, and more specifically, PDZK1IP1, PROK2 and LAMP3 may act as potential biomarkers for the diagnosis of ACS.
Collapse
Affiliation(s)
- Ming Shen
- Department of Cardiology, The First Hospital of Hebei Medical University
| | - Rui Gong
- Department of internal medicine-Endocrinology, Children's Hospital of Hebei
| | - Haibin Li
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Zhihui Yang
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Yunpeng Wang
- Department of General Medicine, the Third Hospital of Hebei Medical University
| | - Dandan Li
- Department of General Medicine, the Third Hospital of Hebei Medical University
| |
Collapse
|
8
|
Camilli M, Iannaccone G, La Vecchia G, Cappannoli L, Scacciavillani R, Minotti G, Massetti M, Crea F, Aspromonte N. Platelets: the point of interconnection among cancer, inflammation and cardiovascular diseases. Expert Rev Hematol 2021; 14:537-546. [PMID: 34126832 DOI: 10.1080/17474086.2021.1943353] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION The association between thrombosis, cancer and inflammation is well-established. Platelets play a major role in atherosclerosis, inflammation and immune response. Furthermore, growing evidence suggests that they are also significantly involved in tumor development and progression so that anti-platelet agents may prevent cancer and improve outcomes in oncological patients. In this review, we aimed at analyzing the relationship between platelets, cardiovascular diseases and cancer. A comprehensive study in the main educational platforms was performed and high-quality original articles and reviews were included. AREAS COVERED This review will focus on the role of platelets in cardiovascular disease and in cancer genesis and progression, analyzing their function as immune cells that link inflammation to thrombosis. Finally, it will examine the recent controversies on the use of anti-platelet agents as cancer medications, in particular the already known anti-tumor properties of aspirin, as well as the new perspectives regarding P2Y12 inhibitors. EXPERT OPINION Platelet-cancer crosstalk generates a vicious feed-back loop involving tumor cells and secreting molecules that activate platelets, which in turn promote cancer-associated inflammation, proliferation, spreading and immune system evasion. Therefore, platelets inhibition may represent an innovative therapeutical strategy offered to cancer patients, in the perspective of personalized medicine.
Collapse
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giulia La Vecchia
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Luigi Cappannoli
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Roberto Scacciavillani
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy
| | - Giorgio Minotti
- Department of Medicine, Center for Integrated Research and Unit of Drug Sciences, University Campus Bio-Medico, Rome, Italy
| | - Massimo Massetti
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Sciences and Thoracic Sciences, Catholic University of the Sacred Heart, Roma, Italy.,Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
9
|
Dziegielewska-Gesiak S. Metabolic Syndrome in an Aging Society - Role of Oxidant-Antioxidant Imbalance and Inflammation Markers in Disentangling Atherosclerosis. Clin Interv Aging 2021; 16:1057-1070. [PMID: 34135578 PMCID: PMC8200137 DOI: 10.2147/cia.s306982] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/23/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The prevalence of metabolic syndrome among the elderly population is growing. The elements of metabolic syndrome in an aging society are currently being researched. Atherosclerosis is a slow process in which the first symptoms may be observed after many years. The mechanisms underlying the progression of atherosclerosis are oxidative stress and inflammation. Inflammation and oxidative stress are associated with the increased incidence of metabolic syndrome. Taking the above into consideration, metabolic syndrome is thought to be a clinical equivalent of atherosclerosis. AIM The aim of this paper is to review the impact of the interplay of oxidant-antioxidant and inflammation markers in metabolic syndrome in general as well as its components in the pathophysiology which underlies development of atherosclerosis in elderly individuals. METHODS A systematic scan of online resources designed for elderly (≥65 years) published from 2005 to the end of 2020 were reviewed. This was supplemented with grey literature and then all resources were narratively analyzed. The analysis included the following terms: "atherosclerosis or metabolic syndrome" and "oxidative stress or inflammation" and "elderly" to find reports of atherosclerotic disease from asymptomatic to life-threatening among the elderly population with metabolic syndrome . RESULTS The work summarizes articles that were applicable to this study, including systematic reviews, qualitative studies and opinion pieces. Current knowledge focuses on monitoring the inflammation and oxidant-antioxidant imbalance in disentangling atherosclerosis in patients diagnosed with metabolic syndrome. The population-based studies described inflammation, increased oxidative stress and weak antioxidant defense systems as the mechanisms underlying atherosclerosis development. Moreover, there are discussions that these targets could potentially be a point of intervention to reduce the development of atherosclerosis in the elderly, especially those with altered glucose and lipid metabolism. Specific markers may be used as an approach for the prevention and lifestyle modification of atherosclerotic disease in such population. CONCLUSION Metabolic syndrome and its components are important contributors in the progression of atherosclerotic disease in the elderly population but constant efforts should be made to broaden our knowledge of elderly groups who are the most susceptible for the development of atherosclerosis complications.
Collapse
|
10
|
Peng H, Wu H, Zhang G, Zhang W, Guo Y, Chang L, Chen S, Xue R, Zhang S. Expression and Clinical Prognostic Value of Platelet NLRP3 in Acute Coronary Syndrome. Int J Gen Med 2020; 13:791-802. [PMID: 33116771 PMCID: PMC7555296 DOI: 10.2147/ijgm.s275481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
Purpose Little is known about the relationship between the level of platelet NOD-like receptor protein 3 (NLRP3) and the severity of acute coronary syndrome (ACS) or the prognostic value of platelet NLRP3 for percutaneous coronary intervention (PCI). Methods Platelets collected from 25 healthy subjects, 23 patients with stable angina pectoris (SAP), and 72 patients with ACS were analyzed by Western blotting and real-time fluorescence quantitative PCR (qPCR). A total of 152 patients with ACS who had undergone PCI were included in this study to evaluate the prognostic value of platelet NLRP3. Results The levels of platelet NLRP3 in both the healthy and SAP groups were clearly lower than in the ACS group (P<0.001). According to the Pearson correlation analysis, the expression of platelet NLRP3 was closely related to the mean platelet volume (MPV), left ventricular ejection fraction (LVEF), the Gensini score, and the Global Registry of Acute Coronary Events (GRACE) score (all P<0.001). Multivariate logistic regression analysis identified NLRP3 as an independent risk factor for adverse cardiovascular events (ACEs) after PCI (P=0.004). The proportion of patients with high NLPR3 expression (the NLRP3-high group) remaining free of adverse events for 3 years was remarkably lower than that in patients with low NLPR3 expression (the NLRP3-low group; P=0.024). The NLRP3-high group had a significantly higher proportion of patients with interleukin-1β–expressing (20.4%±6.1%) platelets than the NLRP3-low group (10.7%±3.5%, P<0.001). Moreover, the NLRP3-high group exhibited higher platelet activity, as indicated by increased PAC-1 binding and CD62P expression, compared with the NLRP3-low group (P<0.001). Conclusion These results indicated that platelet NLRP3 was a novel potential prognostic factor for patients with ACS that underwent PCI.
Collapse
Affiliation(s)
- Huitong Peng
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Hongyi Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Ge Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Wei Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yifan Guo
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Lin Chang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - She Chen
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ruyi Xue
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Si Zhang
- Department of Biochemistry and Molecular Biology, NHC Key Laboratory of Glycoconjugates Research, School of Basic Medical Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Revisiting Platelets and Toll-Like Receptors (TLRs): At the Interface of Vascular Immunity and Thrombosis. Int J Mol Sci 2020; 21:ijms21176150. [PMID: 32858930 PMCID: PMC7504402 DOI: 10.3390/ijms21176150] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/19/2022] Open
Abstract
While platelet function has traditionally been described in the context of maintaining vascular integrity, recent evidence suggests that platelets can modulate inflammation in a much more sophisticated and nuanced manner than previously thought. Some aspects of this expanded repertoire of platelet function are mediated via expression of Toll-like receptors (TLRs). TLRs are a family of pattern recognition receptors that recognize pathogen-associated and damage-associated molecular patterns. Activation of these receptors is crucial for orchestrating and sustaining the inflammatory response to both types of danger signals. The TLR family consists of 10 known receptors, and there is at least some evidence that each of these are expressed on or within human platelets. This review presents the literature on TLR-mediated platelet activation for each of these receptors, and the existing understanding of platelet-TLR immune modulation. This review also highlights unresolved methodological issues that potentially contribute to some of the discrepancies within the literature, and we also suggest several recommendations to overcome these issues. Current understanding of TLR-mediated platelet responses in influenza, sepsis, transfusion-related injury and cardiovascular disease are discussed, and key outstanding research questions are highlighted. In summary, we provide a resource—a “researcher’s toolkit”—for undertaking further research in the field of platelet-TLR biology.
Collapse
|
12
|
Dib PRB, Quirino-Teixeira AC, Merij LB, Pinheiro MBM, Rozini SV, Andrade FB, Hottz ED. Innate immune receptors in platelets and platelet-leukocyte interactions. J Leukoc Biol 2020; 108:1157-1182. [PMID: 32779243 DOI: 10.1002/jlb.4mr0620-701r] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Platelets are chief cells in hemostasis. Apart from their hemostatic roles, platelets are major inflammatory effector cells that can influence both innate and adaptive immune responses. Activated platelets have thromboinflammatory functions linking hemostatic and immune responses in several physiological and pathological conditions. Among many ways in which platelets exert these functions, platelet expression of pattern recognition receptors (PRRs), including TLR, Nod-like receptor, and C-type lectin receptor families, plays major roles in sensing and responding to pathogen-associated or damage-associated molecular patterns (PAMPs and DAMPs, respectively). In this review, an increasing body of evidence is compiled showing the participation of platelet innate immune receptors, including PRRs, in infectious diseases, sterile inflammation, and cancer. How platelet recognition of endogenous DAMPs participates in sterile inflammatory diseases and thrombosis is discussed. In addition, platelet recognition of both PAMPs and DAMPs initiates platelet-mediated inflammation and vascular thrombosis in infectious diseases, including viral, bacterial, and parasite infections. The study also focuses on the involvement of innate immune receptors in platelet activation during cancer, and their contribution to tumor microenvironment development and metastasis. Finally, how innate immune receptors participate in platelet communication with leukocytes, modulating leukocyte-mediated inflammation and immune functions, is highlighted. These cell communication processes, including platelet-induced release of neutrophil extracellular traps, platelet Ag presentation to T-cells and platelet modulation of monocyte cytokine secretion are discussed in the context of infectious and sterile diseases of major concern in human health, including cardiovascular diseases, dengue, HIV infection, sepsis, and cancer.
Collapse
Affiliation(s)
- Paula Ribeiro Braga Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil.,Laboratory of Immunology, Infectious Diseases and Obesity, Department of Parasitology, Microbiology and Immunology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Anna Cecíllia Quirino-Teixeira
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Laura Botelho Merij
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Mariana Brandi Mendonça Pinheiro
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Stephane Vicente Rozini
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Fernanda Brandi Andrade
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eugenio Damaceno Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| |
Collapse
|
13
|
Nording H, Baron L, Langer HF. Platelets as therapeutic targets to prevent atherosclerosis. Atherosclerosis 2020; 307:97-108. [DOI: 10.1016/j.atherosclerosis.2020.05.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/30/2020] [Accepted: 05/27/2020] [Indexed: 12/11/2022]
|
14
|
Zhou Y, Little PJ, Downey L, Afroz R, Wu Y, Ta HT, Xu S, Kamato D. The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacol Transl Sci 2020; 3:457-471. [PMID: 32566912 PMCID: PMC7296543 DOI: 10.1021/acsptsci.9b00100] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Indexed: 02/06/2023]
Abstract
Toll-like receptors (TLRs) are dominant components of the innate immune system. Activated by both pathogen-associated molecular patterns and damage-associated molecular patterns, TLRs underpin the pathology of numerous inflammation related diseases that include not only immune diseases, but also cardiovascular disease (CVD), diabetes, obesity, and cancers. Growing evidence has demonstrated that TLRs are involved in multiple cardiovascular pathophysiologies, such as atherosclerosis and hypertension. Specifically, a trial called the Canakinumab Anti-inflammatory Thrombosis Outcomes Study showed the use of an antibody that neutralizes interleukin-1β, reduces the recurrence of cardiovascular events, demonstrating inflammation as a therapeutic target and also the research value of targeting the TLR system in CVD. In this review, we provide an update of the interplay between TLR signaling, inflammatory mediators, and atherothrombosis, with an aim to identify new therapeutic targets for atherothrombotic CVD.
Collapse
Affiliation(s)
- Ying Zhou
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Peter J. Little
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Department
of Pharmacy, Xinhua College of Sun Yat-Sen
University, Tianhe District, Guangzhou, Guangdong Province 510520, China
| | - Liam Downey
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Rizwana Afroz
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
| | - Yuao Wu
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Hang T. Ta
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Australian
Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, St Lucia, Queensland 4072, Australia
| | - Suowen Xu
- Aab
Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Danielle Kamato
- School
of Pharmacy, University of Queensland, Pharmacy
Australia Centre of Excellence, Woolloongabba, Queensland 4102, Australia
- Department
of Pharmacy, Xinhua College of Sun Yat-Sen
University, Tianhe District, Guangzhou, Guangdong Province 510520, China
| |
Collapse
|