1
|
Calvo-Monge J, Arroyo-Esquivel J, Gehman A, Sanchez F. Source-Sink Dynamics in a Two-Patch SI Epidemic Model with Life Stages and No Recovery from Infection. Bull Math Biol 2024; 86:102. [PMID: 38976154 DOI: 10.1007/s11538-024-01328-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024]
Abstract
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
Collapse
Affiliation(s)
- Jimmy Calvo-Monge
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| | - Jorge Arroyo-Esquivel
- Department of Global Ecology, Carnegie Institution for Science, Washington, DC, 20015, USA.
| | | | - Fabio Sanchez
- Escuela de Matemática, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
- Centro de Investigación en Matemática Pura y Aplicada, Universidad de Costa Rica, San Pedro, San José, 11501, Costa Rica
| |
Collapse
|
2
|
Dawson MN, Duffin PJ, Giakoumis M, Schiebelhut LM, Beas-Luna R, Bosley KL, Castilho R, Ewers-Saucedo C, Gavenus KA, Keller A, Konar B, Largier JL, Lorda J, Miner CM, Moritsch MM, Navarrete SA, Traiger SB, Turner MS, Wares JP. A Decade of Death and Other Dynamics: Deepening Perspectives on the Diversity and Distribution of Sea Stars and Wasting. THE BIOLOGICAL BULLETIN 2023; 244:143-163. [PMID: 38457680 DOI: 10.1086/727969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species. We evaluated the impacts of abiotic characteristics hypothetically associated with sea star wasting (sea surface temperature, pelagic primary productivity, upwelling wind forcing, wave exposure, freshwater runoff) and species characteristics (depth distribution, developmental mode, diet, habitat, reproductive period). We find that the 2010s sea star wasting outbreak clearly affected a little over a dozen species, primarily intertidal and shallow subtidal taxa, causing instantaneous wasting prevalence rates of 5%-80%. Despite the collapse of some populations within weeks, environmental and species variation protracted the outbreak, which lasted 2-3 years from onset until declining to chronic background rates of ∼2% sea star wasting prevalence. Recruitment began immediately in many species, and in general, sea star assemblages trended toward recovery; however, recovery was heterogeneous, and a marine heatwave in 2019 raised concerns of a second decline. The abiotic stressors most associated with the 2010s sea star wasting outbreak were elevated sea surface temperature and low wave exposure, as well as freshwater discharge in the north. However, detailed data speaking directly to the biological, ecological, and environmental cause(s) and consequences of the sea star wasting outbreak remain limited in scope, unavoidably retrospective, and perhaps always indeterminate. Redressing this shortfall for the future will require a broad spectrum of monitoring studies not less than the taxonomically broad cross-scale framework we have modeled in this synthesis.
Collapse
|
3
|
Schiebelhut LM, Giakoumis M, Castilho R, Duffin PJ, Puritz JB, Wares JP, Wessel GM, Dawson MN. Minor Genetic Consequences of a Major Mass Mortality: Short-Term Effects in Pisaster ochraceus. THE BIOLOGICAL BULLETIN 2022; 243:328-338. [PMID: 36716481 PMCID: PMC10668074 DOI: 10.1086/722284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events. Here, we use reduced-representation sequencing to identify potential short-term genetic impacts of a mass mortality event associated with a sea star wasting outbreak. We tested for changes in the population for genetic differentiation, diversity, and effective population size between pre-sea star wasting and post-sea star wasting populations of Pisaster ochraceus-a species that suffered high sea star wasting-associated mortality (75%-100% at 80% of sites). We detected no significant population-based genetic differentiation over the spatial scale sampled; however, the post-sea star wasting population tended toward more differentiation across sites than the pre-sea star wasting population. Genetic estimates of effective population size did not detectably change, consistent with theoretical expectations; however, rare alleles were lost. While we were unable to detect significant population-based genetic differentiation or changes in effective population size over this short time period, the genetic burden of this mass mortality event may be borne by future generations, unless widespread recruitment mitigates the population decline. Prior results from P. ochraceus indicated that natural selection played a role in altering allele frequencies following this mass mortality event. In addition to the role of selection found in a previous study on the genomic impacts of sea star wasting on P. ochraceus, our current study highlights the potential role the stochastic loss of many individuals plays in altering how genetic variation is structured across the landscape. Future genetic monitoring is needed to determine long-term genetic impacts in this long-lived species. Given the increased frequency of mass mortality events, it is important to implement demographic and genetic monitoring strategies that capture baselines and background dynamics to better contextualize species' responses to large perturbations.
Collapse
Affiliation(s)
- Lauren M. Schiebelhut
- Life and Environmental Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California 95343
| | - Melina Giakoumis
- Graduate Center, City University of New York, 365 5th Avenue, New York, New York 10016
- Department of Biology, City College of New York, 160 Convent Avenue, New York, New York 10031
| | - Rita Castilho
- University of Algarve, Campus de Gambelas, Faro, Portugal
- Center of Marine Sciences (CCMAR), Campus de Gambelas, Faro, Portugal
| | - Paige J. Duffin
- Odum School of Ecology and Department of Genetics, University of Georgia, 120 Green Street, Athens, Georgia 30602
| | - Jonathan B. Puritz
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island 02881
| | - John P. Wares
- Odum School of Ecology and Department of Genetics, University of Georgia, 120 Green Street, Athens, Georgia 30602
| | - Gary M. Wessel
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Michael N Dawson
- Life and Environmental Sciences, University of California, Merced, 5200 N. Lake Road, Merced, California 95343
| |
Collapse
|
4
|
Schiebelhut LM, Giakoumis M, Castilho R, Garcia VE, Wares JP, Wessel GM, Dawson MN. Is It in the Stars? Exploring the Relationships between Species' Traits and Sea Star Wasting Disease. THE BIOLOGICAL BULLETIN 2022; 243:315-327. [PMID: 36716486 DOI: 10.1086/722800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
AbstractAn explanation for variation in impacts of sea star wasting disease across asteroid species remains elusive. Although various traits have been suggested to play a potential role in sea star wasting susceptibility, currently we lack a thorough comparison that explores how life-history and natural history traits shape responses to mass mortality across diverse asteroid taxa. To explore how asteroid traits may relate to sea star wasting, using available data and recognizing the potential for biological correlations to be driven by phylogeny, we generated a supertree, tested traits for phylogenetic association, and evaluated associations between traits and sea star wasting impact. Our analyses show no evidence for a phylogenetic association with sea star wasting impact, but there does appear to be phylogenetic association for a subset of asteroid life-history traits, including diet, substrate, and reproductive season. We found no relationship between sea star wasting and developmental mode, diet, pelagic larval duration, or substrate but did find a relationship with minimum depth, reproductive season, and rugosity (or surface complexity). Species with the greatest sea star wasting impacts tend to have shallower minimum depth distributions, they tend to have their median reproductive period 1.5 months earlier, and they tend to have higher rugosities relative to species less affected by sea star wasting. Fully understanding sea star wasting remains challenging, in part because dramatic gaps still exist in our understanding of the basic biology and phylogeny of asteroids. Future studies would benefit from a more robust phylogenetic understanding of sea stars, as well as leveraging intra- and interspecific comparative transcriptomics and genomics to elucidate the molecular pathways responding to sea star wasting.
Collapse
|
5
|
Schiebelhut LM, Gaylord B, Grosberg RK, Jurgens LJ, Dawson MN. Species' attributes predict the relative magnitude of ecological and genetic recovery following mass mortality. Mol Ecol 2022; 31:5714-5728. [PMID: 36178057 PMCID: PMC9828784 DOI: 10.1111/mec.16707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 01/13/2023]
Abstract
Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential-e.g., longer pelagic duration, higher fecundity and larger population size-have greater realized dispersal overall. We used a natural experiment created by a large-scale and multispecies mortality event which created a "clean slate" on which to study recruitment dynamics, thus simplifying a usually complex problem. We surveyed four species of differing dispersal potential to quantify the abundance and distribution of recruits and to genetically assign these recruits to probable parental sources. Species with higher dispersal potential recolonized a broader extent of the impacted range, did so more quickly and recovered more genetic diversity than species with lower dispersal potential. Moreover, populations of taxa with higher dispersal potential exhibited more immigration (71%-92% of recruits) than taxa with lower dispersal potential (17%-44% of recruits). By linking ecological with genomic perspectives, we demonstrate that a suite of interacting life-history and demographic attributes do influence species' realized dispersal and genetic neighbourhoods. To better understand species' resilience and recovery in this time of global change, integrative eco-evolutionary approaches are needed to more rigorously evaluate the effect of dispersal-linked attributes on realized dispersal and population genetic differentiation.
Collapse
Affiliation(s)
| | - Brian Gaylord
- Bodega Marine LaboratoryUniversity of CaliforniaDavisCaliforniaUSA
| | | | - Laura J. Jurgens
- Department of Marine BiologyTexas A&M University at GalvestonGalvestonTexasUSA
| | - Michael N Dawson
- Life and Environmental SciencesUniversity of CaliforniaMercedCaliforniaUSA
| |
Collapse
|
6
|
Hofmeister E, Ruhs EC, Fortini LB, Hopkins MC, Jones L, Lafferty KD, Sleeman J, LeDee O. Future Directions to Manage Wildlife Health in a Changing Climate. ECOHEALTH 2022; 19:329-334. [PMID: 35759113 DOI: 10.1007/s10393-022-01604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Erik Hofmeister
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA.
| | | | - Lucas Berio Fortini
- U.S. Geological Survey Pacific Islands Ecological Research Center, Inouye Regional Center, 1845 Wasp Blvd., Bldg. 176, Honolulu, HI, 96818, USA
| | - M Camille Hopkins
- U.S. Geological Survey Ecosystems Mission Area, 12201 Sunrise Valley Drive, Reston, VA, 20192, USA
| | - Lee Jones
- USFWS-Natural Resource Program Center, 10 E. Babcock, Rm 105, Bozeman, MT, 59715, USA
| | - Kevin D Lafferty
- Marine Science Institute, U.S. Geological Survey Western Ecological Research Center, University of California, 805, Santa Barbara, CA, 93106, USA
| | - Jonathan Sleeman
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA
| | - Olivia LeDee
- U.S. Geological Survey, Climate Adaptation Science Centers, 1956 Buford Ave. St, Paul, MN, 55108, USA
| |
Collapse
|
7
|
Oulhen N, Byrne M, Duffin P, Gomez-Chiarri M, Hewson I, Hodin J, Konar B, Lipp EK, Miner BG, Newton AL, Schiebelhut LM, Smolowitz R, Wahltinez SJ, Wessel GM, Work TM, Zaki HA, Wares JP. A Review of Asteroid Biology in the Context of Sea Star Wasting: Possible Causes and Consequences. THE BIOLOGICAL BULLETIN 2022; 243:50-75. [PMID: 36108034 PMCID: PMC10642522 DOI: 10.1086/719928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
AbstractSea star wasting-marked in a variety of sea star species as varying degrees of skin lesions followed by disintegration-recently caused one of the largest marine die-offs ever recorded on the west coast of North America, killing billions of sea stars. Despite the important ramifications this mortality had for coastal benthic ecosystems, such as increased abundance of prey, little is known about the causes of the disease or the mechanisms of its progression. Although there have been studies indicating a range of causal mechanisms, including viruses and environmental effects, the broad spatial and depth range of affected populations leaves many questions remaining about either infectious or non-infectious mechanisms. Wasting appears to start with degradation of mutable connective tissue in the body wall, leading to disintegration of the epidermis. Here, we briefly review basic sea star biology in the context of sea star wasting and present our current knowledge and hypotheses related to the symptoms, the microbiome, the viruses, and the associated environmental stressors. We also highlight throughout the article knowledge gaps and the data needed to better understand sea star wasting mechanistically, its causes, and potential management.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Maria Byrne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Paige Duffin
- Department of Genetics, University of Georgia, Athens, Georgia
| | - Marta Gomez-Chiarri
- Department of Fisheries, Animal, and Veterinary Science, University of Rhode Island, Kingston, Rhode Island
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, New York
| | - Jason Hodin
- Friday Harbor Labs, University of Washington, Friday Harbor, Washington
| | - Brenda Konar
- College of Fisheries and Ocean Sciences, University of Alaska, Fairbanks, Alaska
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, Georgia
| | - Benjamin G. Miner
- Department of Biology, Western Washington University, Bellingham, Washington
| | | | - Lauren M. Schiebelhut
- Department of Life and Environmental Sciences, University of California, Merced, California
| | - Roxanna Smolowitz
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island
| | - Sarah J. Wahltinez
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, Florida
| | - Gary M. Wessel
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - Thierry M. Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, Hawaii
| | - Hossam A. Zaki
- Department of Molecular and Cell Biology and Biochemistry, Brown University, Providence, Rhode Island
| | - John P. Wares
- Department of Genetics, University of Georgia, Athens, Georgia
- Odum School of Ecology, University of Georgia, Athens, Georgia
| |
Collapse
|
8
|
Work TM, Weatherby TM, DeRito CM, Besemer RM, Hewson I. Sea star wasting disease pathology in Pisaster ochraceus shows a basal-to-surface process affecting color phenotypes differently. DISEASES OF AQUATIC ORGANISMS 2021; 145:21-33. [PMID: 34080580 DOI: 10.3354/dao03598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Sea star wasting disease (SSWD) refers to a suite of poorly described non-specific clinical signs including abnormal posture, epidermal ulceration, and limb autotomy (sloughing) causing mortalities of over 20 species of sea stars and subsequent ecological shifts throughout the northeastern Pacific. While SSWD is widely assumed to be infectious, with environmental conditions facilitating disease progression, few data exist on cellular changes associated with the disease. This is unfortunate, because such observations could inform mechanisms of disease pathogenesis and host susceptibility. Here, we replicated SSWD by exposing captive Pisaster ochraceus to a suite of non-infectious organic substances and show that development of gross lesions is a basal-to-surface process involving inflammation (e.g. infiltration of coelomocytes) of ossicles and mutable collagenous tissue, leading to epidermal ulceration. Affected sea stars also manifest increases in a heretofore undocumented coelomocyte type, spindle cells, that might be a useful marker of inflammation in this species. Finally, compared to purple morphs, orange P. ochraceus developed more severe lesions but survived longer. Longer-lived, and presumably more visible, severely-lesioned orange sea stars could have important demographic implications in terms of detectability of lesioned animals in the wild and measures of apparent prevalence of disease.
Collapse
Affiliation(s)
- Thierry M Work
- US Geological Survey, National Wildlife Health Center, Honolulu Field Station, Honolulu, HI 96850, USA
| | | | | | | | | |
Collapse
|
9
|
Melroy LM, Cohen CS. Temporal and spatial variation in population structure among brooding sea stars in the genus Leptasterias. Ecol Evol 2021; 11:3313-3331. [PMID: 33841786 PMCID: PMC8019026 DOI: 10.1002/ece3.7283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/24/2020] [Accepted: 01/21/2021] [Indexed: 12/02/2022] Open
Abstract
Temporal genetic studies of low-dispersing organisms are rare. Marine invertebrates lacking a planktonic larval stage are expected to have lower dispersal, low gene flow, and a higher potential for local adaptation than organisms with planktonic dispersal. Leptasterias is a genus of brooding sea stars containing several cryptic species complexes. Population genetic methods were used to resolve patterns of fine-scale population structure in central California Leptasterias species using three loci from nuclear and mitochondrial genomes. Historic samples (collected between 1897 and 1998) were compared to contemporary samples (collected between 2008 and 2014) to delineate changes in species distributions in space and time. Phylogenetic analysis of contemporary samples confirmed the presence of a bay-localized clade and revealed the presence of an additional bay-localized and previously undescribed clade of Leptasterias. Analysis of contemporary and historic samples indicates two clades are experiencing a constriction in their southern range limit and suggests a decrease in clade-specific abundance at sites at which they were once prevalent. Historic sampling revealed a dramatically different distribution of diversity along the California coastline compared to contemporary sampling and illustrates the importance of temporal genetic sampling in phylogeographic studies. These samples were collected prior to significant impacts of Sea Star Wasting Disease (SSWD) and represent an in-depth analysis of genetic structure over 117 years prior to the SSWD-associated mass die-off of Leptasterias.
Collapse
Affiliation(s)
- Laura M. Melroy
- Department of BiologyEstuary & Ocean Science CenterSan Francisco State UniversityTiburonCAUSA
| | - C. Sarah Cohen
- Department of BiologyEstuary & Ocean Science CenterSan Francisco State UniversityTiburonCAUSA
| |
Collapse
|
10
|
Aquino CA, Besemer RM, DeRito CM, Kocian J, Porter IR, Raimondi PT, Rede JE, Schiebelhut LM, Sparks JP, Wares JP, Hewson I. Evidence That Microorganisms at the Animal-Water Interface Drive Sea Star Wasting Disease. Front Microbiol 2021; 11:610009. [PMID: 33488550 PMCID: PMC7815596 DOI: 10.3389/fmicb.2020.610009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Sea star wasting (SSW) disease describes a condition affecting asteroids that resulted in significant Northeastern Pacific population decline following a mass mortality event in 2013. The etiology of SSW is unresolved. We hypothesized that SSW is a sequela of microbial organic matter remineralization near respiratory surfaces, one consequence of which may be limited O2 availability at the animal-water interface. Microbial assemblages inhabiting tissues and at the asteroid-water interface bore signatures of copiotroph proliferation before SSW onset, followed by the appearance of putatively facultative and strictly anaerobic taxa at the time of lesion genesis and as animals died. SSW lesions were induced in Pisaster ochraceus by enrichment with a variety of organic matter (OM) sources. These results together illustrate that depleted O2 conditions at the animal-water interface may be established by heterotrophic microbial activity in response to organic matter loading. SSW was also induced by modestly (∼39%) depleted O2 conditions in aquaria, suggesting that small perturbations in dissolved O2 may exacerbate the condition. SSW susceptibility between species was significantly and positively correlated with surface rugosity, a key determinant of diffusive boundary layer thickness. Tissues of SSW-affected individuals collected in 2013–2014 bore δ15N signatures reflecting anaerobic processes, which suggests that this phenomenon may have affected asteroids during mass mortality at the time. The impacts of enhanced microbial activity and subsequent O2 diffusion limitation may be more pronounced under higher temperatures due to lower O2 solubility, in more rugose asteroid species due to restricted hydrodynamic flow, and in larger specimens due to their lower surface area to volume ratios which affects diffusive respiratory potential.
Collapse
Affiliation(s)
- Citlalli A Aquino
- Department of Biology, Estuary and Ocean Science Center, San Francisco State University, Tiburon, CA, United States
| | - Ryan M Besemer
- Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC, United States
| | | | - Jan Kocian
- Unaffiliated Researcher, Freeland, WA, United States
| | - Ian R Porter
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Peter T Raimondi
- Institute of Marine Sciences, Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States
| | - Jordan E Rede
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| | - Lauren M Schiebelhut
- Life and Environmental Sciences, University of California, Merced, Merced, CA, United States
| | - Jed P Sparks
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States
| | - John P Wares
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Ian Hewson
- Department of Microbiology, Cornell University, Ithaca, NY, United States
| |
Collapse
|