1
|
Perez-Rial A, Carmona A, Ali L, Rubio J, Millan T, Castro P, Die JV. Phenotypic and genetic characterization of a near-isogenic line pair: insights into flowering time in chickpea. BMC PLANT BIOLOGY 2024; 24:709. [PMID: 39054447 PMCID: PMC11270784 DOI: 10.1186/s12870-024-05411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/11/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Cicer arietinum is a significant legume crop cultivated mainly in short-season environments, where early-flowering is a desirable trait to overcome terminal constraints. Despite its agricultural significance, the genetic control of flowering time in chickpea is not fully understood. In this study, we developed, phenotyped, re-sequenced and genetically characterized a pair of near-isogenic lines (NILs) with contrasting days to flowering to identify candidate gene variants potentially associated with flowering time. RESULTS In addition to days to flowering, noticeable differences in multiple shoot architecture traits were observed between the NILs. The resequencing data confirms that the NILs developed in this study serve as appropriate plant materials, effectively constraining genetic variation to specific regions and thereby establishing a valuable resource for future genetic and functional investigations in chickpea research. Leveraging bioinformatics tools and public genomic datasets, we identified homologs of flowering-related genes from Arabidopsis thaliana, including ELF3 and, for the first time in chickpea, MED16 and STO/BBX24, with variants among the NILs. Analysis of the allelic distribution of these genes revealed their preservation within chickpea diversity and their potential association with flowering time. Variants were also identified in members of the ERF and ARF gene families. Furthermore, in silico expression analysis was conducted elucidating their putative roles in flowering. CONCLUSIONS While the gene CaELF3a is identified as a prominent candidate, this study also exposes new targets in chickpea, such as CaMED16b and LOC101499101 (BBX24-like), homologs of flowering-related genes in Arabidopsis, as well as ERF12 and ARF2. The in silico expression characterization and genetic variability analysis performed could contribute to their use as specific markers for chickpea breeding programs. This study lays the groundwork for future investigations utilizing this plant material, promising further insights into the complex mechanisms governing flowering time in chickpea.
Collapse
Affiliation(s)
- Adrian Perez-Rial
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Alejandro Carmona
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Latifah Ali
- Department of Plant Biology-Science Faculty, University of Tishreen, Lattakia City, Syria
| | - Josefa Rubio
- Área de Mejora y Biotecnología, IFAPA Centro 'Alameda del Obispo', Córdoba, 14080, Spain
| | - Teresa Millan
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| | - Patricia Castro
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain.
| | - Jose V Die
- Department of Genetics-ETSIAM, University of Córdoba, Campus de Rabanales, Córdoba, 14071, Spain
| |
Collapse
|
2
|
Rauf A, Subhani MN, Siddique M, Shahid H, Chattha MB, Alrefaei AF, Hasan Naqvi SA, Ali H, Lucas RS. Cultivating a greener future: Exploiting trichoderma derived secondary metabolites for fusarium wilt management in peas. Heliyon 2024; 10:e29031. [PMID: 38601549 PMCID: PMC11004880 DOI: 10.1016/j.heliyon.2024.e29031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/12/2024] Open
Abstract
This study aimed to identify efficient Trichoderma isolate(s) for the management of Fusarium wilt in peas. Four different pea germplasms (Sarsabz, Pea-09, Meteor and Supreme) were evaluated for resistance against Fusarium oxysporum in pot assay. Resistant germplasm exhibits a varying range of disease severity (23%) and percent disease index (21%), whereas susceptible and highly susceptible germplasm exhibit maximum disease severity (44-79%) and percent disease index (47-82%). The susceptible germplasm Meteor was selected for in vivo experiment. Five different Trichoderma spp. (Trichoderma koningii, T. hamatum, T. longibrachiatum, T. viride, and T. harzianum) were screened for the production of hydrolytic extracellular enzymes under in vitro. In-vitro biocontrol potential of Trichoderma spp. was assayed by percentage inhibition of dry mass of Fusarium oxysporum pisi (FOP) with Trichoderma spp. metabolite filtrate concentrations. Maximum growth inhibition was observed by T. harzianum (50-89%). T. harzianum metabolites in filtrate conc. (40%, 50%, and 60%) exhibited maximum reduction in biomass and were thus used for in vivo management of the disease. The pot experiment for in-vivo management also confirmed the maximum inhibition of FOP by T. harzianum metabolites filtrate at 60% by reducing disease parameters and enhancing growth, yield, and physiochemical and stress markers. Trichoderma strains led to an increase in chlorophyll and carotenoids (34-26%), Total phenolic 55%, Total protein content 60%, Total Flavonoid content 36%, and the increasing order of enzyme activities were as follows: CAT > POX > PPO > PAL in all treatments. These strains demonstrate excellent bio-control of Fusarium wilt in pea via induction of defense-related enzymes. The present work will help use Trichoderma species in disease management programme as an effective biocontrol agent against plant pathogens.
Collapse
Affiliation(s)
- Amna Rauf
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Nasir Subhani
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Maroof Siddique
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Habiba Shahid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agricultural Sciences, University of the Punjab, Lahore 54590, Pakistan
| | - Abdulwahed Fahad Alrefaei
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Haider Ali
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Rosa Sanchez Lucas
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
3
|
Bhargavi G, Arya M, Jambhulkar PP, Singh A, Rout AK, Behera BK, Chaturvedi SK, Singh AK. Evaluation of biocontrol efficacy of rhizosphere dwelling bacteria for management of Fusarium wilt and Botrytis gray mold of chickpea. BMC Genom Data 2024; 25:7. [PMID: 38225553 PMCID: PMC10790480 DOI: 10.1186/s12863-023-01178-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) production is affected by many biotic factors, among them Fusarium wilt caused by Fusarium oxysporum f. sp. ciceri and Botrytis gray mold caused by Botrytis cinerea led to severe losses. As fungicide application is not advisable, biological management is the best alternative for plant protection. The rhizosphere-dwelling antagonistic bacteria are one of the important successful alternative strategy to manage these diseases of chickpea. Rhizosphere dwelling bacteria serve as biocontrol agents by different mechanisms like producing antibiotics, different enzymes, siderophores against pathogens and thereby reducing the growth of pathogens. RESULTS The present study aimed to isolate rhizospheric bacteria from the soils of different chickpea fields to evaluate biocontrol efficacy of the isolated bacteria to manage Fusarium wilt and Botrytis gray mold in chickpea. A total of 67 bacteria were isolated from chickpea rhizosphere from Bundelkhand region of India. Study revealed the isolated bacteria could reduce the Fusarium oxysporum f. sp. ciceris and Botrytis cinerea infection in chickpea between 17.29 and 75.29%. After screening of all the bacteria for their biocontrol efficacy, 13 most promising bacterial isolates were considered for further study out of which, three bacterial isolates (15d, 9c and 14a) have shown the maximum in vitro antagonistic effects against Fusarium oxysporum f. sp. ciceri and Botrytis cinerea comparable to in vivo effects. However, Isolate (15d) showed highest 87.5% and 82.69% reduction in disease against Fusarium wilt and Botrytis gray mold respectively, under pot condition. Three most potential isolates were characterized at molecular level using 16S rRNA gene and found to be Priestia megaterium (9c and 14a) and Serratia marcescens (15d). CONCLUSION This study identified two native biocontrol agents Priestia megaterium and Serratia marcescens from the rhizospheric soils of Bundelkhand region of India for control of Fusarium wilt, Botrytis gray mold. In future, efforts should be made to further validate the biocontrol agents in conjugation with nanomaterials for enhancing the synergistic effects in managing the fungal diseases in chickpea. This study will definitely enhance our understanding of these bioagents, and to increase their performance by developing effective formulations, application methods, and integrated strategies.
Collapse
Affiliation(s)
- Gurreddi Bhargavi
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India.
| | | | - Anshuman Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| | | | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi, 284003, Uttar Pradesh, India
| |
Collapse
|
4
|
Nishmitha K, Singh R, Akhtar J, Bashyal BM, Dubey SC, Tripathi A, Kamil D. Expression profiling and characterization of key RGA involved in lentil Fusarium wilt Race 5 resistance. World J Microbiol Biotechnol 2023; 39:306. [PMID: 37713019 DOI: 10.1007/s11274-023-03748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 09/16/2023]
Abstract
Fusarium wilt is a major threat to lentil production in India and worldwide. The presence of evolving virulent races has imposed the necessity of reliable management practices including breeding for resistance using unexplored germplasms. The magnitude of resistance by the plant is determined by rapid recognition of the pathogen and induction of defence genes. Resistance gene analogues have been key factors involved in the recognition and induction of defence response. In the present study, the expression of key RGA previously cloned was determined in three resistant accessions (L65, L83 and L90) and a susceptible accession (L27). The expression was assessed via qPCR at 24, 48 and 72 hpi against virulent race5 (CG-5). All the RGAs differentially transcribed in resistant and susceptible accession showed temporal variation. RGA Lc2, Lc8, Ln1 and Lo6 produced cDNA signals during early infection (24 hpi) predicting its involvement in recognition. LoRGA6 showed significant upregulation in L65 and L83 while downregulating in L27 and the full length of LoRGA6 loci was isolated by 5' and 3' RACE PCR. In-silico characterization revealed LoRGA6 loci code for 912 amino acids long polypeptide with a TIR motif at the N terminal and eight LRR motifs at the C terminal. The tertiary structure revealed a concave pocket-like structure at the LRR domain potentially involved in pathogen effectors interaction. The loci have ADP binding domain and ATPase activity. This has further paved the path for functional analysis of the loci by VIGS to understand the molecular mechanism of resistance.
Collapse
Affiliation(s)
- K Nishmitha
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rakesh Singh
- Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Jameel Akhtar
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Bishnu Maya Bashyal
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - S C Dubey
- Indian Council of Agricultural Research, New Delhi, 110001, India
| | - Aradhika Tripathi
- Division of Plant Quarantine, ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
5
|
Yadav RK, Tripathi MK, Tiwari S, Tripathi N, Asati R, Patel V, Sikarwar RS, Payasi DK. Breeding and Genomic Approaches towards Development of Fusarium Wilt Resistance in Chickpea. Life (Basel) 2023; 13:988. [PMID: 37109518 PMCID: PMC10144025 DOI: 10.3390/life13040988] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Chickpea is an important leguminous crop with potential to provide dietary proteins to both humans and animals. It also ameliorates soil nitrogen through biological nitrogen fixation. The crop is affected by an array of biotic and abiotic factors. Among different biotic stresses, a major fungal disease called Fusarium wilt, caused by Fusarium oxysporum f. sp. ciceris (FOC), is responsible for low productivity in chickpea. To date, eight pathogenic races of FOC (race 0, 1A, and 1B/C, 2-6) have been reported worldwide. The development of resistant cultivars using different conventional breeding methods is very time consuming and depends upon the environment. Modern technologies can improve conventional methods to solve these major constraints. Understanding the molecular response of chickpea to Fusarium wilt can help to provide effective management strategies. The identification of molecular markers closely linked to genes/QTLs has provided great potential for chickpea improvement programs. Moreover, omics approaches, including transcriptomics, metabolomics, and proteomics give scientists a vast viewpoint of functional genomics. In this review, we will discuss the integration of all available strategies and provide comprehensive knowledge about chickpea plant defense against Fusarium wilt.
Collapse
Affiliation(s)
- Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Vinod Patel
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - R. S. Sikarwar
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | | |
Collapse
|
6
|
Achari SR, Mann RC, Sharma M, Edwards J. Diagnosis of Fusarium oxysporum f. sp. ciceris causing Fusarium wilt of chickpea using loop-mediated isothermal amplification (LAMP) and conventional end-point PCR. Sci Rep 2023; 13:2640. [PMID: 36788315 PMCID: PMC9929042 DOI: 10.1038/s41598-023-29730-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Fusarium oxysporum (Fo) is ubiquitous in soil and forms a species complex of pathogenic and putatively non-pathogenic strains. Pathogenic strains cause disease in over 150 plant species. Fusarium oxysporum f. sp. ciceris (Foc) is a major fungal pathogen causing Fusarium wilt in chickpeas (Cicer arietinum). In some countries such as Australia, Foc is a high-priority pest of biosecurity concern. Specific, sensitive, robust and rapid diagnostic assays are essential for effective disease management on the farm and serve as an effective biosecurity control measure. We developed and validated a novel and highly specific PCR and a LAMP assay for detecting the Indian Foc race 1 based on a putative effector gene uniquely present in its genome. These assays were assessed against 39 Fo formae speciales and found to be specific, only amplifying the target species, in a portable real-time fluorometer (Genie III) and qPCR machine in under 13 min with an anneal derivative temperature ranging from 87.7 to 88.3 °C. The LAMP assay is sensitive to low levels of target DNA (> 0.009 ng/µl). The expected PCR product size is 143 bp. The LAMP assay developed in this study was simple, fast, sensitive and specific and could be explored for other Foc races due to the uniqueness of this marker to the Foc genome.
Collapse
Affiliation(s)
- Saidi R. Achari
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia
| | - Ross C. Mann
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia
| | - Mamta Sharma
- grid.419337.b0000 0000 9323 1772International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India
| | - Jacqueline Edwards
- grid.452283.a0000 0004 0407 2669AgriBio, Agriculture Victoria Research, DJPR, Bundoora, VIC Australia ,grid.1018.80000 0001 2342 0938School of Applied Systems Biology, La Trobe University, Bundoora, VIC Australia
| |
Collapse
|
7
|
Pradhan PC, Mukhopadhyay A, Kumar R, Kundu A, Patanjali N, Dutta A, Kamil D, Bag TK, Aggarwal R, Bharadwaj C, Singh PK, Singh A. Performance appraisal of Trichoderma viride based novel tablet and powder formulations for management of Fusarium wilt disease in chickpea. FRONTIERS IN PLANT SCIENCE 2022; 13:990392. [PMID: 36275506 PMCID: PMC9585344 DOI: 10.3389/fpls.2022.990392] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/05/2022] [Indexed: 06/08/2023]
Abstract
In developing a Trichoderma viride-based biocontrol program for Fusarium wilt disease in chickpea, the choice of the quality formulation is imperative. In the present study, two types of formulations i.e. powder for seed treatment (TvP) and tablet for direct application (TvT), employing T. viride as the biocontrol agent, were evaluated for their ability to control chickpea wilt under field conditions at three dosages i.e. recommended (RD), double of recommended (DD) and half of recommended (1/2 RD). A screening study for the antagonistic fungi strains based on volatile and non-volatile bioassays revealed that T. viride ITCC 7764 has the most potential among the five strains tested (ITCC 6889, ITCC 7204, ITCC 7764, ITCC 7847, ITCC 8276), which was then used to develop the TvP and TvT formulations. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of volatile organic compounds (VOCs) of T. viride strain confirmed the highest abundance of compositions comprising octan-3-one (13.92%), 3-octanol (10.57%), and 1-octen-3-ol (9.40%) in the most potential T. viride 7764. Further Physico-chemical characterization by standard Collaborative International Pesticides Analytical Council (CIPAC) methods revealed the optimized TvP formulation to be free flowing at pH 6.50, with a density of 0.732 g cm-3. The TvT formulation showed a pH value of 7.16 and density of 0.0017 g cm-3 for a complete disintegration time of 22.5 min. The biocontrol potential of TvP formulation was found to be superior to that of TvT formulation in terms of both seed germination and wilt incidence in chickpea under field conditions. However, both the developed formulations (TvP and TvT) expressed greater bioefficacy compared to the synthetic fungicide (Carbendazim 50% WP) and the conventional talc-based formulation. Further research should be carried out on the compatibility of the developed products with other agrochemicals of synthetic or natural origin to develop an integrated disease management (IDM) schedule in chickpea.
Collapse
Affiliation(s)
- Prakash Chandra Pradhan
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Arkadeb Mukhopadhyay
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Randeep Kumar
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Neeraj Patanjali
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Deeba Kamil
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Bag
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rashmi Aggarwal
- Division of Plant Pathology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Chellapilla Bharadwaj
- Division of Genetics, (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - P. K. Singh
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Anupama Singh
- Division of Agricultural Chemicals, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Choudhary AK, Jain SK, Dubey AK, Kumar J, Sharma M, Gupta KC, Sharma LD, Prakash V, Kumar S. Conventional and molecular breeding for disease resistance in chickpea: status and strategies. Biotechnol Genet Eng Rev 2022:1-32. [PMID: 35959728 DOI: 10.1080/02648725.2022.2110641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 12/21/2021] [Indexed: 11/02/2022]
Abstract
Chickpea (Cicer arietinum L.) is an important grain legume at the global level. Among different biotic stresses, diseases are the most important factor limiting its production, causing yield losses up to 100% in severe condition. The major diseases that adversely affect yield of chickpea include Fusarium wilt, Ascochyta blight and Botrytis gray mold. However, dry root rot, collar rot, Sclerotinia stem rot, rust, stunt disease and phyllody have been noted as emerging biotic threats to chickpea production in many production regions. Identification and incorporation of different morphological and biochemical traits are required through breeding to enhance genetic gain for disease resistance. In recent years, remarkable progress has been made in the development of trait-specific breeding lines, genetic and genomic resources in chickpea. Advances in genomics technologies have opened up new avenues to introgress genes from secondary and tertiary gene pools for improving disease resistance in chickpea. In this review, we have discussed important diseases, constraints and improvement strategies for enhancing disease resistance in chickpea.
Collapse
Affiliation(s)
- Arbind K Choudhary
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Shailesh Kumar Jain
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Abhishek Kumar Dubey
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Jitendra Kumar
- Division of Crop Improvement, Indian Institute of Pulses Research (IIPR), Kanpur, Uttar Pradesh, India
| | - Mamta Sharma
- Crop Protection and Seed Health, International Crops Research Institute for the Semi-Arid-Tropics (ICRISAT), Patancheru, Telangana, India
| | - Kailash Chand Gupta
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Leela Dhar Sharma
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Ved Prakash
- Department of Genetics and Plant Breeding, Rajasthan Agricultural Research Institute, Durgapura, Jaipur, Rajasthan, India
| | - Saurabh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| |
Collapse
|
9
|
Singh RK, Singh C, Chandana BS, Mahto RK, Patial R, Gupta A, Gahlaut V, Hamwieh A, Upadhyaya HD, Kumar R. Exploring Chickpea Germplasm Diversity for Broadening the Genetic Base Utilizing Genomic Resourses. Front Genet 2022; 13:905771. [PMID: 36035111 PMCID: PMC9416867 DOI: 10.3389/fgene.2022.905771] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Legume crops provide significant nutrition to humans as a source of protein, omega-3 fatty acids as well as specific macro and micronutrients. Additionally, legumes improve the cropping environment by replenishing the soil nitrogen content. Chickpeas are the second most significant staple legume food crop worldwide behind dry bean which contains 17%–24% protein, 41%–51% carbohydrate, and other important essential minerals, vitamins, dietary fiber, folate, β-carotene, anti-oxidants, micronutrients (phosphorus, calcium, magnesium, iron, and zinc) as well as linoleic and oleic unsaturated fatty acids. Despite these advantages, legumes are far behind cereals in terms of genetic improvement mainly due to far less effort, the bottlenecks of the narrow genetic base, and several biotic and abiotic factors in the scenario of changing climatic conditions. Measures are now called for beyond conventional breeding practices to strategically broadening of narrow genetic base utilizing chickpea wild relatives and improvement of cultivars through advanced breeding approaches with a focus on high yield productivity, biotic and abiotic stresses including climate resilience, and enhanced nutritional values. Desirable donors having such multiple traits have been identified using core and mini core collections from the cultivated gene pool and wild relatives of Chickpea. Several methods have been developed to address cross-species fertilization obstacles and to aid in inter-specific hybridization and introgression of the target gene sequences from wild Cicer species. Additionally, recent advances in “Omics” sciences along with high-throughput and precise phenotyping tools have made it easier to identify genes that regulate traits of interest. Next-generation sequencing technologies, whole-genome sequencing, transcriptomics, and differential genes expression profiling along with a plethora of novel techniques like single nucleotide polymorphism exploiting high-density genotyping by sequencing assays, simple sequence repeat markers, diversity array technology platform, and whole-genome re-sequencing technique led to the identification and development of QTLs and high-density trait mapping of the global chickpea germplasm. These altogether have helped in broadening the narrow genetic base of chickpeas.
Collapse
Affiliation(s)
| | - Charul Singh
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | - B S Chandana
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Rohit K Mahto
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| | - Ranjana Patial
- Department of Agricultural Sciences, Chandigarh University, Mohali, India
| | - Astha Gupta
- School of Agricultural Sciences, Sharda University, Greater Noida, India
| | - Vijay Gahlaut
- Institute of Himalayan Bioresource Technology (CSIR), Pālampur, India
| | - Aladdin Hamwieh
- International Center for Agriculture Research in the Dry Areas (ICARDA), Giza, Egypt
| | - H D Upadhyaya
- Department of Entomology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, United States
| | - Rajendra Kumar
- Indian Agricultural Research Institute (ICAR), New Delhi, India
| |
Collapse
|
10
|
Kanapin A, Bankin M, Rozhmina T, Samsonova A, Samsonova M. Genomic Regions Associated with Fusarium Wilt Resistance in Flax. Int J Mol Sci 2021; 22:12383. [PMID: 34830265 PMCID: PMC8623186 DOI: 10.3390/ijms222212383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/22/2023] Open
Abstract
Modern flax cultivars are susceptible to many diseases; arguably, the most economically damaging of these is the Fusarium wilt fungal disease. Over the past decades international flax breeding initiatives resulted in the development of resistant cultivars. However, much remains to be learned about the mechanisms of resistance to Fusarium infection in flax. As a first step to uncover the genetic factors associated with resistance to Fusarium wilt disease, we performed a genome-wide association study (GWAS) using 297 accessions from the collection of the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. These genotypes were infected with a highly pathogenic Fusarium oxysporum f.sp. lini MI39 strain; the wilt symptoms were documented in the course of three successive years. Six different single-locus models implemented in GAPIT3 R package were applied to a selected subset of 72,526 SNPs. A total of 15 QTNs (Quantitative Trait Nucleotides) were detected during at least two years of observation, while eight QTNs were found during all three years of the experiment. Of these, ten QTNs occupied a region of 640 Kb at the start of chromosome 1, while the remaining QTNs mapped to chromosomes 8, 11 and 13. All stable QTNs demonstrate a statistically significant allelic effect across 3 years of the experiment. Importantly, several QTNs spanned regions that harbored genes involved in the pathogen recognition and plant immunity response, including the KIP1-like protein (Lus10025717) and NBS-LRR protein (Lus10025852). Our results provide novel insights into the genetic architecture of flax resistance to Fusarium wilt and pinpoint potential candidate genes for further in-depth studies.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.K.); (A.S.)
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia;
| | - Anastasia Samsonova
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia; (A.K.); (A.S.)
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia;
| |
Collapse
|
11
|
Carmona-Molero R, Jimenez-Lopez JC, Caballo C, Gil J, Millán T, Die JV. Aldehyde Dehydrogenase 3 Is an Expanded Gene Family with Potential Adaptive Roles in Chickpea. PLANTS 2021; 10:plants10112429. [PMID: 34834791 PMCID: PMC8619295 DOI: 10.3390/plants10112429] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/23/2022]
Abstract
Legumes play an important role in ensuring food security, improving nutrition and enhancing ecosystem resilience. Chickpea is a globally important grain legume adapted to semi-arid regions under rain-fed conditions. A growing body of research shows that aldehyde dehydrogenases (ALDHs) represent a gene class with promising potential for plant adaptation improvement. Aldehyde dehydrogenases constitute a superfamily of proteins with important functions as ‘aldehyde scavengers’ by detoxifying aldehydes molecules, and thus play important roles in stress responses. We performed a comprehensive study of the ALDH superfamily in the chickpea genome and identified 27 unique ALDH loci. Most chickpea ALDHs originated from duplication events and the ALDH3 gene family was noticeably expanded. Based on the physical locations of genes and sequence similarities, our results suggest that segmental duplication is a major driving force in the expansion of the ALDH family. Supported by expression data, the findings of this study offer new potential target genes for improving stress tolerance in chickpea that will be useful for breeding programs.
Collapse
Affiliation(s)
- Rocío Carmona-Molero
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose C. Jimenez-Lopez
- Department of Biochemistry, Cell and Molecular Biology of Plants, EEZ-CSIC, 18008 Granada, Spain;
- Institute of Agriculture and School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Cristina Caballo
- Área de Genómica y Biotecnología, IFAPA, Alameda del Obispo, 14080 Córdoba, Spain;
| | - Juan Gil
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Teresa Millán
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
| | - Jose V. Die
- Department of Genetics ETSIAM, University of Córdoba, 14071 Córdoba, Spain; (R.C.-M.); (J.G.); (T.M.)
- Correspondence:
| |
Collapse
|
12
|
Jha UC, Bohra A, Pandey S, Parida SK. Breeding, Genetics, and Genomics Approaches for Improving Fusarium Wilt Resistance in Major Grain Legumes. Front Genet 2020; 11:1001. [PMID: 33193586 PMCID: PMC7644945 DOI: 10.3389/fgene.2020.01001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/06/2020] [Indexed: 12/29/2022] Open
Abstract
Fusarium wilt (FW) disease is the key constraint to grain legume production worldwide. The projected climate change is likely to exacerbate the current scenario. Of the various plant protection measures, genetic improvement of the disease resistance of crop cultivars remains the most economic, straightforward and environmental-friendly option to mitigate the risk. We begin with a brief recap of the classical genetic efforts that provided first insights into the genetic determinants controlling plant response to different races of FW pathogen in grain legumes. Subsequent technological breakthroughs like sequencing technologies have enhanced our understanding of the genetic basis of both plant resistance and pathogenicity. We present noteworthy examples of targeted improvement of plant resistance using genomics-assisted approaches. In parallel, modern functional genomic tools like RNA-seq are playing a greater role in illuminating the various aspects of plant-pathogen interaction. Further, proteomics and metabolomics have also been leveraged in recent years to reveal molecular players and various signaling pathways and complex networks participating in host-pathogen interaction. Finally, we present a perspective on the challenges and limitations of high-throughput phenotyping and emerging breeding approaches to expeditiously develop FW-resistant cultivars under the changing climate.
Collapse
Affiliation(s)
- Uday Chand Jha
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, India
| | - Abhishek Bohra
- ICAR-Indian Institute of Pulses Research, Uttar Pradesh, India
| | - Shailesh Pandey
- Forest Protection Division, Forest Research Institute, Dehradun, India
| | | |
Collapse
|