1
|
Lu Y, Yang S, Chen W, Xie H, Xu C. Advances in Migratory Plant Endoparasitic Nematode Effectors. Int J Mol Sci 2024; 25:6435. [PMID: 38928141 PMCID: PMC11203926 DOI: 10.3390/ijms25126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Unlike sedentary plant-parasitic nematodes, migratory plant endoparasitic nematodes (MPENs) are unable to establish permanent feeding sites, and all developmental stages (except eggs) can invade and feed on plant tissues and can be easily overlooked because of the unspecific symptoms. They cause numerous economic losses in agriculture, forestry, and horticulture. In order to understand the pathogenetic mechanism of MPENs, here we describe research on functions and host targets focused on currently identified effectors from six MPENs, namely Radopholus similis, Pratylenchus spp., Ditylenchus destructor, Bursaphelenchus xylophilus, Aphelenchoides besseyi, and Hirschmanniella oryzae. This information will provide valuable insights into understanding MPEN effectors and for future fostering advancements in plant protection.
Collapse
Affiliation(s)
| | | | | | | | - Chunling Xu
- Research Center of Nematodes of Plant Quarantine, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Zhuge J, Zhou X, Zhou L, Hu J, Guo K. The Plant Parasitic Nematodes Database: A Comprehensive Genomic Data Platform for Plant Parasitic Nematode Research. Int J Mol Sci 2023; 24:16841. [PMID: 38069165 PMCID: PMC10706385 DOI: 10.3390/ijms242316841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/24/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Plant parasitic nematodes are important phytopathogens that greatly affect the growth of agricultural and forestry plants. Scientists have conducted several studies to prevent and treat the diseases they cause. With the advent of the genomics era, the genome sequencing of plant parasitic nematodes has been considerably accelerated, and a large amount of data has been generated. This study developed the Plant Parasitic Nematodes Database (PPND), a platform to combine these data. The PPND contains genomic, transcriptomic, protein, and functional annotation data, allowing users to conduct BLAST searches and genome browser analyses and download bioinformatics data for in-depth research. PPND will be continuously updated, and new data will be integrated. PPND is anticipated to become a comprehensive genomics data platform for plant parasitic nematode research.
Collapse
Affiliation(s)
| | | | | | | | - Kai Guo
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (J.Z.); (X.Z.); (L.Z.); (J.H.)
| |
Collapse
|
3
|
Mwaka HS, Bauters L, Namaganda J, Marcou S, Bwesigye PN, Kubiriba J, Smagghe G, Tushemereirwe WK, Gheysen G. Transgenic East African Highland Banana Plants Are Protected against Radopholus similis through Host-Delivered RNAi. Int J Mol Sci 2023; 24:12126. [PMID: 37569502 PMCID: PMC10418933 DOI: 10.3390/ijms241512126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The burrowing nematode Radopholus similis is considered a major problem of intensive banana cultivation. It can cause extensive root damage resulting in the toppling disease of banana, which means that plants fall to the ground. Soaking R. similis in double-stranded (ds) RNA of the nematode genes Rps13, chitin synthase (Chs-2), Unc-87, Pat-10 or beta-1,4-endoglucanase (Eng1a) suppressed reproduction on carrot discs, from 2.8-fold (Chs-2) to 7-fold (Rps13). The East African Highland Banana cultivar Nakitembe was then transformed with constructs for expression of dsRNA against the same genes, and for each construct, 30 independent transformants were tested with nematode infection. Four months after transfer from in vitro culture to the greenhouse, the banana plants were transferred to a screenhouse and inoculated with 2000 nematodes per plant, and thirteen weeks later, they were analyzed for several parameters including plant growth, root necrosis and final nematode population. Plants with dsRNA constructs against the nematode genes were on average showing lower nematode multiplication and root damage than the nontransformed controls or the banana plants expressing dsRNA against the nonendogenous gene. In conclusion, RNAi seems to efficiently protect banana against damage caused by R. similis, opening perspectives to control this pest.
Collapse
Affiliation(s)
- Henry Shaykins Mwaka
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Lander Bauters
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| | - Josephine Namaganda
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Shirley Marcou
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | - Priver Namanya Bwesigye
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (J.N.); (P.N.B.); (J.K.); (W.K.T.)
| | - Guy Smagghe
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (S.M.)
| | | | - Godelieve Gheysen
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (L.B.)
| |
Collapse
|
4
|
Comparative effects of nitrogen, phosphorus and potassium on Radopholus similis infection in East African highland banana plants as influenced by rhizosphere biota. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
5
|
Vieira P, Myers RY, Pellegrin C, Wram C, Hesse C, Maier TR, Shao J, Koutsovoulos GD, Zasada I, Matsumoto T, Danchin EGJ, Baum TJ, Eves-van den Akker S, Nemchinov LG. Targeted transcriptomics reveals signatures of large-scale independent origins and concerted regulation of effector genes in Radopholus similis. PLoS Pathog 2021; 17:e1010036. [PMID: 34748609 PMCID: PMC8601627 DOI: 10.1371/journal.ppat.1010036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/18/2021] [Accepted: 10/15/2021] [Indexed: 11/18/2022] Open
Abstract
The burrowing nematode, Radopholus similis, is an economically important plant-parasitic nematode that inflicts damage and yield loss to a wide range of crops. This migratory endoparasite is widely distributed in warmer regions and causes extensive destruction to the root systems of important food crops (e.g., citrus, banana). Despite the economic importance of this nematode, little is known about the repertoire of effectors owned by this species. Here we combined spatially and temporally resolved next-generation sequencing datasets of R. similis to select a list of candidates for the identification of effector genes for this species. We confirmed spatial expression of transcripts of 30 new candidate effectors within the esophageal glands of R. similis by in situ hybridization, revealing a large number of pioneer genes specific to this nematode. We identify a gland promoter motif specifically associated with the subventral glands (named Rs-SUG box), a putative hallmark of spatial and concerted regulation of these effectors. Nematode transcriptome analyses confirmed the expression of these effectors during the interaction with the host, with a large number of pioneer genes being especially abundant. Our data revealed that R. similis holds a diverse and emergent repertoire of effectors, which has been shaped by various evolutionary events, including neofunctionalization, horizontal gene transfer, and possibly by de novo gene birth. In addition, we also report the first GH62 gene so far discovered for any metazoan and putatively acquired by lateral gene transfer from a bacterial donor. Considering the economic damage caused by R. similis, this information provides valuable data to elucidate the mode of parasitism of this nematode.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Roxana Y. Myers
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Clement Pellegrin
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Catherine Wram
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Cedar Hesse
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Thomas R. Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Jonathan Shao
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| | | | - Inga Zasada
- USDA-ARS Horticultural Crops Research Unit, Corvallis, Oregon, United States of America
| | - Tracie Matsumoto
- Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, USDA ARS, Hilo, Hawaii, United States of America
| | - Etienne G. J. Danchin
- INRAE, Université Côte d’Azur, CNRS, Institute Sophia Agrobiotech, Sophia Antipolis, France
| | - Thomas J. Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | | | - Lev G. Nemchinov
- USDA-ARS Molecular Plant Pathology Laboratory, Beltsville, Maryland, United States of America
| |
Collapse
|
6
|
Kranse O, Beasley H, Adams S, Pires-daSilva A, Bell C, Lilley CJ, Urwin PE, Bird D, Miska E, Smant G, Gheysen G, Jones J, Viney M, Abad P, Maier TR, Baum TJ, Siddique S, Williamson V, Akay A, Eves-van den Akker S. Toward genetic modification of plant-parasitic nematodes: delivery of macromolecules to adults and expression of exogenous mRNA in second stage juveniles. G3-GENES GENOMES GENETICS 2021; 11:6135037. [PMID: 33585878 PMCID: PMC8022973 DOI: 10.1093/g3journal/jkaa058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Plant-parasitic nematodes are a continuing threat to food security, causing an estimated 100 billion USD in crop losses each year. The most problematic are the obligate sedentary endoparasites (primarily root knot nematodes and cyst nematodes). Progress in understanding their biology is held back by a lack of tools for functional genetics: forward genetics is largely restricted to studies of natural variation in populations and reverse genetics is entirely reliant on RNA interference. There is an expectation that the development of functional genetic tools would accelerate the progress of research on plant-parasitic nematodes, and hence the development of novel control solutions. Here, we develop some of the foundational biology required to deliver a functional genetic tool kit in plant-parasitic nematodes. We characterize the gonads of male Heterodera schachtii and Meloidogyne hapla in the context of spermatogenesis. We test and optimize various methods for the delivery, expression, and/or detection of exogenous nucleic acids in plant-parasitic nematodes. We demonstrate that delivery of macromolecules to cyst and root knot nematode male germlines is difficult, but possible. Similarly, we demonstrate the delivery of oligonucleotides to root knot nematode gametes. Finally, we develop a transient expression system in plant-parasitic nematodes by demonstrating the delivery and expression of exogenous mRNA encoding various reporter genes throughout the body of H. schachtii juveniles using lipofectamine-based transfection. We anticipate these developments to be independently useful, will expedite the development of genetic modification tools for plant-parasitic nematodes, and ultimately catalyze research on a group of nematodes that threaten global food security.
Collapse
Affiliation(s)
- Olaf Kranse
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Helen Beasley
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Sally Adams
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | | | - Christopher Bell
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Catherine J Lilley
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter E Urwin
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - David Bird
- Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7613, USA
| | - Eric Miska
- Wellcome Trust/Cancer Research UK Gurdon Institute and Department of Genetics, University of Cambridge, Cambridge CB2 1QN, UK
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - John Jones
- Cell & Molecular Sciences Department, The James Hutton Institute, Dundee, DD2 5DA, UK.,School of Biology, Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Mark Viney
- Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool L69 7ZB, UK
| | - Pierre Abad
- INRAE, Université Côte d'Azur, CNRS, ISA, F-06903 Sophia Antipolis, France
| | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Shahid Siddique
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Valerie Williamson
- Department of Plant Pathology, University of California, Davis, Davis, CA 95616, USA
| | - Alper Akay
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | | |
Collapse
|
7
|
Recent advances in biodegradable matrices for active ingredient release in crop protection: Towards attaining sustainability in agriculture. Curr Opin Colloid Interface Sci 2020; 48:121-136. [PMID: 33013179 PMCID: PMC7509166 DOI: 10.1016/j.cocis.2020.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Climate changes, emerging species of plant pests, and deficits of clean water and arable land have made availability of food to the ever-increasing global population a challenge. Excessive use of synthetic pesticides to meet ever-increasing production needs has resulted in development of resistance in pest populations, as well as significant ecotoxicity, which has directly and indirectly impacted all life-forms on earth. To meet the goal of providing safe, sufficient, and high-quality food globally with minimal environmental impact, one strategy is to focus on targeted delivery of pesticides using eco-friendly and biodegradable carriers that are derived from naturally available materials. Herein, we discuss some of the recent approaches to use biodegradable matrices in crop protection, while exploring their design and efficiency. We summarize by discussing associated challenges with the existing approaches and future trends that can lead the world to more sustainable agricultural practices. Providing food safety and security is critical for the growing global population. Crop yield is affected by various biotic and abiotic factors. Targeted/sustained delivery of agrochemicals reduces excessive use of pesticides. Nature-derived biodegradable materials curtail plant health and environmental harm. Biodegradable matrices hold promise for sustainable crop protection.
Collapse
|
8
|
Mathew R, Opperman CH. Current Insights into Migratory Endoparasitism: Deciphering the Biology, Parasitism Mechanisms, and Management Strategies of Key Migratory Endoparasitic Phytonematodes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E671. [PMID: 32466416 PMCID: PMC7356796 DOI: 10.3390/plants9060671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 01/12/2023]
Abstract
Despite their physiological differences, sedentary and migratory plant-parasitic nematodes (PPNs) share several commonalities. Functional characterization studies of key effectors and their targets identified in sedentary phytonematodes are broadly applied to migratory PPNs, generalizing parasitism mechanisms existing in distinct lifestyles. Despite their economic significance, host-pathogen interaction studies of migratory endoparasitic nematodes are limited; they have received little attention when compared to their sedentary counterparts. Because several migratory PPNs form disease complexes with other plant-pathogens, it is important to understand multiple factors regulating their feeding behavior and lifecycle. Here, we provide current insights into the biology, parasitism mechanism, and management strategies of the four-key migratory endoparasitic PPN genera, namely Pratylenchus, Radopholus, Ditylenchus, and Bursaphelenchus. Although this review focuses on these four genera, many facets of feeding mechanisms and management are common across all migratory PPNs and hence can be applied across a broad genera of migratory phytonematodes.
Collapse
Affiliation(s)
| | - Charles H. Opperman
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|