1
|
Theron IJ, Mason S, van Reenen M, Stander Z, Kleynhans L, Ronacher K, Loots DT. Characterizing poorly controlled type 2 diabetes using 1H-NMR metabolomics. Metabolomics 2024; 20:54. [PMID: 38734832 PMCID: PMC11088559 DOI: 10.1007/s11306-024-02127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
INTRODUCTION The prevalence of type 2 diabetes has surged to epidemic proportions and despite treatment administration/adherence, some individuals experience poorly controlled diabetes. While existing literature explores metabolic changes in type 2 diabetes, understanding metabolic derangement in poorly controlled cases remains limited. OBJECTIVE This investigation aimed to characterize the urine metabolome of poorly controlled type 2 diabetes in a South African cohort. METHOD Using an untargeted proton nuclear magnetic resonance metabolomics approach, urine samples from 15 poorly controlled type 2 diabetes patients and 25 healthy controls were analyzed and statistically compared to identify differentiating metabolites. RESULTS The poorly controlled type 2 diabetes patients were characterized by elevated concentrations of various metabolites associated with changes to the macro-fuel pathways (including carbohydrate metabolism, ketogenesis, proteolysis, and the tricarboxylic acid cycle), autophagy and/or apoptosis, an uncontrolled diet, and kidney and liver damage. CONCLUSION These results indicate that inhibited cellular glucose uptake in poorly controlled type 2 diabetes significantly affects energy-producing pathways, leading to apoptosis and/or autophagy, ultimately contributing to kidney and mild liver damage. The study also suggests poor dietary compliance as a cause of the patient's uncontrolled glycemic state. Collectively these findings offer a first-time comprehensive overview of urine metabolic changes in poorly controlled type 2 diabetes and its association with secondary diseases, offering potential insights for more targeted treatment strategies to prevent disease progression, treatment efficacy, and diet/treatment compliance.
Collapse
Affiliation(s)
- Isabella J Theron
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shayne Mason
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Mari van Reenen
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Zinandré Stander
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
| | - Katharina Ronacher
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
- Mater Research Institute, The University of Queensland, Translational Research Institute, Brisbane, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Australia
| | - Du Toit Loots
- Human Metabolomics, Department of Biochemistry, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
2
|
Yousf S, Batra HS, Jha RM, Sardesai DM, Ananthamohan K, Chugh J, Sharma S. Identification of potential serum biomarkers associated with HbA1c levels in Indian type 2 diabetic subjects using NMR-based metabolomics. Clin Chim Acta 2024; 557:117857. [PMID: 38484908 DOI: 10.1016/j.cca.2024.117857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/02/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND The prevalence of type 2 diabetes mellitus (T2DM), a progressive metabolic disorder characterized by chronic hyperglycemia and the development of insulin resistance, has increased globally, with worrying statistics coming from children, adolescents, and young adults from developing countries like India. Here, we investigated unique circulating metabolic signatures associated with prediabetes and T2DM in an Indian cohort using NMR-based metabolomics. MATERIALS AND METHODS The study subjects included healthy volunteers (N = 101), prediabetic subjects (N = 75), and T2DM patients (N = 108). Serum metabolic profiling was performed using 1H NMR spectroscopy and major perturbed metabolites were identified by multivariate analysis and receiver operating characteristic (ROC) modules. RESULTS Of the 36 aqueous abundant metabolites, 24 showed a statistically significant difference between healthy volunteers, prediabetics, and established T2DM subjects. On performing multivariate ROC curve analysis with 5 commonly dysregulated metabolites (namely, glucose, pyroglutamate, o-phosphocholine, serine, and methionine) in prediabetes and T2DM, AUC values obtained were 0.96 (95 % confidence interval (CI) = 0.93, 0.98) for T2DM; and 0.88 (95 % CI = 0.81, 0.93) for prediabetic subjects, respectively. CONCLUSION We propose that the identified metabolite panel can be used in the future as a biomarker for clinical diagnosis, patient surveillance, and for predicting individuals at risk for developing diabetes.
Collapse
Affiliation(s)
- Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India; Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Hitender S Batra
- Department of Biochemistry, Armed Forces Medical College (AFMC), Wanowrie, Pune 411040, India; Department of Biochemistry, Symbiosis Medical College for Women, Pune 412115, India.
| | - Rakesh M Jha
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Devika M Sardesai
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Kalyani Ananthamohan
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India
| | - Jeetender Chugh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune 411007, India.
| |
Collapse
|
3
|
Rotbain Curovic V, Sørland BA, Hansen TW, Jain SY, Sulek K, Mattila IM, Frimodt-Moller M, Trost K, Legido-Quigley C, Theilade S, Tofte N, Winther SA, Hansen CS, Rossing P, Ahluwalia TS. Circulating metabolomic markers in association with overall burden of microvascular complications in type 1 diabetes. BMJ Open Diabetes Res Care 2024; 12:e003973. [PMID: 38604732 PMCID: PMC11015221 DOI: 10.1136/bmjdrc-2023-003973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Diabetic retinopathy (DR), diabetic kidney disease (DKD) and distal symmetric polyneuropathy (DSPN) share common pathophysiology and pose an additive risk of early mortality. RESEARCH DESIGN AND METHODS In adults with type 1 diabetes, 49 metabolites previously associated with either DR or DKD were assessed in relation to presence of DSPN. Metabolites overlapping in significance with presence of all three complications were assessed in relation to microvascular burden severity (additive number of complications-ie, presence of DKD±DR±DSPN) using linear regression models. Subsequently, the same metabolites were assessed with progression to endpoints: soft microvascular events (progression in albuminuria grade, ≥30% estimated glomerular filtration rate (eGFR) decline, or any progression in DR grade), hard microvascular events (progression to proliferative DR, chronic kidney failure, or ≥40% eGFR decline), and hard microvascular or macrovascular events (hard microvascular events, cardiovascular events (myocardial infarction, stroke, or arterial interventions), or cardiovascular mortality), using Cox models. All models were adjusted for sex, baseline age, diabetes duration, systolic blood pressure, HbA1c, body mass index, total cholesterol, smoking, and statin treatment. RESULTS The full cohort investigated consisted of 487 participants. Mean (SD) follow-up was 4.8 (2.9, 5.7) years. Baseline biothesiometry was available in 202 participants, comprising the cross-sectional cohort. Eight metabolites were significantly associated with presence of DR, DKD, and DSPN, and six with additive microvascular burden severity. In the full cohort longitudinal analysis, higher levels of 3,4-dihydroxybutanoic acid (DHBA), 2,4-DHBA, ribonic acid, glycine, and ribitol were associated with development of events in both crude and adjusted models. Adding 3,4-DHBA, ribonic acid, and glycine to a traditional risk factor model improved the discrimination of hard microvascular events. CONCLUSIONS While prospective studies directly assessing the predictive ability of these markers are needed, our results strengthen the role of clinical metabolomics in relation to risk assessment of diabetic complications in chronic type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kajetan Trost
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | | | - Simone Theilade
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | - Nete Tofte
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | | | - Peter Rossing
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, University of Copenhagen, København, Denmark
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- University of Copenhagen Bioinformatics Centre, København, Denmark
- Department of Science and Environment, Roskilde University, Roskilde, Denmark
| |
Collapse
|
4
|
Tobias DK, Hamaya R, Clish CB, Liang L, Deik A, Dennis C, Bullock K, Zhang C, Hu FB, Manson JE. Type 2 diabetes metabolomics score and risk of progression to type 2 diabetes among women with a history of gestational diabetes mellitus. Diabetes Metab Res Rev 2024; 40:e3763. [PMID: 38287718 PMCID: PMC10842268 DOI: 10.1002/dmrr.3763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/08/2023] [Accepted: 11/05/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Several metabolites are individually related to incident type 2 diabetes (T2D) risk. We prospectively evaluated a novel T2D-metabolite pattern with a risk of progression to T2D among high-risk women with a history of gestational diabetes mellitus (GDM). METHODS The longitudinal Nurses' Health Study II cohort enroled 116,429 women in 1989 and collected blood samples from 1996 to 1999. We profiled plasma metabolites in 175 incident T2D cases and 175 age-matched controls, all with a history of GDM before the blood draw. We derived a metabolomics score from 21 metabolites previously associated with incident T2D in the published literature by scoring according to the participants' quintile (1-5 points) of each metabolite. We modelled the T2D metabolomics score categorically in quartiles and continuously per 1 standard deviation (SD) with the risk of incident T2D using conditional logistic regression models adjusting for body mass index at the blood draw, and other established T2D risk factors. RESULTS The percentage of women progressing to T2D ranged from 10% in the bottom T2D metabolomics score quartile to 78% in the highest score quartile. Adjusting for established T2D risk factors, women in the highest quartile had more than a 20-fold greater diabetes risk than women in the lowest quartile (odds ratios [OR] = 23.1 [95% CI = 8.6, 62.1]; p for trend<0.001). The continuous T2D metabolomics score was strongly and positively associated with incident T2D (adjusted OR = 2.7 per SD [95% CI = 1.9, 3.7], p < 0.0001). CONCLUSIONS A pattern of plasma metabolites among high-risk women is associated with a markedly elevated risk of progression to T2D later in life.
Collapse
Affiliation(s)
- Deirdre K. Tobias
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Nutrition Department, Harvard TH Chan School of Public Health, Boston, MA
| | - Rikuta Hamaya
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Epidemiology Department, Harvard TH Chan School of Public Health, Boston, MA
| | | | - Liming Liang
- Biostatistics Department, Harvard TH Chan School of Public Health, Boston, MA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA
| | | | | | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD
| | - Frank B. Hu
- Nutrition Department, Harvard TH Chan School of Public Health, Boston, MA
- Epidemiology Department, Harvard TH Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | - JoAnn E. Manson
- Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Epidemiology Department, Harvard TH Chan School of Public Health, Boston, MA
| |
Collapse
|
5
|
Taibl KR, Bellissimo MP, Smith MR, Liu KH, Tran VT, Jones DP, Ziegler TR, Alvarez JA. Characterizing substrate utilization during the fasted state using plasma high-resolution metabolomics. Nutrition 2023; 116:112160. [PMID: 37566924 PMCID: PMC10787037 DOI: 10.1016/j.nut.2023.112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 08/13/2023]
Abstract
OBJECTIVES High-resolution metabolomics enables global assessment of metabolites and molecular pathways underlying physiologic processes, including substrate utilization during the fasted state. The clinical index for substrate utilization, respiratory exchange ratio (RER), is measured via indirect calorimetry. The aim of this pilot study was to use metabolomics to identify metabolic pathways and plasma metabolites associated with substrate utilization in healthy, fasted adults. METHODS This cross-sectional study included 33 adults (mean age 27.7 ± 4.9 y, mean body mass index 24.8 ± 4 kg/m2). Participants underwent indirect calorimetry to determine resting RER after an overnight fast. Untargeted metabolomics was performed on fasted plasma samples using dual-column liquid chromatography and ultra-high-resolution mass spectrometry. Linear regression and pathway enrichment analyses identified pathways and metabolites associated with substrate utilization measured with indirect calorimetry. RESULTS RER was significantly associated with 1389 metabolites enriched within 13 metabolic pathways (P < 0.05). Lipid-related findings included general pathways, such as fatty acid activation, and specific pathways, such as C21-steroid hormone biosynthesis and metabolism, butyrate metabolism, and carnitine shuttle. Amino acid pathways included those central to metabolism, such as glucogenic amino acids, and pathways needed to maintain reduction-oxidation reactions, such as methionine and cysteine metabolism. Galactose and pyrimidine metabolism were also associated with RER (all P < 0.05). CONCLUSIONS The fasting plasma metabolome reflects the diverse macronutrient pathways involved in carbohydrate, amino acid, and lipid metabolism during the fasted state in healthy adults. Future studies should consider the utility of metabolomics to profile individual nutrient requirements and compare findings reported here to clinical populations.
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States
| | - Moriah P Bellissimo
- Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States
| | - Matthew Ryan Smith
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Ken H Liu
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - ViLinh T Tran
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Dean P Jones
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Thomas R Ziegler
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, United States
| | - Jessica A Alvarez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States; Emory Center for Clinical and Molecular Nutrition, Emory University, Atlanta, Georgia, United States.
| |
Collapse
|
6
|
Nakajima H, Okada H, Kobayashi A, Takahashi F, Okamura T, Hashimoto Y, Nakanishi N, Senmaru T, Ushigome E, Hamaguchi M, Fukui M. Leucine and Glutamic Acid as a Biomarker of Sarcopenic Risk in Japanese People with Type 2 Diabetes. Nutrients 2023; 15:2400. [PMID: 37242283 PMCID: PMC10222500 DOI: 10.3390/nu15102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
This study aimed to identify the serum metabolites associated with sarcopenic risk in Japanese patients with type 2 diabetes, determine the effect of dietary protein intake on the serum metabolic profile, and examine its association with sarcopenia. Ninety-nine Japanese patients with type 2 diabetes were included, and sarcopenic risk was defined as low muscle mass or strength. Seventeen serum metabolites were quantified after gas chromatography-mass spectrometry analysis. The relationship between dietary protein intake and the metabolites concerning sarcopenia was analyzed, and the factors affecting sarcopenic risk were clarified. Twenty-seven patients were classified as being at risk of sarcopenia, the same as the general risk, which was associated with older age, a longer duration of the disease, and a lower body mass index. Low levels of leucine and glutamic acid were significantly associated with low muscle strength (p = 0.002 and p < 0.001, respectively), and leucine was also associated with muscle mass (p = 0.001). Lower levels of glutamic acid had higher odds of sarcopenic risk after being adjusted for age and HbA1c (adjusted OR 4.27, 95% CI 1.07-17.11, p = 0.041), but not for leucine. Leucine and glutamic acid can serve as useful biomarkers for sarcopenia, highlighting potential targets for its prevention.
Collapse
Affiliation(s)
- Hanako Nakajima
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Hiroshi Okada
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Ayaka Kobayashi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Fuyuko Takahashi
- Nutrition Division, Saiseikai Suita Hospital, Osaka 564-0013, Japan
| | - Takuro Okamura
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Yoshitaka Hashimoto
- Department of Diabetes and Endocrinology, Matsushita Memorial Hospital, Osaka 570-8540, Japan
| | - Naoko Nakanishi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Takafumi Senmaru
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Emi Ushigome
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-0841, Japan; (H.N.)
| |
Collapse
|
7
|
Anand ST, Ryckman KK, Baer RJ, Charlton ME, Breheny PJ, Terry WW, Kober K, Oltman S, Rogers EE, Jelliffe-Pawlowski LL, Chrischilles EA. Metabolic differences among newborns born to mothers with a history of leukemia or lymphoma. J Matern Fetal Neonatal Med 2022; 35:6751-6758. [PMID: 33980115 PMCID: PMC8586052 DOI: 10.1080/14767058.2021.1922378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 04/18/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Leukemia and lymphoma are cancers affecting children, adolescents, and young adults and may affect reproductive outcomes and maternal metabolism. We evaluated for metabolic changes in newborns of mothers with a history of these cancers. METHODS A cross-sectional study was conducted on California births from 2007 to 2011 with linked maternal hospital discharge records, birth certificate, and newborn screening metabolites. History of leukemia or lymphoma was determined using ICD-9-CM codes from hospital discharge data and newborn metabolite data from the newborn screening program. RESULTS A total of 2,068,038 women without cancer history and 906 with history of leukemia or lymphoma were included. After adjusting for differences in maternal age, infant sex, age at metabolite collection, gestational age, and birthweight, among newborns born to women with history of leukemia/lymphoma, several acylcarnitines were significantly (p < .001 - based on Bonferroni correction for multiple testing) higher compared to newborns of mothers without cancer history: C3-DC (mean difference (MD) = 0.006), C5-DC (MD = 0.009), C8:1 (MD = 0.008), C14 (MD = 0.010), and C16:1 (MD = 0.011), whereas citrulline levels were significantly lower (MD = -0.581) among newborns born to mothers with history of leukemia or lymphoma compared to newborns of mothers without a history of cancer. CONCLUSION The varied metabolite levels suggest history of leukemia or lymphoma has metabolic impact on newborn offspring, which may have implications for future metabolic consequences such as necrotizing enterocolitis and urea cycle enzyme disorders in children born to mothers with a history of leukemia or lymphoma.
Collapse
Affiliation(s)
- Sonia T. Anand
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Kelli K. Ryckman
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Rebecca J. Baer
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
| | - Mary E. Charlton
- Department of Epidemiology, University of Iowa, Iowa City, Iowa, United States of America
| | - Patrick J. Breheny
- Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States of America
| | - William W. Terry
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States of America
| | - Kord Kober
- Department of Physiological Nursing, University of California San Francisco, San Francisco, California, United States of America
| | - Scott Oltman
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Elizabeth E. Rogers
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco School of Medicine, San Francisco, California, United States of America
| | - Laura L. Jelliffe-Pawlowski
- California Preterm Birth Initiative, University of California San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | | |
Collapse
|
8
|
Normalization of Vitamin D Serum Levels in Patients with Type Two Diabetes Mellitus Reduces Levels of Branched Chain Amino Acids. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58091267. [PMID: 36143944 PMCID: PMC9505541 DOI: 10.3390/medicina58091267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Vitamin D is involved in pancreatic beta-cell function, insulin sensitivity, and inflammation. Further, elevation in branched-chain amino acids (BCAAs) has been implicated in type 2 diabetes (T2DM) pathology. However, the relationship between vitamin D and BCAAs in T2DM remains unclear. The current study aimed to investigate the relationship between vitamin D and BCAAs in T2DM. Materials and Methods: In total, 230 participants (137 with T2DM and 93 healthy controls) were recruited in a cross-sectional study. Furthermore, an additional follow-up study was performed, including 20 T2DM patients with vitamin D deficiency. These patients were prescribed weekly vitamin D tablets (50,000 IU) for three months. The levels of several biochemical parameters were examined at the end of the vitamin D supplementation. Results: The results showed that patients with T2DM had higher serum levels of BCAAs and lower serum levels of 25-hydroxyvitamin D (25(OH)D) compared with those of the healthy controls (p < 0.01). The serum levels of vitamin D were negatively correlated with BCAA levels in T2DM patients (r = −0.1731, p < 0.05). In the follow-up study, 25(OH)D levels were significantly improved (p < 0.001) following vitamin D supplementation. Vitamin D supplementation significantly reduced the levels of BCAAs, HbA1c, total cholesterol, triglycerides, and fasting glucose (p < 0.01). Conclusion: Overall, these results suggest a role for BCAAs and vitamin D in the etiology and progression of T2DM. Thus, managing vitamin D deficiency in patients with T2DM may improve glycemic control and lower BCAA levels.
Collapse
|
9
|
Hu C, Jia W. Multi-omics profiling: the way towards precision medicine in metabolic diseases. J Mol Cell Biol 2021; 13:mjab051. [PMID: 34406397 PMCID: PMC8697344 DOI: 10.1093/jmcb/mjab051] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic diseases including type 2 diabetes mellitus (T2DM), non-alcoholic fatty liver disease (NAFLD), and metabolic syndrome (MetS) are alarming health burdens around the world, while therapies for these diseases are far from satisfying as their etiologies are not completely clear yet. T2DM, NAFLD, and MetS are all complex and multifactorial metabolic disorders based on the interactions between genetics and environment. Omics studies such as genetics, transcriptomics, epigenetics, proteomics, and metabolomics are all promising approaches in accurately characterizing these diseases. And the most effective treatments for individuals can be achieved via omics pathways, which is the theme of precision medicine. In this review, we summarized the multi-omics studies of T2DM, NAFLD, and MetS in recent years, provided a theoretical basis for their pathogenesis and the effective prevention and treatment, and highlighted the biomarkers and future strategies for precision medicine.
Collapse
Affiliation(s)
- Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
- Institute for Metabolic Disease, Fengxian Central Hospital, The Third School of
Clinical Medicine, Southern Medical University, Shanghai 201499, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus,
Shanghai Clinical Center for Diabetes, Shanghai Jiao Tong University Affiliated Sixth
People's Hospital, Shanghai 200233, China
| |
Collapse
|
10
|
Oxidative Stress Biomarkers in the Relationship between Type 2 Diabetes and Air Pollution. Antioxidants (Basel) 2021; 10:antiox10081234. [PMID: 34439482 PMCID: PMC8388875 DOI: 10.3390/antiox10081234] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/21/2022] Open
Abstract
The incidence and prevalence of type 2 diabetes have increased in the last decades and are expected to further grow in the coming years. Chronic hyperglycemia triggers free radical generation and causes increased oxidative stress, affecting a number of molecular mechanisms and cellular pathways, including the generation of advanced glycation end products, proinflammatory and procoagulant effects, induction of apoptosis, vascular smooth-muscle cell proliferation, endothelial and mitochondrial dysfunction, reduction of nitric oxide release, and activation of protein kinase C. Among type 2 diabetes determinants, many data have documented the adverse effects of environmental factors (e.g., air pollutants) through multiple exposure-induced mechanisms (e.g., systemic inflammation and oxidative stress, hypercoagulability, and endothelial and immune responses). Therefore, here we discuss the role of air pollution in oxidative stress-related damage to glycemic metabolism homeostasis, with a particular focus on its impact on health. In this context, the improvement of new advanced tools (e.g., omic techniques and the study of epigenetic changes) may provide a substantial contribution, helping in the evaluation of the individual in his biological totality, and offer a comprehensive assessment of the molecular, clinical, environmental, and epidemiological aspects.
Collapse
|
11
|
Amino Acid Signature of Oxidative Stress in Patients with Type 2 Diabetes: Targeted Exploratory Metabolomic Research. Antioxidants (Basel) 2021; 10:antiox10040610. [PMID: 33921149 PMCID: PMC8071553 DOI: 10.3390/antiox10040610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress plays a key role in the development of chronic diabetes-related complications. Previous metabolomic studies showed a positive association of diabetes and insulin resistance with branched-chain amino acids (AAs) and aromatic AAs. The purpose of this research is to identify distinct metabolic changes associated with increased oxidative stress, as assessed by nitrotyrosine levels, in type 2 diabetes (T2DM). Serum samples of 80 patients with insulin-treated T2DM are analyzed by AA-targeted metabolomics using ultrahigh-performance liquid chromatography/mass spectrometry. Patients are divided into two groups based on their nitrotyrosine levels: the highest level of oxidative stress (Q4 nitrotyrosine) and lower levels (Q1–Q3 nitrotyrosine). The identification of biomarkers is performed in MetaboAnalyst version 5.0 using a t-test corrected for false discovery rate, unsupervised principal component analysis and supervised partial least-squares discriminant analysis (PLS-DA). Four AAs have significantly different levels between the groups for highest and lower oxidative stress. Cysteine, phenylalanine and tyrosine are substantially increased while citrulline is decreased (p-value <0.05 and variable importance in the projection [VIP] >1). Corresponding pathways that might be disrupted in patients with high oxidative stress are phenylalanine, tyrosine and tryptophan biosynthesis, arginine biosynthesis, phenylalanine metabolism, cysteine and methionine metabolism and tyrosine metabolism.
Collapse
|
12
|
Yun JH, Kim JM, Jeon HJ, Oh T, Choi HJ, Kim BJ. Metabolomics profiles associated with diabetic retinopathy in type 2 diabetes patients. PLoS One 2020; 15:e0241365. [PMID: 33119699 PMCID: PMC7595280 DOI: 10.1371/journal.pone.0241365] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/13/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes, and it is the consequence of microvascular retinal changes due to high glucose levels over a long time. Metabolomics profiling is a rapidly evolving method used to identify the metabolites in biological fluids and investigate disease progression. In this study, we used a targeted metabolomics approach to quantify the serum metabolites in type 2 diabetes (T2D) patients. Diabetes patients were divided into three groups based on the status of their complications: non-DR (NDR, n = 143), non-proliferative DR (NPDR, n = 123), and proliferative DR (PDR, n = 51) groups. Multiple logistic regression analysis and multiple testing corrections were performed to identify the significant differences in the metabolomics profiles of the different analysis groups. The concentrations of 62 metabolites of the NDR versus DR group, 53 metabolites of the NDR versus NPDR group, and 30 metabolites of the NDR versus PDR group were found to be significantly different. Finally, sixteen metabolites were selected as specific metabolites common to NPDR and PDR. Among them, three metabolites including total DMA, tryptophan, and kynurenine were potential makers of DR progression in T2D patients. Additionally, several metabolites such as carnitines, several amino acids, and phosphatidylcholines also showed a marker potential. The metabolite signatures identified in this study will provide insight into the mechanisms underlying DR development and progression in T2D patients in future studies.
Collapse
Affiliation(s)
- Jun Ho Yun
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- College of Pharmacy, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jeong-Min Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
| | - Hyun Jeong Jeon
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Taekeun Oh
- Department of Internal Medicine, Chungbuk National University College of Medicine, Cheongju, Chungbuk, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences & Department of Anatomy and Cell Biology, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- * E-mail: (BJK); (HJC)
| | - Bong-Jo Kim
- Division of Genome Research, Center for Genome Science, Korea National Institute of Health, Cheongju, Chungbuk, Republic of Korea
- * E-mail: (BJK); (HJC)
| |
Collapse
|
13
|
Li Y, Wang Y, Zhuang Y, Zhang P, Chen S, Asakawa T, Gao B. Serum Metabolomic Profiles Associated With Untreated Metabolic Syndrome Patients in the Chinese Population. Clin Transl Sci 2020; 13:1271-1278. [PMID: 32543029 PMCID: PMC7719370 DOI: 10.1111/cts.12817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/17/2020] [Indexed: 01/19/2023] Open
Abstract
Metabolomics is a promising technology for elucidating the mechanisms of metabolic syndrome (MetS). However, measurements in patients with MetS under different conditions vary. Metabolomics experiments in different populations and pathophysiological conditions are, therefore, indispensable. We performed a serum metabolomics investigation in untreated patients with MetS in the Chinese population. Untreated patients with MetS were recruited to this study. Metabolites were measured using a traditional 1H nuclear magnetic resonance (NMR) experiment followed by principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS‐DA). Key metabolic pathways were identified by searching the Kyoto Encyclopedia of Genes and Genomes Pathway Database. A total of 28 patients with MetS and 30 healthy subjects were enrolled. All patients were untreated because they were unaware of or neglected to treat their MetS. By 1H NMR, we identified 49 known substances. Following PCA and OPLS‐DA, 36 metabolites were confirmed to be closely associated with MetS compared with the control group; 33 metabolites were increased, whereas 3 metabolites were reduced. Importantly, 14 metabolites that changed in the serum of these untreated patients with MetS were previously unreported. Pathway analysis revealed the top 15 metabolic pathways associated with untreated MetS, which included 3 amino acid metabolic pathways. Our data suggest that untreated patients exhibit a worse pathophysiologic manifestation, which may result in more rapid progression of MetS. Thus, we propose that health education be reinforced to improve the public’s knowledge, attitude, and practice regarding MetS. The rates of “untreated” patients due to unawareness and neglect must be reduced immediately.
Collapse
Affiliation(s)
- Yuanyuan Li
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yongfa Wang
- Department of Endocrinology, Jinjiang Hospital of Traditional Chinese Medicine, Jinjiang, China
| | - Yaodong Zhuang
- Department of Endocrinology, Jinjiang Hospital of Traditional Chinese Medicine, Jinjiang, China
| | - Ping Zhang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shujiao Chen
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tetsuya Asakawa
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Bizhen Gao
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|