1
|
Jiang H, Xu J, Xu X, Wei J, Liu J, Qin C, Miao W, Li L, Song X, Liu Q, Cui K, Li Z. Revealing microbial diversity in buffalo milk with high somatic cell counts: implications for mastitis diagnosis and treatment. Vet Res Commun 2024; 48:2537-2553. [PMID: 38874832 DOI: 10.1007/s11259-024-10438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
Mastitis is one of the most serious diseases that threatens the health of dairy animals. The somatic cell count (SCC) in milk is widely used to monitor mastitis. This study aimed to reveal the diversity of microorganisms in buffalo milk with high somatic cell count (SCC ≥ 3 × 105 cells/mL, n = 30) and low somatic cell count (SCC ≤ 5 × 104 cells/mL, n = 10), and identify the dominant bacteria that cause mastitis in a local buffalo farm. We also investigated the potential method to treat bacterial mastitis. The V3-V4 region of 16 S rDNA was sequenced. Results showed that, compared to the milk with low SCC, the high SCC samples showed lower microbial diversity, but a high abundance of bacteria and operational taxonomic units (OTUs). By in vitro isolation and culture, Escherichia coli, Staphylococcus aureus, and Klebsiella pneumoniae were found to be the leading pathogens, which is consistent with the 16 S rDNA sequencing data. We further isolated 3 of the main pathogens and established a pathogen detection method based on ELISA. In addition, the antibacterial effects of 10 antimicrobials and 15 Chinese herbal extracts were also investigated. Results showed that the microbial has developed tolerance to several of the antimicrobials. While the water extracts of Chinese herbal medicine such as Galla Chinensis, Coptis chinensis Franch, Terminalia chebula Retz, and Sanguisorba officinalis L can effectively inhibit the growth of main pathogens. This study provides novel insight into the microbial diversity in buffalo milk and a reference for the prevention, diagnosis, and treatment of mastitis.
Collapse
Affiliation(s)
- Hancai Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiayin Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaoxian Xu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jue Wei
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, China
| | - Jinfeng Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, Guangxi, 530001, China
| | - Chaobin Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Wenhao Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Buffalo Genetics, Reproduction and Breeding, Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, 530001, China
| | - Xinhui Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China
| | - Kuiqing Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, 528225, Foshan, China.
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
2
|
Dean CJ, Deng Y, Wehri TC, Pena-Mosca F, Ray T, Crooker BA, Godden SM, Caixeta LS, Noyes NR. The impact of kit, environment, and sampling contamination on the observed microbiome of bovine milk. mSystems 2024; 9:e0115823. [PMID: 38785438 PMCID: PMC11237780 DOI: 10.1128/msystems.01158-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
In low-microbial biomass samples such as bovine milk, contaminants can outnumber endogenous bacteria. Because of this, milk microbiome research suffers from a critical knowledge gap, namely, does non-mastitis bovine milk contain a native microbiome? In this study, we sampled external and internal mammary epithelia and stripped and cisternal milk and used numerous negative controls, including air and sampling controls and extraction and library preparation blanks, to identify the potential sources of contamination. Two algorithms were used to mathematically remove contaminants and track the potential movement of microbes among samples. Results suggest that the majority (i.e., >75%) of sequence data generated from bovine milk and mammary epithelium samples represents contaminating DNA. Contaminants in milk samples were primarily sourced from DNA extraction kits and the internal and external skin of the teat, while teat canal and apex samples were mainly contaminated during the sampling process. After decontamination, the milk microbiome displayed a more dispersed, less diverse, and compositionally distinct bacterial profile compared with epithelial samples. Similar microbial compositions were observed between cisternal and stripped milk samples, as well as between teat apex and canal samples. Staphylococcus and Acinetobacter were the predominant genera detected in milk sample sequences, and bacterial culture showed growth of Staphylococcus and Corynebacterium spp. in 50% (7/14) of stripped milk samples and growth of Staphylococcus spp. in 7% (1/14) of cisternal milk samples. Our study suggests that microbiome data generated from milk samples obtained from clinically healthy bovine udders may be heavily biased by contaminants that enter the sample during sample collection and processing workflows.IMPORTANCEObtaining a non-contaminated sample of bovine milk is challenging due to the nature of the sampling environment and the route by which milk is typically extracted from the mammary gland. Furthermore, the very low bacterial biomass of bovine milk exacerbates the impacts of contaminant sequences in downstream analyses, which can lead to severe biases. Our finding showed that bovine milk contains very low bacterial biomass and each contamination event (including sampling procedure and DNA extraction process) introduces bacteria and/or DNA fragments that easily outnumber the native bacterial cells. This finding has important implications for our ability to draw robust conclusions from milk microbiome data, especially if the data have not been subjected to rigorous decontamination procedures. Based on these findings, we strongly urge researchers to include numerous negative controls into their sampling and sample processing workflows and to utilize several complementary methods for identifying potential contaminants within the resulting sequence data. These measures will improve the accuracy, reliability, reproducibility, and interpretability of milk microbiome data and research.
Collapse
Affiliation(s)
- C. J. Dean
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Y. Deng
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. C. Wehri
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - F. Pena-Mosca
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. Ray
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - B. A. Crooker
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - S. M. Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - L. S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
3
|
Jost SM, Cardona L, Rohrbach E, Mathis A, Holliger C, Verhulst NO. Environment rather than breed or body site shapes the skin bacterial community of healthy sheep as revealed by metabarcoding. Vet Dermatol 2024; 35:273-283. [PMID: 38082464 DOI: 10.1111/vde.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 09/11/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND The skin is inhabited by a variety of micro-organisms, with bacteria representing the predominant taxon of the skin microbiome. In sheep, the skin bacterial community of healthy animals has been addressed in few studies, only with culture-based methods or sequencing of cloned amplicons. OBJECTIVES The objectives of this study were to determine the sheep skin bacterial community composition by using metabarcoding for a detailed characterisation and to determine the effect of body part, breed and environment. MATERIALS AND METHODS Overall, 267 samples were taken from 89 adult female sheep, belonging to three different breeds and kept on nine different farms in Switzerland. From every individual, one sample each was taken from belly, left ear and left leg and metabarcoding of the 16S rRNA V3-V4 hypervariable region was performed. RESULTS The main phyla identified were Actinobacteriota, Firmicutes, Proteobacteria and Bacteriodota. The alpha diversity as determined by Shannon's diversity index was significantly different between sheep from different farms. Beta diversity analysis by principal coordinate analysis (PCoA) showed clustering of the samples by farm and body site, while breed had only a marginal influence. A sparse partial least squares discriminant analysis (sPLS-DA) revealed seven main groups of operational taxonomic units (OTUs) of which groups of OTUs were specific for some farms. CONCLUSIONS AND CLINICAL RELEVANCE These findings indicate that environment has a larger influence on skin microbial variability than breed, although the sampled breeds, the most abundant ones in Switzerland, are phenotypically similar. Future studies on the sheep skin microbiome may lead to novel insights in skin diseases and prevention.
Collapse
Affiliation(s)
- Stéphanie M Jost
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Laëtitia Cardona
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Emmanuelle Rohrbach
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alexander Mathis
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| | - Christof Holliger
- Laboratory for Environmental Biotechnology, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Niels O Verhulst
- Vetsuisse and Medical Faculty, Vector Entomology unit, National Centre for Vector Entomology, Institute of Parasitology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
4
|
Dean CJ, Peña-Mosca F, Ray T, Wehri TJ, Sharpe K, Antunes, Jr. AM, Doster E, Fernandes L, Calles VF, Bauman C, Godden S, Heins B, Pinedo P, Machado VS, Caixeta LS, Noyes NR. Exploring associations between the teat apex metagenome and Staphylococcus aureus intramammary infections in primiparous cows under organic directives. Appl Environ Microbiol 2024; 90:e0223423. [PMID: 38497641 PMCID: PMC11022539 DOI: 10.1128/aem.02234-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/04/2024] [Indexed: 03/19/2024] Open
Abstract
The primary objective of this study was to identify associations between the prepartum teat apex microbiome and the presence of Staphylococcus aureus intramammary infections (IMI) in primiparous cows during the first 5 weeks after calving. We performed a case-control study using shotgun metagenomics of the teat apex and culture-based milk data collected longitudinally from 710 primiparous cows on five organic dairy farms. Cases had higher odds of having S. aureus metagenomic DNA on the teat apex prior to parturition compared to controls (OR = 38.9, 95% CI: 14.84-102.21). Differential abundance analysis confirmed this association, with cases having a 23.8 higher log fold change (LFC) in the abundance of S. aureus in their samples compared to controls. Of the most prevalent microorganisms in controls, those associated with a lower risk of post-calving S. aureus IMI included Microbacterium phage Min 1 (OR = 0.37, 95% CI: 0.25-0.53), Corynebacterium efficiens (OR = 0.53, 95% CI: 0.30-0.94), Kocuria polaris (OR = 0.54, 95% CI: 0.35-0.82), Micrococcus terreus (OR = 0.64, 95% CI: 0.44-0.93), and Dietzia alimentaria (OR = 0.45, 95% CI: 0.26-0.75). Genes encoding for Microcin B17 AMPs were the most prevalent on the teat apex of cases and controls (99.7% in both groups). The predicted abundance of genes encoding for Microcin B17 was also higher in cases compared to controls (LFC 0.26). IMPORTANCE Intramammary infections (IMI) caused by Staphylococcus aureus remain an important problem for the dairy industry. The microbiome on the external skin of the teat apex may play a role in mitigating S. aureus IMI risk, in particular the production of antimicrobial peptides (AMPs) by commensal microbes. However, current studies of the teat apex microbiome utilize a 16S approach, which precludes the detection of genomic features such as genes that encode for AMPs. Therefore, further research using a shotgun metagenomic approach is needed to understand what role prepartum teat apex microbiome dynamics play in IMI risk.
Collapse
Affiliation(s)
- C. J. Dean
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - F. Peña-Mosca
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. Ray
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - T. J. Wehri
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - K. Sharpe
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - A. M. Antunes, Jr.
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - E. Doster
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - L. Fernandes
- Department of Veterinary Sciences, Texas Tech University, Lubbock, Texas, USA
| | - V. F. Calles
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - C. Bauman
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - S. Godden
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - B. Heins
- Department of Animal Science, University of Minnesota, St. Paul, Minnesota, USA
| | - P. Pinedo
- Department of Animal Science, Colorado State University, Fort Collins, Colorado, USA
| | - V. S. Machado
- Department of Veterinary Sciences, Texas Tech University, Lubbock, Texas, USA
| | - L. S. Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - N. R. Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
5
|
Kour S, Sharma N, N B, Kumar P, Soodan JS, Santos MVD, Son YO. Advances in Diagnostic Approaches and Therapeutic Management in Bovine Mastitis. Vet Sci 2023; 10:449. [PMID: 37505854 PMCID: PMC10384116 DOI: 10.3390/vetsci10070449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
Mastitis causes huge economic losses to dairy farmers worldwide, which largely negatively affects the quality and quantity of milk. Mastitis decreases overall milk production, degrades milk quality, increases milk losses because of milk being discarded, and increases overall production costs due to higher treatment and labour costs and premature culling. This review article discusses mastitis with respect to its clinical epidemiology, the pathogens involved, economic losses, and basic and advanced diagnostic tools that have been used in recent times to diagnose mastitis effectively. There is an increasing focus on the application of novel therapeutic approaches as an alternative to conventional antibiotic therapy because of the decreasing effectiveness of antibiotics, emergence of antibiotic-resistant bacteria, issue of antibiotic residues in the food chain, food safety issues, and environmental impacts. This article also discussed nanoparticles'/chitosan's roles in antibiotic-resistant strains and ethno-veterinary practices for mastitis treatment in dairy cattle.
Collapse
Affiliation(s)
- Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Balaji N
- Division of Veterinary Medicine, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab 141004, India
| | - Jasvinder Singh Soodan
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, R.S. Pura, Jammu 181102, India
| | - Marcos Veiga Dos Santos
- Department of Animal Sciences, School of Veterinary Medicine and Animal Sciences, University of São Paulo, Pirassununga 13635-900, São Paulo, Brazil
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 690756, Republic of Korea
| |
Collapse
|
6
|
Poole RK, Soffa DR, McAnally BE, Smith MS, Hickman-Brown KJ, Stockland EL. Reproductive Microbiomes in Domestic Livestock: Insights Utilizing 16S rRNA Gene Amplicon Community Sequencing. Animals (Basel) 2023; 13:485. [PMID: 36766374 PMCID: PMC9913168 DOI: 10.3390/ani13030485] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Advancements in 16S rRNA gene amplicon community sequencing have vastly expanded our understanding of the reproductive microbiome and its role in fertility. In humans, Lactobacillus is the overwhelmingly dominant bacteria within reproductive tissues and is known to be commensal and an indicator of fertility in women and men. It is also known that Lactobacillus is not as largely abundant in the reproductive tissues of domestic livestock species. Thus, the objective of this review is to summarize the research to date on both female and male reproductive microbiomes in domestic livestock species (i.e., dairy cattle, beef cattle, swine, small ruminants, and horses). Having a comprehensive understanding of reproductive microbiota and its role in modulating physiological functions will aid in the development of management and therapeutic strategies to improve reproductive efficiency.
Collapse
Affiliation(s)
- Rebecca K. Poole
- Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
| | | | | | | | | | | |
Collapse
|
7
|
Park S, Jung D, Altshuler I, Kurban D, Dufour S, Ronholm J. A longitudinal census of the bacterial community in raw milk correlated with Staphylococcus aureus clinical mastitis infections in dairy cattle. Anim Microbiome 2022; 4:59. [PMID: 36434660 PMCID: PMC9701008 DOI: 10.1186/s42523-022-00211-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Staphylococcus aureus is a common cause of clinical mastitis (CM) in dairy cattle. Optimizing the bovine mammary gland microbiota to resist S. aureus colonization is a growing area of research. However, the details of the interbacterial interactions between S. aureus and commensal bacteria, which would be required to manipulate the microbiome to resist infection, are still unknown. This study aims to characterize changes in the bovine milk bacterial community before, during, and after S. aureus CM and to compare bacterial communities present in milk between infected and healthy quarters. METHODS We collected quarter-level milk samples from 698 Holstein dairy cows over an entire lactation. A total of 11 quarters from 10 cows were affected by S. aureus CM and milk samples from these 10 cows (n = 583) regardless of health status were analyzed by performing 16S rRNA gene amplicon sequencing. RESULTS The milk microbiota of healthy quarters was distinguishable from that of S. aureus CM quarters two weeks before CM diagnosis via visual inspection. Microbial network analysis showed that 11 OTUs had negative associations with OTU0001 (Staphylococcus). A low diversity or dysbiotic milk microbiome did not necessarily correlate with increased inflammation. Specifically, Staphylococcus xylosus, Staphylococcus epidermidis, and Aerococcus urinaeequi were each abundant in milk from the quarters with low levels of inflammation. CONCLUSION Our results show that the udder microbiome is highly dynamic, yet a change in the abundance in certain bacteria can be a potential indicator of future S. aureus CM. This study has identified potential prophylactic bacterial species that could act as a barrier against S. aureus colonization and prevent future instances of S. aureus CM.
Collapse
Affiliation(s)
- Soyoun Park
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Dongyun Jung
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Ianina Altshuler
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada
| | - Daryna Kurban
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Simon Dufour
- Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC, Canada
- Mastitis Network, Saint-Hyacinthe, QC, Canada
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada
| | - Jennifer Ronholm
- Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, Montreal, QC, Canada.
- Mastitis Network, Saint-Hyacinthe, QC, Canada.
- Regroupement FRQNT Op+Lait, Saint-Hyacinthe, QC, Canada.
| |
Collapse
|
8
|
Secchi G, Amalfitano N, Carafa I, Franciosi E, Gallo L, Schiavon S, Sturaro E, Tagliapietra F, Bittante G. Milk metagenomics and cheese-making properties as affected by indoor farming and summer highland grazing. J Dairy Sci 2022; 106:96-116. [DOI: 10.3168/jds.2022-22449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
|
9
|
Williamson JR, Callaway TR, Lourenco JM, Ryman VE. Characterization of rumen, fecal, and milk microbiota in lactating dairy cows. Front Microbiol 2022; 13:984119. [PMID: 36225385 PMCID: PMC9549371 DOI: 10.3389/fmicb.2022.984119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the gastrointestinal microbiome for improvement of feed efficiency and reduction of production costs is a potential promising strategy. However little progress has been made in manipulation of the gut microbiomes in dairy cattle to improve milk yield and milk quality. Even less understood is the milk microbiome. Understanding the milk microbiome may provide insight into how the microbiota correlate with milk yield and milk quality. The objective of this study was to characterize similarities between rumen, fecal, and milk microbiota simultaneously, and to investigate associations between microbiota, milk somatic cell count (SCC), and milk yield. A total of 51 mid-lactation, multiparous Holstein dairy cattle were chosen for sampling of ruminal, fecal, and milk contents that were processed for microbial DNA extraction and sequencing. Cows were categorized based on low, medium, and high SCC; as well as low, medium, and high milk yield. Beta diversity indicated that ruminal, fecal, and milk populations were distinct (p < 0.001). Additionally, the Shannon index demonstrated that ruminal microbial populations were more diverse (p < 0.05) than were fecal and milk populations, and milk microbiota was the least diverse of all sample types (p < 0.001). While diversity indices were not linked (p > 0.1) with milk yield, milk microbial populations from cows with low SCC demonstrated a more evenly distributed microbiome in comparison to cows with high SCC values (p = 0.053). These data demonstrate the complexity of host microbiomes both in the gut and mammary gland. Further, we conclude that there is a significant relationship between mammary health (i.e., SCC) and the milk microbiome. Whether this microbiome could be utilized in efforts to protect the mammary gland remains unclear, but should be explored in future studies.
Collapse
|
10
|
Organic Farm Bedded Pack System Microbiomes: A Case Study with Comparisons to Similar and Different Bedded Packs. DAIRY 2022. [DOI: 10.3390/dairy3030042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Animal housing and bedding materials influence cow and farm worker exposure to microbial pathogens, biocontrol agents, and/or allergens. This case study represents an effort to characterize the bacterial and fungal community of bedding systems using an amplicon sequencing approach supplemented with the ecological assessment of cultured Trichocomaceae isolates (focusing on Penicillium and Aspergillus species) and yeasts (Saccharomycetales). Bedding from five certified organic dairy farms in northern Vermont USA were sampled monthly between October 2015 and May 2016. Additional herd level samples from bulk tank milk and two bedding types were collected from two farms to collect fungal isolates for culturing and ecology. Most of the microorganisms in cattle bedding were microbial decomposers (saprophytes) or coprophiles, on account of the bedding being composed of dead plant matter, cattle feces, and urine. Composition of bacterial and fungal communities exhibited distinct patterns of ecological succession measured through time and by bedding depth. Community composition patterns were related to management practices and choice of bedding material. Aspergillus and Penicillium species exhibited niche differentiation expressed as differential substrate requirements; however, they generally exhibited traits of early colonizers of bedding substrates, typically rich in carbon and low in nitrogen. Pichia kudriavzevii was the most prevalent species cultured from milk and bedding. P. kudriavzevii produced protease and its abundance directly related to temperature. The choice of bedding and its management represent a potential opportunity to curate the microbial community of the housing environment.
Collapse
|
11
|
Obregon D, Wu-Chuang A, Cabezas-Cruz A. Editorial: Insights into the relationships between host and vector microbiota, host health and response to disease. Front Vet Sci 2022; 9:1002247. [PMID: 36051536 PMCID: PMC9427026 DOI: 10.3389/fvets.2022.1002247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Dasiel Obregon
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
- *Correspondence: Dasiel Obregon
| | - Alejandra Wu-Chuang
- ANSES, INRAE, UMR BIPAR, Laboratoire de Santé Animale, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, UMR BIPAR, Laboratoire de Santé Animale, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
- Alejandro Cabezas-Cruz
| |
Collapse
|
12
|
Steinberg RS, Silva E Silva LC, de Souza MR, Reis RB, da Silva PCL, Lacorte GA, Nicoli JR, Neumann E, Nunes ÁC. Changes in bovine milk bacterial microbiome from healthy and subclinical mastitis affected animals of the Girolando, Gyr, Guzera, and Holstein breeds. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2022; 25:803-815. [PMID: 35838927 DOI: 10.1007/s10123-022-00267-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Raw milk samples were collected from 200 dairy cows belonging to Girolando 1/2, Gyr, Guzera, and Holstein breeds, and the bacterial diversity was explored using 16S rRNA amplicon sequencing. SCC analysis showed that 69 animals were classified as affected with subclinical mastitis. The milk bacterial microbiome was dominated by Firmicutes, Proteobacteria, and Actinobacteria, with an increase of Firmicutes in animals with subclinical mastitis and Proteobacteria in healthy animals. At the family and genus level, the milk bacterial microbiome was dominated by Staphylococcus, Acinetobacter, Pseudomonas, members of the family Enterobacteriaceae, Lactococcus, Aerococcus, members of the family Rhizobiaceae, Anaerobacillus, Streptococcus, members of the family Intrasporangiaceae, members of the family Planococcaceae, Corynebacterium, Nocardioides, and Chryseobacterium. Significant differences in alpha and beta diversity analysis suggest an effect of udder health status and breed on the composition of raw bovine milk microbiota. LEfSe analysis showed 45 and 51 discriminative taxonomic biomarkers associated with udder health status and with one of the four breeds respectively, suggesting an effect of subclinical mastitis and breed on the microbiota of milk in cattle.
Collapse
Affiliation(s)
- Raphael S Steinberg
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Rodovia Bambuí/Medeiros - km 05, Caixa Postal 05, Bambuí, MG, 38900-000, Brazil.
| | - Lilian C Silva E Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo R de Souza
- Departamento de Tecnologia e Inspeção de Produtos de Origem Animal, Universidade Federal de Minas Gerais, MG, Belo Horizonte, Brazil
| | - Ronaldo B Reis
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, MG, Belo Horizonte, Brazil
| | - Patrícia C L da Silva
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gustavo A Lacorte
- Instituto Federal de Educação Ciência e Tecnologia de Minas Gerais, Campus Bambuí, Rodovia Bambuí/Medeiros - km 05, Caixa Postal 05, Bambuí, MG, 38900-000, Brazil
| | - Jacques R Nicoli
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elisabeth Neumann
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Álvaro C Nunes
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
Utilizing the Gastrointestinal Microbiota to Modulate Cattle Health through the Microbiome-Gut-Organ Axes. Microorganisms 2022; 10:microorganisms10071391. [PMID: 35889109 PMCID: PMC9324549 DOI: 10.3390/microorganisms10071391] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 12/27/2022] Open
Abstract
The microorganisms inhabiting the gastrointestinal tract (GIT) of ruminants have a mutualistic relationship with the host that influences the efficiency and health of the ruminants. The GIT microbiota interacts with the host immune system to influence not only the GIT, but other organs in the body as well. The objective of this review is to highlight the importance of the role the gastrointestinal microbiota plays in modulating the health of a host through communication with different organs in the body through the microbiome-gut-organ axes. Among other things, the GIT microbiota produces metabolites for the host and prevents the colonization of pathogens. In order to prevent dysbiosis of the GIT microbiota, gut microbial therapies can be utilized to re-introduce beneficial bacteria and regain homeostasis within the rumen environment and promote gastrointestinal health. Additionally, controlling GIT dysbiosis can aid the immune system in preventing disfunction in other organ systems in the body through the microbiome-gut-brain axis, the microbiome-gut-lung axis, the microbiome-gut-mammary axis, and the microbiome-gut-reproductive axis.
Collapse
|
14
|
Chakraborty D, Sharma N, Kour S, Sodhi SS, Gupta MK, Lee SJ, Son YO. Applications of Omics Technology for Livestock Selection and Improvement. Front Genet 2022; 13:774113. [PMID: 35719396 PMCID: PMC9204716 DOI: 10.3389/fgene.2022.774113] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 05/16/2022] [Indexed: 12/16/2022] Open
Abstract
Conventional animal selection and breeding methods were based on the phenotypic performance of the animals. These methods have limitations, particularly for sex-limited traits and traits expressed later in the life cycle (e.g., carcass traits). Consequently, the genetic gain has been slow with high generation intervals. With the advent of high-throughput omics techniques and the availability of multi-omics technologies and sophisticated analytic packages, several promising tools and methods have been developed to estimate the actual genetic potential of the animals. It has now become possible to collect and access large and complex datasets comprising different genomics, transcriptomics, proteomics, metabolomics, and phonemics data as well as animal-level data (such as longevity, behavior, adaptation, etc.,), which provides new opportunities to better understand the mechanisms regulating animals’ actual performance. The cost of omics technology and expertise of several fields like biology, bioinformatics, statistics, and computational biology make these technology impediments to its use in some cases. The population size and accurate phenotypic data recordings are other significant constraints for appropriate selection and breeding strategies. Nevertheless, omics technologies can estimate more accurate breeding values (BVs) and increase the genetic gain by assisting the section of genetically superior, disease-free animals at an early stage of life for enhancing animal productivity and profitability. This manuscript provides an overview of various omics technologies and their limitations for animal genetic selection and breeding decisions.
Collapse
Affiliation(s)
- Dibyendu Chakraborty
- Division of Animal Genetics and Breeding, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, India
- *Correspondence: Neelesh Sharma, ; Young Ok Son,
| | - Savleen Kour
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura, India
| | - Simrinder Singh Sodhi
- Department of Animal Biotechnology, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Mukesh Kumar Gupta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Sung Jin Lee
- Department of Animal Biotechnology, College of Animal Life Sciences, Kangwon National University, Chuncheon-si, South Korea
| | - Young Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences and Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju, South Korea
- *Correspondence: Neelesh Sharma, ; Young Ok Son,
| |
Collapse
|
15
|
Zhang J, Ahmad AA, Jia Y, Dingkao R, Du M, Liang Z, Zheng J, Bature I, Yan P, Salekdeh GH, Ding X. Comparison of Dynamics of Udder Skin Microbiota From Grazing Yak and Cattle During the Perinatal Period on the Qinghai–Tibetan Plateau. Front Vet Sci 2022; 9:864057. [PMID: 35692295 PMCID: PMC9187117 DOI: 10.3389/fvets.2022.864057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
The perinatal period has an important impact on the health of ruminants, and the imbalance of udder skin microbiota might be an important inducement of bovine mastitis. However, it is not clear how the perinatal period affects the microbial structure and stability of the udder skin of yak and cattle. Here, we used 16S rRNA gene high-throughput sequencing to analyze the udder skin microbiota of yak and cattle during the perinatal period. We found that the diversity and richness of microbiota of bovine udder skin during 1–2 weeks postpartum were significantly lower than those in the 1–2 weeks prenatal and 1-month postpartum period (Wilcoxon, p < 0.05). Besides, we found sharing of 2,533 OTUs in the udder skin microbiota of yak and cattle during the perinatal period, among which the core microbiota at the genera level was mainly composed of Staphylococcus, Moraxella, and Acinetobacter. However, the genus Acinetobacter was significantly abundant in the udder skin of cattle during 1–2 weeks postpartum. The NMDS and LEfSe results showed that the perinatal period had more effects on the composition and stability of microbial community in the udder skin of cattle compared to yak, particularly during 1–2 weeks postpartum. In addition, the average content of total whey proteins and immunoglobulin G of whey protein were significantly higher in the yak colostrum when compared to those found in the cattle (p < 0.05). In conclusion, the structure of udder skin microbiota of yak during the perinatal period is more stable than that of cattle in the same habitat, and 1–2 weeks postpartum may be a potential window period to prevent cattle mastitis.
Collapse
Affiliation(s)
- Jianbo Zhang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Anum Ali Ahmad
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yan Jia
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | | | - Mei Du
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zeyi Liang
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Juanshan Zheng
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ibrahim Bature
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ping Yan
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Ghasem Hosseini Salekdeh
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| | - Xuezhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agricultural and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Xuezhi Ding
| |
Collapse
|
16
|
Influence of Post-Milking Treatment on Microbial Diversity on the Cow Teat Skin and in Milk. DAIRY 2022. [DOI: 10.3390/dairy3020021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In dairy cattle, teat disinfection at the end of milking is commonly applied to limit colonization of the milk by pathogenic microorganisms via the teat canal. The post-milking products used can irritate the teat skin and unbalance its microbial population. Our study aimed to assess the impact of different milking products on the balance of the microbial communities on the teat skin of cows and in their milk. For 12 weeks at the end of each milking operation, three groups of seven Holstein dairy cows on pasture received either a chlorhexidine gluconate-based product (G) or a hydrocolloidal water-in-oil emulsion (A), or no post-milking product (C). The composition of the bacterial and fungal communities on the teat skin and in the milk were characterized using a culture-dependent method and by high-throughput sequencing of marker genes to obtain amplicon sequence variants (ASVs). The individual microbiota on the cows’ teat skin was compared for the first time to that of a cow pool. In contrast to the milk, the post-milking treatment influenced the microbiota of the teat skin, which revealed a high microbial diversity. The water-in-oil emulsion appeared to slightly favour lactic acid bacteria and yeasts and to limit the development of undesirable bacteria such as Pseudomonas and Staphylococcus.
Collapse
|
17
|
Winther AR, Narvhus JA, Smistad M, da Silva Duarte V, Bombelli A, Porcellato D. Longitudinal dynamics of the bovine udder microbiota. Anim Microbiome 2022; 4:26. [PMID: 35395785 PMCID: PMC8994269 DOI: 10.1186/s42523-022-00177-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/30/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the number of studies concerning microbiota of the intramammary environment has increased rapidly due to the development of high-throughput sequencing technologies that allow mapping of microbiota without culturing. This has revealed that an environment previously thought to be sterile in fact harbours a microbial community. Since this discovery, many studies have investigated the microbiota of different parts of the udder in various conditions. However, few studies have followed the changes that occur in the udder microbiota over time. In this study, the temporal dynamics of the udder microbiota of 10 cows, five with a low somatic cell count (SCC, SCC < 100,000 cells/mL) and five with a high SCC (SCC > 100,000 cells/mL), were followed over 5 months to gather insights into this knowledge gap. RESULTS Analysis of the temporal changes in the microbial composition of milk from udders with a low SCC revealed a dynamic and diverse microbiota. When an imbalance due to one dominating genus was recorded, the dominant genus quickly vanished, and the high diversity was restored. The genera dominating in the samples with a high SCC remained the dominant genera throughout the whole sampling period. These cows generally displayed a heightened SCC or an intramammary infection in at least one quarter though-out the sampling period. CONCLUSION Our results show that the bovine udder has a diverse microbiota, and that the composition and diversity of this community affects udder health with regards to SCC. Understanding what influences the composition and stability of this community has important implications for the understanding, control, and treatment of mastitis.
Collapse
Affiliation(s)
- Anja Ruud Winther
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway.
| | - Judith A Narvhus
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Marit Smistad
- Norwegian Veterinary Institute, Oslo, Norway.,TINE SA, Oslo, Norway
| | - Vinicius da Silva Duarte
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Alberto Bombelli
- Department of Agrotechnology and Food Science, Wageningen University and Research, Wageningen, Netherlands
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
18
|
Ruegg PL. The bovine milk microbiome - an evolving science. Domest Anim Endocrinol 2022; 79:106708. [PMID: 35038617 DOI: 10.1016/j.domaniend.2021.106708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/21/2022]
Abstract
Improved access to genome based, culture independent methods has generated great interest in defining the bovine milk microbiome. Several comprehensive reviews of this subject have recently been published and the purpose of this short review is to consolidate current understanding of the relevance and biological significance of this emerging topic. In contrast to mucosal organs that contain rich and well-characterized culturable and nonculturable microbial communities, milk obtained from the healthy bovine mammary gland usually contains few or no viable bacteria. The low bacterial biomass of milk has created methodological challenges that have resulted in considerable variability in results of studies that have used genomic methods to define the microbiota of milk obtained from healthy or diseased mammary glands. While genomes from several bacterial genera are routinely identified from samples of milk, teat skin and the teat canal, the viability, origin, and function of these organisms is uncertain as environmental factors have been shown to strongly influence the composition of these bacterial populations. Possible sources of microbial DNA include bacteria introduced from skin or the environment, bacteria trapped in teat canal keratin or bacteria engulfed by phagocytes. Researchers have not achieved consensus about key concepts such as the presence of a core commensal milk microbiome or dysbiosis as part of a causal pathway disrupting udder health. Understanding of the bovine milk microbiome has been greatly impeded by a lack of standardized methods used to collect, process, and assess bovine milk samples. Sample collection is a critical first step that will determine the validity of results. To minimize contamination with external sources of bacterial DNA, teat sanitation methods used for collection of milk samples that will be subjected to extraction and amplification of bacteria DNA should far exceed aseptic techniques used for collection of milk samples that will be submitted for microbiological culture. A number of laboratory issues have yet to be resolved. Contamination of low biomass samples with bacterial DNA from laboratory reagents is a well-known issue that has affected results of studies using bovine milk samples and results of sequencing of negative controls should always be reported. Replication of experiments has rarely been performed and consistency in results are lacking. While progress has been made, standardization of methods and replication using samples originating from differing farm conditions are critically needed to solidify knowledge of this emerging topic.
Collapse
Affiliation(s)
- Pamela L Ruegg
- Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, E. Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Schwenker JA, Friedrichsen M, Waschina S, Bang C, Franke A, Mayer R, Hölzel CS. Bovine milk microbiota: Evaluation of different DNA extraction protocols for challenging samples. Microbiologyopen 2022; 11:e1275. [PMID: 35478279 PMCID: PMC9059235 DOI: 10.1002/mbo3.1275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 01/04/2023] Open
Abstract
The use of an adequate protocol that accurately extracts microbial DNA from bovine milk samples is of importance for downstream analysis such as 16S ribosomal RNA gene sequencing. Although sequencing platforms such as Illumina are very common, there are reservations concerning reproducibility in challenging samples that combine low bacterial loads with high amounts of host DNA. The objective of this study was to evaluate six different DNA extraction protocols applied to four different prototype milk samples (low/high level of colony‐forming units [cfu] and somatic cells). DNA extracts were sequenced on Illumina MiSeq with primers for the hypervariable regions V1V2 and V3V4. Different protocols were evaluated by analyzing the yield and purity of DNA extracts and the number of clean reads after sequencing. Three protocols with the highest median number of clean reads were selected. To assess reproducibility, these extraction replicates were resequenced in triplicates (n = 120). The most reproducible results for α‐ and β‐diversity were obtained with the modified DNeasy Blood & Tissue kit after a chemical pretreatment plus resuspension of the cream fraction. The unmodified QIAamp DNA Mini kit performed particularly weak in the sample representing unspecific mastitis. These results suggest that pretreatment in combination with the modified DNeasy Blood & Tissue kit is useful in extracting microbial DNA from challenging milk samples. To increase reproducibility, we recommend that duplicates, if not triplicates, should be sequenced. We showed that high counts of somatic cells challenged DNA extraction, which shapes the need to apply modified extraction protocols.
Collapse
Affiliation(s)
- Julia A. Schwenker
- Department for Animal Hygiene and Health, Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Germany
| | - Meike Friedrichsen
- Department for Animal Hygiene and Health, Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Germany
| | - Silvio Waschina
- Institute of Human Nutrition and Food Science, Nutriinformatics Christian‐Albrechts‐University Kiel Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology Christian‐Albrechts‐University Kiel Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology Christian‐Albrechts‐University Kiel Germany
| | - Ricarda Mayer
- Department of Veterinary Sciences Ludwig‐Maximilians‐University Munich Oberschleißheim Germany
- GNA Biosolutions GmbH Martinsried Germany
| | - Christina S. Hölzel
- Department for Animal Hygiene and Health, Institute of Animal Breeding and Husbandry Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
20
|
Nourishing the Human Holobiont to Reduce the Risk of Non-Communicable Diseases: A Cow’s Milk Evidence Map Example. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol2010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The microbiome revolution brought the realization that diet, health, and safety for humans in reality means diet, health, and safety for the human holobiont/superorganism. Eating healthier means much more than just feeding human cells. Our diet must also nourish the combination of our microbiome and our connected physiological systems (e.g., the microimmunosome). For this reason, there has been an interest in returning to ancestral “complete” unprocessed foods enriched in microbes, including raw milks. To contribute to this inevitable “nourishing the holobiont” trend, we introduce a systematic risk–benefit analysis tool (evidence mapping), which facilitates transdisciplinary state-of-the-science decisions that transcend single scientific disciplines. Our prior paper developed an evidence map (a type of risk–benefit mind map) for raw vs. processed/pasteurized human breast milk. In the present paper, we follow with a comprehensive evidence map and narrative for raw/natural vs. processed/pasteurized cow’s milk. Importantly, the evidence maps incorporate clinical data for both infectious and non-communicable diseases and allow the impact of modern agricultural, food management, and medical and veterinary monitoring outcomes to be captured. Additionally, we focus on the impact of raw milks (as “complete” foods) on the microimmunosome, the microbiome-systems biology unit that significantly determines risk of the world’s number one cause of human death, non-communicable diseases.
Collapse
|
21
|
Vasquez A, Nydam D, Foditsch C, Warnick L, Wolfe C, Doster E, Morley PS. Characterization and comparison of the microbiomes and resistomes of colostrum from selectively treated dry cows. J Dairy Sci 2021; 105:637-653. [PMID: 34763917 DOI: 10.3168/jds.2021-20675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
Professionals in animal agriculture promote prudent use of antimicrobials to address public and animal health concerns, such as reduction of antimicrobial residues and antimicrobial resistance (AMR) in products. Few studies evaluate the effect of selective dry-cow therapy on preservation of the milk microbiome or the profile of AMR genes (the resistome) present at freshening. Our objectives were to characterize and compare the microbiomes and resistomes in the colostrum of cows with low somatic cell count that were treated or not treated with intramammary cephapirin benzathine at dry-off. From a larger parent study, cows on a New York dairy farm eligible for dry-off and with histories of somatic cell counts ≤200,000 cells/mL were enrolled to this study (n = 307). Cows were randomly assigned to receive an intramammary antimicrobial and external teat sealant (ABXTS) or sealant only (TS) at dry-off. Composite colostrum samples taken within 4 h of freshening, and quarter milk samples taken at 1 to 7 d in milk were subjected to aerobic culture. The DNA extraction was performed on colostrum from cows with culture-negative samples (ABXTS = 43; TS = 33). The DNA from cows of the same treatment group and parity were pooled (26 pools; ABXTS = 12; TS = 14) for 16S rRNA metagenomic sequencing. Separately, the resistome was captured using a custom RNA bait library for target-enriched sequencing. Sequencing reads were aligned to taxonomic and AMR databases to characterize the microbiome and resistome, respectively. The R statistical program was used to tabulate abundances and to analyze differences in diversity measures and in composition between treatment groups. In the microbiome, the most abundant phyla were Firmicutes (68%), Proteobacteria (23%), Actinobacteria (4%), and Bacteroidetes (3%). Shannon and richness diversity means were 0.93 and 14.7 for ABXTS and 0.94 and 13.1 for TS, respectively. Using analysis of similarities (ANOSIM), overall microbiome composition was found to be similar between treatment groups at the phylum (ANOSIM R = 0.005), class (ANOSIM R = 0.04), and order (ANOSIM R = -0.04) levels. In the resistome, we identified AMR gene accessions associated with 14 unique mechanisms of resistance across 9 different drug classes in 14 samples (TS = 9, ABXTS = 5). The majority of reads aligned to gene accessions that confer resistance to aminoglycoside (TS = ABXTS each 35% abundance), tetracycline (TS = 22%, ABXTS = 54%), and β-lactam classes (TS = 15%, ABXTS = 12%). Shannon diversity means for AMR class and mechanism, respectively, were 0.66 and 0.69 for TS and 0.19 and 0.19 for ABXTS. Resistome richness diversity means for class and mechanism were 3.1 and 3.4 for TS and 1.4 and 1.4 for ABXTS. Finally, resistome composition was similar between groups at the class (ANOSIM R = -0.20) and mechanism levels (ANOSIM R = 0.01). Although no critical differences were found between treatment groups regarding their microbiome or resistome composition in this study, a larger sample size, deeper sequencing, and additional methodology is needed to identify more subtle differences, such as between lower-abundance features.
Collapse
Affiliation(s)
- Amy Vasquez
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853.
| | - Daryl Nydam
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - Carla Foditsch
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - Lorin Warnick
- Department of Population Medicine, Cornell College of Veterinary Medicine, Ithaca, NY 14853
| | - Cory Wolfe
- Veterinary Education, Research, and Outreach Program, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon 79015
| | - Enrique Doster
- Veterinary Education, Research, and Outreach Program, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon 79015; Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80521
| | - Paul S Morley
- Veterinary Education, Research, and Outreach Program, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon 79015
| |
Collapse
|
22
|
Schwenker JA, Schotte U, Hölzel CS. Minimum inhibitory concentrations of chlorhexidine- and lactic acid-based teat disinfectants: An intervention trial assessing bacterial selection and susceptibility. J Dairy Sci 2021; 105:734-747. [PMID: 34756445 DOI: 10.3168/jds.2021-20824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/09/2021] [Indexed: 11/19/2022]
Abstract
Teat disinfection is a recommended preventive tool to improve udder health and to prevent new intramammary infections. However, side effects are discussed, such as bacterial selection of less-susceptible bacteria with the application of certain teat disinfectants. The objective of this study was to assess the species composition and bacterial in vitro susceptibility by means of an interventive trial. For this purpose, 3 different postmilking teat treatments (disinfection with 0.215% chlorhexidine or 3.5% lactic acid, or control group with no dipping) were applied to 28 cows in a 6-d intervention approach using a split-udder design. Milk samples were taken before and after intervention. Bacteria were cultured and differentiated to species or genus level by MALDI-TOF mass spectrometry. Minimum inhibitory concentrations (MIC) were determined, and MIC changes over time were recorded. Susceptibilities to chlorhexidine and lactic acid were compared between species of the genera Staphylococcus, Streptococcus, Corynebacterium, and others. Species composition changed during the intervention. Under the treatment of chlorhexidine and lactic acid, the proportion of coagulase-negative staphylococci (CNS) decreased. An increased proportion of species belonging to the genus Corynebacterium was observed especially under the application of lactic acid. Although both teat disinfectants were basically effective, isolates differed in their susceptibility to both teat disinfectants. Populations of CNS, Staphylococcus aureus, and Corynebacterium spp. showed significantly lower absolute MIC values for chlorhexidine. Compared with other species, Corynebacterium spp. showed the lowest susceptibility for chlorhexidine as well as for lactic acid. A significant increase in MIC values after 6 d of intervention was observed with the lactic acid treatment in all isolates, as well as in CNS. This increase can be interpreted as either adaptation of isolates or displacement of more-susceptible species by less-susceptible species. Further studies using long-term intervention might reveal more pronounced effects on MIC values and species composition.
Collapse
Affiliation(s)
- J A Schwenker
- Department for Animal Hygiene and Animal Health, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany.
| | - U Schotte
- Department A-Veterinary Medicine, Central Institute of the Bundeswehr Medical Service Kiel, 24119 Kronshagen, Germany
| | - C S Hölzel
- Department for Animal Hygiene and Animal Health, Institute of Animal Breeding and Husbandry, Christian-Albrechts-University Kiel, 24098 Kiel, Germany
| |
Collapse
|
23
|
Biçer Y, Telli AE, Sönmez G, Telli N, Uçar G. Comparison of microbiota and volatile organic compounds in milk from different sheep breeds. J Dairy Sci 2021; 104:12303-12311. [PMID: 34593230 DOI: 10.3168/jds.2021-20911] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 11/19/2022]
Abstract
In this study, we compared the microbiota and volatile organic compounds (VOC) present in the milk obtained from 3 different sheep breeds, namely Merino, Lacaune, and Assaf. Udder milk was collected from 21 animals, 7 from each breed. Bacterial microflora was determined metagenomically by extracting the DNA from the milk and analyzing the V3-V4 region of the 16S rRNA gene. Headspace solid-phase microextraction gas chromatography-mass spectrometry method was used to analyze VOC. The metagenomic analysis revealed (for Merino, Lacaune, and Assaf milk, respectively) Firmicutes (66.32, 69.36, and 57.08%), Actinobacteria (19.09, 7.67, and 19.40%), Proteobacteria (13.76, 21.06, and 22.19%), and Bacteroidetes (0.84, 1.91, and 1.33%) phyla in the milk samples. Lactobacillus was highly abundant in the milk of 3 breeds (29.64, 43.50, and 18.70%). The genera constituting more than 2% of all bacteria in all groups were Jeotgalicoccus (7.19, 5.34, and 10.77%), Enterococcus (5.18, 9.78, and 3.64%), and Corynebacterium (4.08, 3.00, and 13.44%). A total of 32 different VOC were identified by headspace solid-phase microextration analysis with 9, 30, and 24 different compounds from Merino, Lacaune, and Assaf breeds, respectively. Although ketone was the most abundant compound in Merino milk (71.84%), hydrocarbons were the most detected in Lacaune and Assaf milk (37.18% and 55.42%, respectively). A positive correlation was found between acetone, which was detected at the highest level in all groups, with Salinicoccus, Alloiococcus, Psychrobacter, and Dietzia. In addition, a negative correlation was found between the Lactobacillus genus, detected at the highest level in all groups, with methyl cyclopentane, 3-methylheptane, octane, decane, 3,3-dimethyloctane, and dodecane. Thus, differences were observed in the bacterial microflora and VOC in the sheep milk from different breeds under different feeding and breeding conditions.
Collapse
Affiliation(s)
- Yusuf Biçer
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Turkey.
| | - A Ezgi Telli
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Turkey
| | - Gonca Sönmez
- Department of Genetics, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Turkey
| | - Nihat Telli
- Department of Food Processing, Konya Technical University Vocational School of Technical Sciences, 42250, Konya, Turkey
| | - Gürkan Uçar
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Selcuk University, 42130, Konya, Turkey
| |
Collapse
|
24
|
Chemidlin Prévost-Bouré N, Karimi B, Sadet-Bourgeteau S, Djemiel C, Brie M, Dumont J, Campedelli M, Nowak V, Guyot P, Letourneur C, Manneville V, Gillet F, Bouton Y. Microbial transfers from permanent grassland ecosystems to milk in dairy farms in the Comté cheese area. Sci Rep 2021; 11:18144. [PMID: 34518581 PMCID: PMC8438085 DOI: 10.1038/s41598-021-97373-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/17/2021] [Indexed: 01/07/2023] Open
Abstract
The specificity of dairy Protected Designation of Origin (PDO) products is related to their “terroir” of production. This relationship needs better understanding for efficient and sustainable productions preserving the agroecological equilibrium of agroecosystems, especially grasslands. Specificity of PDO Comté cheese was related to the diversity of natural raw milk bacterial communities, but their sources need to be determined. It is hypothesized that raw milk indigenous microbial communities may originate from permanent grazed grasslands by the intermediate of dairy cows according to the sequence soil–phyllosphere–teat–milk. This hypothesis was evaluated on a 44 dairy farms network across PDO Comté cheese area by characterizing prokaryotic and fungal communities of these compartments by metabarcoding analysis (16S rRNA gene: V3–V4 region, 18S rRNA gene: V7–V8 region). Strong and significant links were highlighted between the four compartments through a network analysis (0.34 < r < 0.58), and were modulated by soil pH, plant diversity and elevation; but also by farming practices: organic fertilization levels, cattle intensity and cow-teat care. This causal relationship suggests that microbial diversity of agroecosystems is a key player in relating a PDO product to its “terroir”; this under the dependency of farming practices. Altogether, this makes the “terroir” even more local and needs to be considered for production sustainability.
Collapse
Affiliation(s)
- N Chemidlin Prévost-Bouré
- UMR 1347 Agroécologie - AgroSup Dijon - INRAE - Université Bourgogne - Université Bourgogne Franche-Comté, 21000, Dijon, France.
| | - B Karimi
- UMR 1347 Agroécologie - AgroSup Dijon - INRAE - Université Bourgogne - Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - S Sadet-Bourgeteau
- UMR 1347 Agroécologie - AgroSup Dijon - INRAE - Université Bourgogne - Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - C Djemiel
- UMR 1347 Agroécologie - AgroSup Dijon - INRAE - Université Bourgogne - Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - M Brie
- AgroSup Dijon, 26 boulevard du Dr Petitjean, 21000, Dijon, France
| | - J Dumont
- AgroSup Dijon, 26 boulevard du Dr Petitjean, 21000, Dijon, France
| | - M Campedelli
- AgroSup Dijon, 26 boulevard du Dr Petitjean, 21000, Dijon, France
| | - V Nowak
- UMR 1347 Agroécologie - AgroSup Dijon - INRAE - Université Bourgogne - Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - P Guyot
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bâtiment INRAE URTAL, 39800, Poligny, France
| | - C Letourneur
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bâtiment INRAE URTAL, 39800, Poligny, France
| | | | - F Gillet
- Université Bourgogne Franche-Comté, UMR6249 Chrono-Environnement, 25030, Besançon, France
| | - Y Bouton
- Comité Interprofessionnel de Gestion du Comté - Unité R&D, Bâtiment INRAE URTAL, 39800, Poligny, France
| |
Collapse
|
25
|
Khasapane NG, Nkhebenyane JS, Kwenda S, Khumalo ZTH, Mtshali PS, Taioe MO, Thekisoe OMM. Application of culture, PCR, and PacBio sequencing for determination of microbial composition of milk from subclinical mastitis dairy cows of smallholder farms. Open Life Sci 2021; 16:800-808. [PMID: 34458582 PMCID: PMC8374232 DOI: 10.1515/biol-2021-0080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/31/2021] [Accepted: 06/21/2021] [Indexed: 01/04/2023] Open
Abstract
Mastitis is a cow disease usually signalized by irritation, swelling, and soreness of the udder. It is characterized by physical, chemical, and biological changes in the udder and milk. The aim of this study was to detect and characterize pathogens causing subclinical mastitis (SCM) from the milk of dairy cows of small-scale farmers through culture and molecular techniques. Milk was collected from 32 cows belonging to 8 small-scale farmers around Harrismith District, South Africa. The results showed that screening of SCM by California mastitis test and somatic cell counts (SCC) was 21.87 and 25%, respectively. Culture methods revealed the presence of Staphylococcus aureus at 93% followed by Streptococci spp. and Escherichia coli at 36.4 and 13.3%, respectively. The PCR could only detect E. coli, while single-molecule real-time sequencing showed a total of 2 phyla, 5 families, 7 genera, and 131 species. Clostridiaceae was the most abundant family, while Romboutsia was the most abundant genus followed by Turicibacter spp. The present study has documented the occurrence of SCM causing pathogens in milk collected from cows of small-scale farmers in Harrismith, indicating that SCM may be present at higher levels than expected.
Collapse
Affiliation(s)
- Ntelekwane G Khasapane
- Department of Life Sciences, Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Jane S Nkhebenyane
- Department of Life Sciences, Centre for Applied Food Sustainability and Biotechnology, Central University of Technology, Bloemfontein, 9300, South Africa
| | - Stanford Kwenda
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Zamantungwa T H Khumalo
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Phillip S Mtshali
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa
| | - Moeti O Taioe
- Epidemiology, Parasites and Vectors, Agricultural Research Council - Onderstepoort Veterinary Research (ARC-OVR), Onderstepoort 0110, South Africa
| | - Oriel M M Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2531, South Africa
| |
Collapse
|
26
|
Priyashantha H, Lundh Å. Graduate Student Literature Review: Current understanding of the influence of on-farm factors on bovine raw milk and its suitability for cheesemaking. J Dairy Sci 2021; 104:12173-12183. [PMID: 34454752 DOI: 10.3168/jds.2021-20146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 07/17/2021] [Indexed: 11/19/2022]
Abstract
Relationships between dairy farm practices, the composition and properties of raw milk, and the quality of the resulting cheese are complex. In this review, we assess the effect of farm factors on the quality of bovine raw milk intended for cheesemaking. The literature reports several prominent farm-related factors that are closely associated with milk quality characteristics. We describe their effects on the composition and technological properties of raw milk and on the quality of the resulting cheese. Cow breed, composite genotype, and protein polymorphism all have noticeable effects on milk coagulation, cheese yield, and cheese composition. Feed and feeding strategy, dietary supplementation, housing and milking system, and seasonality of milk production also influence the composition and properties of raw milk, and the resulting cheese. The microbiota in raw milk is influenced by on-farm factors and by the production environment, and may influence the technological properties of the milk and the sensory profile of certain cheese types. Advances in research dealing with the technological properties of raw milk have undoubtedly improved understanding of how on-farm factors affect milk quality attributes, and have refuted the concept of one milk for all purposes. The specific conditions for milk production should be considered when the milk is intended for the production of cheese with unique characteristics. The scientific identification of these conditions would improve the current understanding of the complex associations between raw milk quality and farm and management factors. Future research that considers dairy landscapes within broader perspectives and develops multidimensional approaches to control the quality of raw milk intended for long-ripening cheese production is recommended.
Collapse
Affiliation(s)
- Hasitha Priyashantha
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden.
| | - Åse Lundh
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07 Uppsala, Sweden
| |
Collapse
|
27
|
Sharun K, Dhama K, Tiwari R, Gugjoo MB, Iqbal Yatoo M, Patel SK, Pathak M, Karthik K, Khurana SK, Singh R, Puvvala B, Amarpal, Singh R, Singh KP, Chaicumpa W. Advances in therapeutic and managemental approaches of bovine mastitis: a comprehensive review. Vet Q 2021; 41:107-136. [PMID: 33509059 PMCID: PMC7906113 DOI: 10.1080/01652176.2021.1882713] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mastitis (intramammary inflammation) caused by infectious pathogens is still considered a devastating condition of dairy animals affecting animal welfare as well as economically incurring huge losses to the dairy industry by means of decreased production performance and increased culling rates. Bovine mastitis is the inflammation of the mammary glands/udder of bovines, caused by bacterial pathogens, in most cases. Routine diagnosis is based on clinical and subclinical forms of the disease. This underlines the significance of early and rapid identification/detection of etiological agents at the farm level, for which several diagnostic techniques have been developed. Therapeutic regimens such as antibiotics, immunotherapy, bacteriocins, bacteriophages, antimicrobial peptides, probiotics, stem cell therapy, native secretory factors, nutritional, dry cow and lactation therapy, genetic selection, herbs, and nanoparticle technology-based therapy have been evaluated for their efficacy in the treatment of mastitis. Even though several strategies have been developed over the years for the purpose of managing both clinical and subclinical forms of mastitis, all of them lacked the efficacy to eliminate the associated etiological agent when used as a monotherapy. Further, research has to be directed towards the development of new therapeutic agents/techniques that can both replace conventional techniques and also solve the problem of emerging antibiotic resistance. The objective of the present review is to describe the etiological agents, pathogenesis, and diagnosis in brief along with an extensive discussion on the advances in the treatment and management of mastitis, which would help safeguard the health of dairy animals.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Mudasir Bashir Gugjoo
- Division of Veterinary Clinical Complex, Faculty of Veterinary Sciences & Animal Husbandry, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Mohd Iqbal Yatoo
- Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Shalimar, Srinagar, Jammu and Kashmir, India
| | - Shailesh Kumar Patel
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Mamta Pathak
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, Tamil Nadu, India
| | | | - Rahul Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Bhavani Puvvala
- Rajiv Gandhi Institute of Veterinary Education and Research, Kurumbapet, Puducherry, India
| | - Amarpal
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Karam Pal Singh
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
28
|
Barlow J. Letter to the Editor: Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294905. [PMID: 34100913 DOI: 10.1093/femsec/fiab078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/04/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- John Barlow
- Department of Animal and Veterinary Sciences, University of Vermont, Burlington, VT. United States
| |
Collapse
|
29
|
Maity S, Ambatipudi K. Response to Comments on “Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective” by Maity and Ambatipudi. FEMS Microbiol Ecol 2021; 97:6294908. [PMID: 34100931 DOI: 10.1093/femsec/fiab079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 11/15/2022] Open
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
30
|
Maity S, Ambatipudi K. Mammary microbial dysbiosis leads to the zoonosis of bovine mastitis: a One-Health perspective. FEMS Microbiol Ecol 2021; 97:6006870. [PMID: 33242081 DOI: 10.1093/femsec/fiaa241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/24/2020] [Indexed: 12/21/2022] Open
Abstract
Bovine mastitis is a prototypic emerging and reemerging bacterial disease that results in cut-by-cut torture to animals, public health and the global economy. Pathogenic microbes causing mastitis have overcome a series of hierarchical barriers resulting in the zoonotic transmission from bovines to humans either by proximity or remotely through milk and meat. The disease control is challenging and has been attributed to faulty surveillance systems to monitor their emergence at the human-animal interface. The complex interaction between the pathogens, the hidden pathobionts and commensals of the bovine mammary gland that create a menace during mastitis remains unexplored. Here, we review the zoonotic potential of these pathogens with a primary focus on understanding the interplay between the host immunity, mammary ecology and the shift from symbiosis to dysbiosis. We also address the pros and cons of the current management strategies and the extent of the success in implementing the One-Health approach to keep these pathogens at bay.
Collapse
Affiliation(s)
- Sudipa Maity
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| | - Kiran Ambatipudi
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, , India
| |
Collapse
|
31
|
Dean CJ, Slizovskiy IB, Crone KK, Pfennig AX, Heins BJ, Caixeta LS, Noyes NR. Investigating the cow skin and teat canal microbiomes of the bovine udder using different sampling and sequencing approaches. J Dairy Sci 2020; 104:644-661. [PMID: 33131828 DOI: 10.3168/jds.2020-18277] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
There is a need for standardized, efficient, and practical sampling methods to support large population-based studies of the internal and external epithelial microbiomes of the bovine udder. The primary objective of this study was to evaluate different sampling devices for the isolation of microbial DNA originating from the internal and external teat epithelium. Secondary objectives were to survey and compare the microbial diversity of external and teat canal epithelial microbiomes using amplicon and shotgun metagenomic sequencing approaches. To address these objectives, we enrolled a convenience sample of 24 Holstein dairy cows and collected samples from the external epithelium at the base of udder, the external teat barrel epithelium, the external teat apex epithelium, and the teat canal epithelium. Extracted DNA was quantified and subjected to PCR amplification of the V4 hypervariable region of the 16S rRNA gene and sequenced on the Illumina MiSeq platform (Illumina Inc., San Diego, CA). A subset of samples was subjected to a shallow shotgun metagenomic assay on the Illumina HiSeq platform. For samples collected from the external teat epithelium, we found that gauze squares consistently yielded more DNA than swabs, and Simpson's reciprocal index of diversity was higher for gauze than for swabs. The teat canal epithelial samples exhibited significantly lower diversity than the external sampling locations, but there were no significant differences in diversity between teat apex, teat barrel, and base of the udder samples. There were, however, differences in the microbial distribution and abundances of specific bacteria across external epithelial surfaces. The proportion of shotgun sequence reads classified as Bos taurus was highly variable between sampling locations, ranging from 0.33% in teat apex samples to 99.91% in teat canal samples. These results indicate that gauze squares should be considered for studying the microbiome of the external epithelium of the bovine udder, particularly if DNA yield must be maximized. Further, the relative proportion of host to non-host DNA present in samples collected from the internal and external teat epithelium should be considered when designing studies that utilize shotgun metagenomic sequencing.
Collapse
Affiliation(s)
- C J Dean
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, 55108
| | - I B Slizovskiy
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, 55108
| | - K K Crone
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, 55108
| | - A X Pfennig
- Department of Biology, Georgia Tech University, Atlanta 30332
| | - B J Heins
- Department of Animal Sciences, University of Minnesota, St. Paul 55108
| | - L S Caixeta
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, 55108
| | - N R Noyes
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, 55108.
| |
Collapse
|
32
|
Peng M, Biswas D. Environmental Influences of High-Density Agricultural Animal Operation on Human Forearm Skin Microflora. Microorganisms 2020; 8:microorganisms8101481. [PMID: 32993188 PMCID: PMC7650789 DOI: 10.3390/microorganisms8101481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/17/2020] [Accepted: 09/23/2020] [Indexed: 12/18/2022] Open
Abstract
The human forearm skin microbiome ecosystem contains rich and diverse microbes, which are influenced by environmental exposures. The microbial representatives can be exchanged between human and environment, specifically animals, by which they share certain or similar epidermal microbes. Livestock and poultry are the microbial sources that are associated with the transmission of community-based pathogenic infections. Here, in this study, we proposed investigating the environmental influences introduced by livestock/poultry operations on forearm skin microflora of on-site farm workers. A total of 30 human skin swab samples were collected from 20 animal workers in dairy or integrated farms and 10 healthy volunteer controls. The skin microbiome was 16S metagenomics that were sequenced with Illumina MiSeq system. For skin microbial community analysis, the abundance of major phyla and genera as well as alpha and beta diversities were compared across groups. We identified distinctive microbial compositional patterns on skin of workers in farm with different animal commodities. Workers in integrated farms containing various animals were associated with higher abundances of epidermal Proteobacteria, especially Pseudomonas and Acinetobacter, but lower Actinobacteria, especially Corynebacterium and Propionibacterium. For those workers with frequent dairy cattle operations, their Firmicutes in the forearm skin microbiota were enriched. Furthermore, farm animal operations also reduced Staphylococcus and Streptococcus, as well as modulated the microbial biodiversity in farm workers' skin microbiome. The alterations of forearm skin microflora in farm workers, influenced by their frequent farm animal operations, may increase their risk in skin infections with unusual pathogens and epidermal diseases.
Collapse
Affiliation(s)
- Mengfei Peng
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
| | - Debabrata Biswas
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA;
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
- Correspondence: ; Tel.: +1-301-405-3791
| |
Collapse
|
33
|
Microbiome dynamics and genomic determinants of bovine mastitis. Genomics 2020; 112:5188-5203. [PMID: 32966856 DOI: 10.1016/j.ygeno.2020.09.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 09/19/2020] [Indexed: 01/21/2023]
Abstract
The milk of lactating cows presents a complex ecosystem of interconnected microbial communities which can influence the pathophysiology of mastitis. We hypothesized possible dynamic shifts of microbiome composition and genomic features with different pathological conditions of mastitis (Clinical Mastitis; CM, Recurrent CM; RCM, Subclinical Mastitis; SCM). To evaluate this hypothesis, we employed whole metagenome sequencing (WMS) in 20 milk samples (CM, 5; RCM, 6; SCM, 4; H, 5) to unravel the microbiome dynamics, interrelation, and relevant metabolic functions. The WMS data mapped to 442 bacterial, 58 archaeal and 48 viral genomes with distinct variation in microbiome composition (CM > H > RCM > SCM). Furthermore, we identified a number of microbial genomic features, including 333, 304, 183 and 50 virulence factors-associated genes (VFGs) and 48, 31, 11 and 6 antibiotic resistance genes (ARGs) in CM, RCM, SCM, and H-microbiomes, respectively. We also detected different metabolic pathway and functional genes associated with mastitis pathogenesis. Therefore, profiling microbiome dynamics in different conditions of mastitis and associated microbial genomic features contributes to developing microbiome-based diagnostics and therapeutics for bovine mastitis.
Collapse
|
34
|
Witzke MC, Gullic A, Yang P, Bivens NJ, Adkins PRF, Ericsson AC. Influence of PCR cycle number on 16S rRNA gene amplicon sequencing of low biomass samples. J Microbiol Methods 2020; 176:106033. [PMID: 32805370 DOI: 10.1016/j.mimet.2020.106033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
The objective of this study was to evaluate the effects of increased PCR cycle number on sequencing results from samples with low microbial biomass, including bovine milk, and murine pelage and blood. We hypothesized that subjecting DNA from such samples to higher PCR cycle numbers would increase 16S rRNA sequencing coverage. DNA was extracted from matched samples of each type and multiple PCR cycle numbers were evaluated to generate a total of 96 libraries from 24 milk samples, 46 libraries from 23 pelage samples, and 170 libraries from 85 blood samples. 16S rRNA sequencing was performed on the Illumina MiSeq platform, and the coverage per sample, detected richness, and beta-diversity were evaluated. Across all sample types, higher PCR cycle numbers were associated with increased coverage. Surprisingly however, while higher PCR cycle numbers resulted in greater number of useable datapoints, no differences were detected in metrics of richness or beta-diversity. While reagent controls amplified for 40 cycles yielded similarly increased coverage, control and experimental samples were clearly differentiated based on beta-diversity. The results from this study support the use of higher PCR cycle numbers to evaluate samples with low microbial biomass.
Collapse
Affiliation(s)
- Monica C Witzke
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Alexis Gullic
- University of Missouri, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Peggy Yang
- University of Michigan, Unit for Laboratory Animal Medicine, Ann Arbor, MI, USA
| | - Nathan J Bivens
- DNA Core Facility, University of Missouri, Columbia, MO, USA
| | - Pamela R F Adkins
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- University of Missouri, Metagenomics Center (MUMC), Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
35
|
|